Skip to main content

Advertisement

Log in

Stereotactic radiosurgery for treatment of brain metastases

A report of the DEGRO Working Group on Stereotactic Radiotherapy

Stereotaktische Radiochirurgie zur Behandlung von Hirnmetastasen

Ein Bericht der Deutschen Gesellschaft für Radioonkologie (DEGRO)

  • Original article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Background

This report from the Working Group on Stereotaktische Radiotherapie of the German Society of Radiation Oncology (Deutsche Gesellschaft für Radioonkologie, DEGRO) provides recommendations for the use of stereotactic radiosurgery (SRS) on patients with brain metastases. It considers existing international guidelines and details them where appropriate.

Results and discussion

The main recommendations are: Patients with solid tumors except germ cell tumors and small-cell lung cancer with a life expectancy of more than 3 months suffering from a single brain metastasis of less than 3 cm in diameter should be considered for SRS. Especially when metastases are not amenable to surgery, are located in the brain stem, and have no mass effect, SRS should be offered to the patient. For multiple (two to four) metastases—all less than 2.5 cm in diameter—in patients with a life expectancy of more than 3 months, SRS should be used rather than whole-brain radiotherapy (WBRT). Adjuvant WBRT after SRS for both single and multiple (two to four) metastases increases local control and reduces the frequency of distant brain metastases, but does not prolong survival when compared with SRS and salvage treatment. As WBRT carries the risk of inducing neurocognitive damage, it seems reasonable to withhold WBRT for as long as possible.

Conclusion

A single (marginal) dose of 20 Gy is a reasonable choice that balances the effect on the treated lesion (local control, partial remission) against the risk of late side effects (radionecrosis). Higher doses (22–25 Gy) may be used for smaller (< 1 cm) lesions, while a dose reduction to 18 Gy may be necessary for lesions greater than 2.5–3 cm. As the infiltration zone of the brain metastases is usually small, the GTV–CTV (gross tumor volume–clinical target volume) margin should be in the range of 0–1 mm. The CTV–PTV (planning target volume) margin depends on the treatment technique and should lie in the range of 0–2 mm. Distant brain recurrences fulfilling the aforementioned criteria can be treated with SRS irrespective of previous WBRT.

Zusammenfassung

Einleitung

Dieser Bericht der Arbeitsgruppe „Stereotaktische Radiotherapie“ der Deutschen Gesellschaft für Radioonkologie (DEGRO) gibt Empfehlungen für die Behandlung von Patienten mit Hirnmetastasen mittels stereotaktischer Radiochirurgie (SRS). Internationale Leitlinien werden berücksichtigt und, wenn nötig, ergänzt.

Ergebnisse und Diskussion

Die wichtigsten Empfehlungen lauten: Patienten mit soliden Tumoren außer Keimzelltumoren und kleinzelligem Bronchialkarzinom und einer Lebenserwartung von mindestens 3 Monaten sollten bei Vorliegen von singulären Hirnmetastasen < 3 cm für die SRS in Betracht gezogen werden. Insbesondere bei inoperablen Metastasen, Hirnstammmetastasen und bei Metastasen ohne Masseneffekt sollte die SRS angeboten werden. Patienten mit multiplen Metastasen (2–4), alle mit einem Durchmesser < 2,5 cm, sollten bei einer Lebenserwartung von > 3 Monaten ebenfalls primär eine SRS (statt einer Ganzhirnbestrahlung, „whole brain radiotherapy“, WBRT) erhalten. Eine adjuvante WBRT nach SRS von 1–4 Hirnmetastasen erhöht die lokale Kontrolle und reduziert die Häufigkeit distanter Hirnmetastasen, verlängert aber das Überleben im Vergleich zu einer primären alleinigen SRS und Rezidivtherapieverfahren nicht. Da die WBRT das Risiko von neurokognitiven Spätfolgen mit sich trägt, erscheint es sinnvoll, sie solange wie möglich zurückzustellen.

Schlussfolgerung

Eine Einzeldosis von 20 Gy stellt einen sinnvollen Kompromiss zwischen dem zu erreichenden therapeutischen Effekt (lokale Kontrolle, partielle Remission) und den möglichen Spätnebenwirkungen (Strahlennekrose) dar. Höhere Dosen (22–25 Gy) können für kleinere Läsionen (< 1 cm) verwendet werden, bei größeren Metastasen (> 2,5–3 cm) ist evtl. eine Dosisreduktion auf 18 Gy erforderlich. Da die Infiltrationszone von Hirnmetastasen klein ist, sollte der Abstand zwischen GTV („Gross Tumor Volume“) und CTV („Clinical Target Volume“) 0–1 mm betragen. Der Abstand zwischen CTV und PTV („Planning Target Volume“) sollte abhängig von der Bestrahlungstechnik 0–2 mm betragen. Distante Hirnmetastasen, welche die genannten Kriterien erfüllen, können auch nach vorangegangener WBRT mittels SRS behandelt werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sturm V, Kober B, Höver KH et al (1987) Stereotactic percutaneous single dose irradiation of brain metastases with a linear accelerator. Int J Radiat Oncol Biol Phys 13:279–282

    CAS  Google Scholar 

  2. Linskey ME, Andrews DW, Asher AL et al (2010) The role of stereotactic radiosurgery in the management of patients with newly diagnosed brain metastases: a systematic review and evidence-based clinical practice guideline. J Neurooncol 96:45–68

    PubMed Central  PubMed  Google Scholar 

  3. Gavrilovic IT, Posner JB (2005) Brain metastases: epidemiology and pathophysiology. J Neurooncol 75:5–14

    PubMed  Google Scholar 

  4. Tsao MN, Rades D, Wirth A et al (2012) Radiotherapeutic and surgical management for newly diagnosed brain metastasis(es): an American Society for Radiation Oncology evidence-based guideline. Pract Radiat Oncol 2:210–225

    PubMed Central  PubMed  Google Scholar 

  5. McDuff SG, Taich ZJ, Lawson JD et al (2013) Neurocognitive assessment following whole brain radiation therapy and radiosurgery for patients with cerebral metastases. J Neurol Neurosurg Psychiatry 84:1384–1391

    Google Scholar 

  6. Sperduto PW, Chao ST, Sneed PK et al (2010) Diagnosis-specific prognostic factors, indexes, and treatment outcomes for patients with newly diagnosed brain metastases: a multi-institutional analysis of 4,259 patients. Int J Radiat Oncol Biol Phys 77:655–661

    PubMed  Google Scholar 

  7. Zindler JD, Rodrigues G, Haasbeek CJ et al (2013) The clinical utility of prognostic scoring systems in patients with brain metastases treated with radiosurgery. Radiother Oncol 106:370–374

    PubMed  Google Scholar 

  8. Park YH, Kim TH, Jung SY et al (2013) Combined primary tumor and extracranial metastasis status as constituent factor of prognostic indices for predicting the overall survival in patients with brain metastases. J Korean Med Sci 28:205–212

    PubMed Central  PubMed  Google Scholar 

  9. Sperduto PW, Kased N, Roberge D et al (2012) Summary report on the graded prognostic assessment: an accurate and facile diagnosis-specific tool to estimate survival for patients with brain metastases. J Clin Oncol 30:419–425

    PubMed Central  PubMed  Google Scholar 

  10. Halasz LM, Rockhill JK (2013) Stereotactic radiosurgery and Stereotactic Radiotherapy for brain metastases. Surg Neurol Int 4:S185–191

    Google Scholar 

  11. Andrews DW, Scott CB, Sperduto PW et al (2004) Whole brain radiation therapy with or without stereotactic radiosurgery boost for patients with one to three brain metastases: phase III results of the RTOG 9508 randomised trial. Lancet 363:1665–1672

    PubMed  Google Scholar 

  12. Kondziolka D, Patel A, Lunsford LD, Kassam A, Flickinger JC (1999) Stereotactic radiosurgery plus whole brain radiotherapy versus radiotherapy alone for patients with multiple brain metastases. Int J Radiat Oncol Biol Phys 45:427–434

    CAS  PubMed  Google Scholar 

  13. Chougule P, Burton-Williams M, Saris S, Zheng Z, Ponte B, Noren G (2000) Randomized treatment of brain metastasis with gamma knife radiosurgery, whole brain radiotherapy or both. Int J Radiat Oncol Biol Phys 48:114

    Google Scholar 

  14. Patil CG, Pricola K, Sarmiento JM, Garg SK, Bryant A, Black KL (2012) Whole brain radiation therapy (WBRT) alone versus WBRT and radiosurgery for the treatment of brain metastases. Cochrane Database Syst Rev 9:CD006121

    PubMed  Google Scholar 

  15. Wang LG, Guo Y, Zhang X et al (2002) Brain metastasis: experience of the Xi-Jing hospital. Stereotact Funct Neurosurg 78:70–83

    PubMed  Google Scholar 

  16. Sanghavi SN, Miranpuri SS, Chappell R et al (2001) Radiosurgery for patients with brain metastases: a multi-institutional analysis, stratified by the RTOG recursive partitioning analysis method. Int J Radiat Oncol Biol Phys 51:426–434

    CAS  PubMed  Google Scholar 

  17. Aoyama H, Shirato H, Tago M et al (2006) Stereotactic radiosurgery plus whole-brain radiation therapy vs stereotactic radiosurgery alone for treatment of brain metastases: a randomized controlled trial. JAMA 295:2483–2491

    CAS  PubMed  Google Scholar 

  18. Kocher M, Soffietti R, Abacioglu U et al (2011) Adjuvant whole-brain radiotherapy versus observation after radiosurgery or surgical resection of one to three cerebral metastases: results of the EORTC 22952-26001 study. J Clin Oncol 29:134–141

    PubMed Central  PubMed  Google Scholar 

  19. Li B, Yu J, Suntharalingam M et al (2000) Comparison of three treatment options for single brain metastasis from lung cancer. Int J Cancer 90:37–45

    CAS  PubMed  Google Scholar 

  20. Fokas E, Henzel M, Hamm K, Surber G, Kleinert G, Engenhart-Cabillic R (2010) Radiotherapy for brain metastases from renal cell cancer: should whole-brain radiotherapy be added to stereotactic radiosurgery?: analysis of 88 patients. Strahlenther Onkol 186:210–217

    PubMed  Google Scholar 

  21. Sneed PK, Suh JH, Goetsch SJ et al (2002) A multi-institutional review of radiosurgery alone vs. radiosurgery with whole brain radiotherapy as the initial management of brain metastases. Int J Radiat Oncol Biol Phys 53:519–526

    PubMed  Google Scholar 

  22. Pirzkall A, Debus J, Lohr F et al (1998) Radiosurgery alone or in combination with whole-brain radiotherapy for brain metastases. J Clin Oncol 16:3563–3569

    CAS  PubMed  Google Scholar 

  23. Varlotto JM, Flickinger JC, Niranjan A, Bhatnagar A, Kondziolka D, Lunsford LD (2005) The impact of whole-brain radiation therapy on the long-term control and morbidity of patients surviving more than one year after gamma knife radiosurgery for brain metastases. Int J Radiat Oncol Biol Phys 62:1125–1132

    PubMed  Google Scholar 

  24. Rades D, Kueter JD, Hornung D et al (2008) Comparison of stereotactic radiosurgery (SRS) alone and whole brain radiotherapy (WBRT) plus a stereotactic boost (WBRT + SRS) for one to three brain metastases. Strahlenther Onkol 184:655–662

    PubMed  Google Scholar 

  25. Noel G, Medioni J, Valery CA et al (2003) Three irradiation treatment options including radiosurgery for brain metastases from primary lung cancer. Lung Cancer 41:333–343

    PubMed  Google Scholar 

  26. Park HS, Chiang VL, Knisely JP, Raldow AC, Yu JB (2011) Stereotactic radiosurgery with or without whole-brain radiotherapy for brain metastases: an update. Expert Rev Anticancer Ther 11:1731–1738

    PubMed  Google Scholar 

  27. Combs SE, Schulz-Ertner D, Thilmann C, Edler L, Debus J (2004) Treatment of cerebral metastases from breast cancer with stereotactic radiosurgery. Strahlenther Onkol 180:590–596

    PubMed  Google Scholar 

  28. Hoffman R, Sneed PK, McDermott MW et al (2001) Radiosurgery for brain metastases from primary lung carcinoma. Cancer J 7:121–131

    CAS  PubMed  Google Scholar 

  29. Aoyama H, Tago M, Kato N et al (2007) Neurocognitive function of patients with brain metastasis who received either whole brain radiotherapy plus stereotactic radiosurgery or radiosurgery alone. Int J Radiat Oncol Biol Phys 68:1388–1395

    PubMed  Google Scholar 

  30. Chang EL, Wefel JS, Hess KR et al (2009) Neurocognition in patients with brain metastases treated with radiosurgery or radiosurgery plus whole-brain irradiation: a randomised controlled trial. Lancet Oncol 10:1037–1044

    PubMed  Google Scholar 

  31. Meyers CA, Rock EP, Fine HA (2012) Refining endpoints in brain tumor clinical trials. J Neurooncol 108:227–230

    PubMed  Google Scholar 

  32. Soffietti R, Kocher M, Abacioglu UM et al (2013) A European Organisation for Research and Treatment of Cancer phase III trial of adjuvant whole-brain radiotherapy versus observation in patients with one to three brain metastases from solid tumors after surgical resection or radiosurgery: quality-of-life results. J Clin Oncol 31:65–72

    PubMed  Google Scholar 

  33. Suh JH (2010) Stereotactic radiosurgery for the management of brain metastases. N Engl J Med 362:1119–1127

    CAS  PubMed  Google Scholar 

  34. Soffietti R, Cornu P, Delattre JY et al (2006) EFNS Guidelines on diagnosis and treatment of brain metastases: report of an EFNS Task Force. Eur J Neurol 13:674–681

    CAS  PubMed  Google Scholar 

  35. Kalkanis SN, Kondziolka D, Gaspar LE et al (2010) The role of surgical resection in the management of newly diagnosed brain metastases: a systematic review and evidence-based clinical practice guideline. J Neurooncol 96:33–43

    PubMed Central  PubMed  Google Scholar 

  36. Fuentes R, Bonfill X, Exposito J (2006) Surgery versus radiosurgery for patients with a solitary brain metastasis from non-small cell lung cancer. Cochrane Database Syst Rev 25:CD004840

    Google Scholar 

  37. Minniti G, Esposito V, Clarke E et al (2013) Multidose stereotactic radiosurgery (9 gy × 3) of the postoperative resection cavity for treatment of large brain metastases. Int J Radiat Oncol Biol Phys 86:623–629

    PubMed  Google Scholar 

  38. Shaw E, Scott C, Souhami L et al (2000) Single dose radiosurgical treatment of recurrent previously irradiated primary brain tumors and brain metastases: final report of RTOG protocol 90–05. Int J Radiat Oncol Biol Phys 47:291–298

    CAS  PubMed  Google Scholar 

  39. Muacevic A, Wowra B, Siefert A, Tonn JC, Steiger HJ, Kreth FW (2008) Microsurgery plus whole brain irradiation versus Gamma Knife surgery alone for treatment of single metastases to the brain: a randomized controlled multicentre phase III trial. J Neurooncol 87:299–307

    PubMed  Google Scholar 

  40. Patchell RA, Tibbs PA, Walsh JW et al (1990) A randomized trial of surgery in the treatment of single metastases to the brain. N Engl J Med 322:494–500

    CAS  PubMed  Google Scholar 

  41. Patchell RA, Tibbs PA, Regine WF et al (1998) Postoperative radiotherapy in the treatment of single metastases to the brain: a randomized trial. JAMA 280:1485–1489

    CAS  PubMed  Google Scholar 

  42. Lippitz B, Lindquist C, Paddick I, Peterson D, O’Neill K, Beaney R (2014) Stereotactic radiosurgery in the treatment of brain metastases: the current evidence. Cancer Treat Rev 40:48–59

    Google Scholar 

  43. Vecht CJ, Haaxma-Reiche H, Noordijk EM et al (1993) Treatment of single brain metastasis: radiotherapy alone or combined with neurosurgery? Ann Neurol 33:583–590

    CAS  PubMed  Google Scholar 

  44. Adler JR, Cox RS, Kaplan I, Martin DP (1992) Stereotactic radiosurgical treatment of brain metastases. J Neurosurg 76:444–449

    CAS  PubMed  Google Scholar 

  45. Alexander E, 3rd, Moriarty TM, Davis RB et al (1995) Stereotactic radiosurgery for the definitive, noninvasive treatment of brain metastases. J Natl Cancer Inst 87:34–40

    PubMed  Google Scholar 

  46. Flickinger JC, Kondziolka D, Lunsford LD et al (1994) A multi-institutional experience with stereotactic radiosurgery for solitary brain metastasis. Int J Radiat Oncol Biol Phys 28:797–802

    CAS  PubMed  Google Scholar 

  47. Levitt MR, Levitt R, Silbergeld DL (2013) Controversies in the management of brain metastases. Surg Neurol Int 4:S231–S235

    Google Scholar 

  48. Rades D, Kieckebusch S, Haatanen T, Lohynska R, Dunst J, Schild SE (2008) Surgical resection followed by whole brain radiotherapy versus whole brain radiotherapy alone for single brain metastasis. Int J Radiat Oncol Biol Phys 70:1319–1324

    PubMed  Google Scholar 

  49. Gans JH, Raper DM, Shah AH et al (2013) The role of radiosurgery to the tumor bed after resection of brain metastases. Neurosurgery 72:317–326

    PubMed  Google Scholar 

  50. Connolly EP, Mathew M, Tam M et al (2013) Involved field radiation therapy after surgical resection of solitary brain metastases–mature results. Neuro Oncol 15:589–594

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Wang CC, Floyd SR, Chang CH et al (2012) Cyberknife hypofractionated stereotactic radiosurgery (HSRS) of resection cavity after excision of large cerebral metastasis: efficacy and safety of an 800 cGy × 3 daily fractions regimen. J Neurooncol 106:601–610

    PubMed  Google Scholar 

  52. Prabhu R, Shu HK, Hadjipanayis C et al (2012) Current dosing paradigm for stereotactic radiosurgery alone after surgical resection of brain metastases needs to be optimized for improved local control. Int J Radiat Oncol Biol Phys 83:e61–e66

    Google Scholar 

  53. Kelly PJ, Lin YB, Yu AY et al (2012) Stereotactic irradiation of the postoperative resection cavity for brain metastasis: a frameless linear accelerator-based case series and review of the technique. Int J Radiat Oncol Biol Phys 82:95–101

    PubMed  Google Scholar 

  54. Choi CY, Chang SD, Gibbs IC et al (2012) What is the optimal treatment of large brain metastases? An argument for a multidisciplinary approach. Int J Radiat Oncol Biol Phys 84:688–693

    PubMed  Google Scholar 

  55. Ammirati M, Cobbs CS, Linskey ME et al (2010) The role of retreatment in the management of recurrent/progressive brain metastases: a systematic review and evidence-based clinical practice guideline. J Neurooncol 96:85–96

    PubMed Central  PubMed  Google Scholar 

  56. Patel SH, Robbins JR, Gore EM et al (2012) ACR Appropriateness Criteria(R) follow-up and retreatment of brain metastases. Am J Clin Oncol 35:302–306

    PubMed  Google Scholar 

  57. Chao ST, Barnett GH, Vogelbaum MA et al (2008) Salvage stereotactic radiosurgery effectively treats recurrences from whole-brain radiation therapy. Cancer 113:2198–2204

    PubMed  Google Scholar 

  58. Yomo S, Hayashi M (2013) The efficacy and limitations of stereotactic radiosurgery as a salvage treatment after failed whole brain radiotherapy for brain metastases. J Neurooncol 113:459–465

    PubMed  Google Scholar 

  59. Kwon KY, Kong DS, Lee JI, Nam DH, Park K, Kim JH (2007) Endpoint of repeated radiosurgery for recurrent metastatic brain tumors. Clin Neurol Neurosurg 109:132–137

    PubMed  Google Scholar 

  60. Johnson M, Baschnagel AM, Chen PY et al (2013) Analysis of risk factors for development of radiation necrosis following gamma knife radiosurgery for brain metastases. Int J Radiat Oncol Biol Phys 87:S279

    Google Scholar 

  61. Schell MC, Bova FJ, Larson DA et al (1995) Stereotactic radiosurgery: report of Task Group 42 Radiation Therapy Committee. AAPM Report No 54 (The American Institute of Physics). http://www.aapm.org/pubs/reports/RPT_54.pdf

  62. Seung SK, Larson DA, Galvin JM et al (2013) American College of Radiology (ACR) and American Society for Radiation Oncology (ASTRO) Practice Guideline for the Performance of Stereotactic Radiosurgery (SRS). Am J Clin Oncol 36:310–315

    PubMed  Google Scholar 

  63. Bortfeld T, Oelfke U, Nill S (2000) What is the optimum leaf width of a multileaf collimator? Med Phys 27:2494–2502

    Google Scholar 

  64. Treuer H, Kocher M, Hoevels M et al (2006) Impact of target point deviations on control and complication probabilities in stereotactic radiosurgery of AVMs and metastases. Radiother Oncol 81:25–32

    PubMed  Google Scholar 

  65. Hartmann GH, Lutz W, Arndt J et al (1995) Quality Assurance Program on Stereotactic Radiosurgery. Report From a Quality Assurance Task Group. Berlin

  66. DIN_6875-1:2004-01 (2004) Spezielle Bestrahlungseinrichtungen—Teil 1: Perkutane stereotaktische Bestrahlung, Kennmerkmale und besondere Prüfmethoden

  67. DIN_6875-2:2008-11 (2008) Spezielle Bestrahlungseinrichtungen – Teil 2: Perkutane stereotaktische Bestrahlung—Konstanzprüfungen

  68. Dieterich S, Cavedon C, Chuang CF et al (2011) Report of AAPM TG 135: quality assurance for robotic radiosurgery. Med Phys 38:2914–2936 (Erratum: Med Phys 011 Sep;38: 5264)

    Google Scholar 

  69. Klein EE, Hanley J, Bayouth J et al (2009) Task Group 142 report: quality assurance of medical accelerators. Med Phys 36:4197–4212

    PubMed  Google Scholar 

  70. DIN_6875-3:2008:03 (2008) Spezielle Bestrahlungseinrichtungen—Teil 3: Fluenzmodulierte Strahlentherapie—Kennmerkmale, Prüfmethoden und Regeln für den klinischen Einsatz

  71. DIN_6875-4:2011:10 (2011) Spezielle Bestrahlungseinrichtungen—Teil 4: Fluenzmodulierte Strahlentherapie—Konstanzprüfungen

  72. Ezzell GA, Galvin JM, Low D et al (2003) Guidance document on delivery, treatment planning, and clinical implementation of IMRT: report of the IMRT Subcommittee of the AAPM Radiation Therapy Committee. Med Phys 30:2089–2115

    PubMed  Google Scholar 

  73. Nüsslin F, Bohsung J, Frenzel T, Grosser K-H, Paulsen F, Sack H (2004) Leitlinie zur Strahlentherapie mit fluenzmodulierten Feldern (IMRT). Ausgearbeitet von einem DGMP – DEGRO Arbeitsausschuss. In DGMP-Bericht Nr. Tübingen. http://www.dgmp.de/oeffentlichkeitsarbeit/papiere/Bericht19.pdf

  74. Aspradakis MM, Byrne JP, Palmans H et al (2010) Small field MV photon dosimetry. IPEM Reports Series (Institute of Physics and Engineering in Medicine)

    Google Scholar 

  75. DIN 6809-8 ip (2013) Klinische Dosimetrie—Teil 8: Dosimetrie kleiner Photonen-Bestrahlungsfelder

  76. Bichay T, Dieterich S, Orton CG. (2013) Submillimeter accuracy in radiosurgery is not possible. Med Phys 40:050601. doi:10.1118/1.4790690

    Google Scholar 

  77. Lutz W, Winston KR, Maleki N (1988) A system for stereotactic radiosurgery with a linear accelerator. Int J Radiat Oncol Biol Phys 14:373–381

    CAS  PubMed  Google Scholar 

  78. Antypas C, Pantelis E (2008) Performance evaluation of a CyberKnife G4 image-guided robotic stereotactic radiosurgery system. Phys Med Biol 53:4697–4718

    PubMed  Google Scholar 

  79. Wiehle R, Koth HJ, Nanko N, Grosu AL, Hodapp N (2009) On the accuracy of isocenter verification with kV imaging in stereotactic radiosurgery. Strahlenther Onkol 185:325–330

    PubMed  Google Scholar 

  80. Chang J, Yenice KM, Narayana A, Gutin PH (2007) Accuracy and feasibility of cone-beam computed tomography for stereotactic radiosurgery setup. Med Phys 34:2077–2084

    PubMed  Google Scholar 

  81. Masi L, Casamassima F, Polli C, Menichelli C, Bonucci I, Cavedon C (2008) Cone beam CT image guidance for intracranial stereotactic treatments: comparison with a frame guided set-up. Int J Radiat Oncol Biol Phys 71:926–933

    PubMed  Google Scholar 

  82. Fuss M, Salter BJ, Cheek D, Sadeghi A, Hevezi JM, Herman T (2004) Repositioning accuracy of a commercially available thermoplastic mask system. Radiother Oncol 71:339–345

    PubMed  Google Scholar 

  83. Baumert BG, Egli P, Studer S, Dehing C, Davis JB (2005) Repositioning accuracy of fractionated stereotactic irradiation: assessment of isocentre alignment for different dental fixations by using sequential CT scanning. Radiother Oncol 74:61–66

    PubMed  Google Scholar 

  84. Guckenberger M, Roesch J, Baier K, Sweeney RA, Flentje M (2012) Dosimetric consequences of translational and rotational errors in frame-less image-guided radiosurgery. Radiat Oncol 7:63

    PubMed Central  PubMed  Google Scholar 

  85. Gevaert T, Verellen D, Engels B et al (2012) Clinical evaluation of a robotic 6-degree of freedom treatment couch for frameless radiosurgery. Int J Radiat Oncol Biol Phys 83:467–474

    PubMed  Google Scholar 

  86. Minniti G, Scaringi C, Clarke E, Valeriani M, Osti M, Enrici RM (2011) Frameless linac-based stereotactic radiosurgery (SRS) for brain metastases: analysis of patient repositioning using a mask fixation system and clinical endpoints. Radiat Oncol 6:158

    PubMed Central  PubMed  Google Scholar 

  87. Ramakrishna N, Rosca F, Friesen S, Tezcanli E, Zygmanszki P, Hacker F (2010) A clinical comparison of patient setup and intra-fraction motion using frame-based radiosurgery versus a frameless image-guided radiosurgery system for intracranial lesions. Radiother Oncol 95:109–115

    PubMed  Google Scholar 

  88. Minniti G, Valeriani M, Clarke E et al (2010) Fractionated Stereotactic Radiotherapy for skull base tumors: analysis of treatment accuracy using a stereotactic mask fixation system. Radiat Oncol 5:1

    PubMed Central  PubMed  Google Scholar 

  89. Theelen A, Martens J, Bosmans G et al (2012) Relocatable fixation systems in intracranial Stereotactic Radiotherapy. Accuracy of serial CT scans and patient acceptance in a randomized design. Strahlenther Onkol 188:84–90

    CAS  PubMed  Google Scholar 

  90. Sperduto PW (2010) What is your patient’s GPA and why does it matter? Managing brain metastases and the cost of hope. Int J Radiat Oncol Biol Phys 77:643–644

    PubMed  Google Scholar 

  91. Fokas E, Henzel M, Surber G, Kleinert G, Hamm K, Engenhart-Cabillic R (2012) Stereotactic radiosurgery and fractionated Stereotactic Radiotherapy: comparison of efficacy and toxicity in 260 patients with brain metastases. J Neurooncol 109:91–98

    PubMed  Google Scholar 

  92. Wegner RE, Leeman JE, Kabolizadeh P et al (2013) Fractionated Stereotactic Radiosurgery for Large Brain Metastases. Am J Clin Oncol [Epub ahead of print]

  93. Yamamoto M (2013) 147 Gamma knife treatment results for multiple brain metastases: a multi-institutional prospective study in Japan (Abbreviation; JLGK0901, UMIN ID; 00001812). Neurosurgery 60:168–169

    Google Scholar 

  94. Bhatnagar AK, Flickinger JC, Kondziolka D, Lunsford LD (2006) Stereotactic radiosurgery for four or more intracranial metastases. Int J Radiat Oncol Biol Phys 64:898–903

    PubMed  Google Scholar 

  95. Kuo T, Recht L (2006) Optimizing therapy for patients with brain metastases. Semin Oncol 33:299–306

    PubMed  Google Scholar 

  96. Suh JH, Videtic GM, Aref AM et al (2010) ACR Appropriateness Criteria: single brain metastasis. Curr Probl Cancer 34:162–174

    PubMed  Google Scholar 

  97. Sze G, Milano E, Johnson C, Heier L (1990) Detection of brain metastases: comparison of contrast-enhanced MR with unenhanced MR and enhanced CT. AJNR Am J Neuroradiol 11:785–791

    CAS  PubMed  Google Scholar 

  98. Anzalone N, Essig M, Lee SK et al (2013) Optimizing contrast-enhanced magnetic resonance imaging characterization of brain metastases: relevance to stereotactic radiosurgery. Neurosurgery 72:691–701

    PubMed  Google Scholar 

  99. Pantelis E, Papadakis N, Verigos K et al (2010) Integration of functional MRI and white matter tractography in stereotactic radiosurgery clinical practice. Int J Radiat Oncol Biol Phys 78:257–267

    PubMed  Google Scholar 

  100. Baumert BG, Rutten I, Dehing-Oberije C et al (2006) A pathology-based substrate for target definition in radiosurgery of brain metastases. Int J Radiat Oncol Biol Phys 66:187–194

    PubMed  Google Scholar 

  101. Noël G, Simon JM, Valery CA et al (2003) Radiosurgery for brain metastasis: impact of CTV on local control. Radiother Oncol 68:15–21

    PubMed  Google Scholar 

  102. Nataf F, Schlienger M, Liu Z et al (2008) Radiosurgery with or without a 2-mm margin for 93 single brain metastases. Int J Radiat Oncol Biol Phys 70:766–772

    Google Scholar 

  103. Flickinger JC, Schell MC, Larson DA (1990) Estimation of complications for linear accelerator radiosurgery with the integrated logistic formula. Int J Radiat Oncol Biol Phys 19:143–148

    CAS  PubMed  Google Scholar 

  104. Telera S, Fabi A, Pace A et al (2013) Radionecrosis induced by stereotactic radiosurgery of brain metastases: results of surgery and endpoint of disease. J Neurooncol 113:313–325

    PubMed  Google Scholar 

  105. Maldaun MV, Aguiar PH, Lang F, Suki D, Wildrick D, Sawaya R (2008) Radiosurgery in the treatment of brain metastases: critical review regarding complications. Neurosurg Rev 31:1–8; discussion 9

    Google Scholar 

  106. Dequesada IM, Quisling RG, Yachnis A, Friedman WA (2008) Can standard magnetic resonance imaging reliably distinguish recurrent tumor from radiation necrosis after radiosurgery for brain metastases? A radiographic-pathological study. Neurosurgery 63:898–903; discussion 4

    Google Scholar 

  107. Blonigen BJ, Steinmetz RD, Levin L, Lamba MA, Warnick RE, Breneman JC (2010) Irradiated volume as a predictor of brain radionecrosis after linear accelerator stereotactic radiosurgery. Int J Radiat Oncol Biol Phys 77:996–1001

    PubMed  Google Scholar 

  108. Shehata MK, Young B, Reid B et al (2004) Stereotatic radiosurgery of 468 brain metastases < or = 2 cm: implications for SRS dose and whole brain radiation therapy. Int J Radiat Oncol Biol Phys 59:87–93

    PubMed  Google Scholar 

  109. Voges J, Treuer H, Sturm V et al (1996) Risk analysis of linear accelerator radiosurgery. Int J Radiat Oncol Biol Phys 36:1055–1063

    CAS  PubMed  Google Scholar 

  110. Lawrence YR, Li XA, el Naqa I et al (2010) Radiation dose-volume effects in the brain. Int J Radiat Oncol Biol Phys 76:S20–S27

    Google Scholar 

  111. Marks LB, Yorke ED, Jackson A et al (2010) Use of normal tissue complication probability models in the clinic. Int J Radiat Oncol Biol Phys 76:S10–S19

    PubMed  Google Scholar 

  112. Paddick I (2000) Simple scoring ratio to index the conformity of radiosurgical treatment plans. J Neurosurg 93:219–222

    PubMed  Google Scholar 

  113. Lamm AF, Elaimy AL, Lamoreaux WT et al (2013) A review of the clinical outcomes for patients diagnosed with brainstem metastasis and treated with stereotactic radiosurgery. ISRN Surg 2013:652895

    PubMed Central  PubMed  Google Scholar 

  114. Vogelbaum MA, Angelov L, Lee SY, Li L, Barnett GH, Suh JH (2006) Local control of brain metastases by stereotactic radiosurgery in relation to dose to the tumor margin. J Neurosurg 104:907–912

    PubMed  Google Scholar 

  115. Mayo C, Yorke E, Merchant TE (2010) Radiation associated brainstem injury. Int J Radiat Oncol Biol Phys 76:S36–S41

    Google Scholar 

  116. Sharma MS, Kondziolka D, Khan A et al (2008) Radiation tolerance limits of the brainstem. Neurosurgery 63:728–32; discussion 32–3

    Google Scholar 

  117. Patel TR, McHugh BJ, Bi WL, Minja FJ, Knisely JP, Chiang VL (2011) A comprehensive review of MR imaging changes following radiosurgery to 500 brain metastases. AJNR Am J Neuroradiol 32:1885–1892

    CAS  PubMed  Google Scholar 

  118. Brandsma D, Stalpers L, Taal W, Sminia P, Van den Bent MJ (2008) Clinical features, mechanisms, and management of pseudoprogression in malignant gliomas. Lancet Oncol 9:453–461

    PubMed  Google Scholar 

  119. Brandsma D, Van den Bent MJ (2009) Pseudoprogression and pseudoresponse in the treatment of gliomas. Curr Opin Neurol 22:633–638

    PubMed  Google Scholar 

  120. Chamberlain MC (2008) Pseudoprogression in glioblastoma. J Clin Oncol 26:4359–4360

    PubMed  Google Scholar 

  121. Tran DK, Jensen RL (2013) So-called “pseudoprogression” vs. tumor progression: review and future research opportunities. Surg Neurol Int 4:S129–S135

    PubMed Central  PubMed  Google Scholar 

  122. Grosu AL, Astner ST, Riedel E et al (2011) An interindividual comparison of O-(2-[18F]fluoroethyl)-L-tyrosine (FET)- and L-[methyl-11C]methionine (MET)-PET in patients with brain gliomas and metastases. Int J Radiat Oncol Biol Phys 81:1049–1058

    CAS  PubMed  Google Scholar 

  123. Galldiks N, Stoffels G, Filss CP et al (2012) Role of O-(2-(18)F-fluoroethyl)-L-tyrosine PET for differentiation of local recurrent brain metastasis from radiation necrosis. J Nucl Med 53:1367–1374

    CAS  PubMed  Google Scholar 

  124. Barajas RF, Chang JS, Sneed PK, Segal MR, McDermott MW, Cha S (2009) Distinguishing recurrent intra-axial metastatic tumor from radiation necrosis following gamma knife radiosurgery using dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. AJNR Am J Neuroradiol 30:367–372

    CAS  PubMed  Google Scholar 

  125. Sundgren PC (2009) MR spectroscopy in radiation injury. AJNR Am J Neuroradiol 30:1469–1476

    CAS  PubMed  Google Scholar 

  126. Kickingereder P, Dorn F, Blau T et al (2013) Differentiation of local tumor recurrence from radiation-induced changes after stereotactic radiosurgery for treatment of brain metastasis: case report and review of the literature. Radiat Oncol 8:52

    PubMed Central  PubMed  Google Scholar 

  127. Bhangoo SS, Linskey ME, Kalkanis SN (2011) Evidence-based guidelines for the management of brain metastases. Neurosurg Clin N Am 22:97–104

    PubMed  Google Scholar 

  128. Network NCC (2012) Central nervous system cancers NCCN guidelines for treatment of cancer by site

  129. Weller M, Schlegel U, Wick W et al (2011) Hirnmetastasen und Meningeosis neoplastica. Leitlinien der Deutschen Gesellschaft für Neurologie. AWMF online 2011;AWMF-Register 030/060:Stand 9/2011.

  130. D’Ambrosio AL, DeYoung C, Isaacson SR (2011) Radiosurgical management of brain metastases. Neurosurg Clin N Am 22:45–51

    PubMed  Google Scholar 

  131. Kondziolka D, Flickinger JC, Lunsford LD (2012) Radiosurgery for brain metastases. In: Kim DG, Lunsford LD (eds) Current and future management of brain metastasis. Karger AG, Basel

  132. Niranjan A, Lunsford LD, Emerick RL (2012) Stereotactic radiosurgery for patients with metastatic brain tumors: development of a consensus radiosurgery guideline recommendation. In: Kim DG, Lunsford LD (eds) Current and future management of brain metastasis. Karger AG, Basel, pp 123–138

  133. Scoccianti S, Detti B, Cipressi S, Iannalfi A, Franzese C, Biti G (2012) Changes in neurocognitive functioning and quality of life in adult patients with brain tumors treated with radiotherapy. J Neurooncol 108:291–308

    PubMed  Google Scholar 

  134. Thavarajah N, Wong K, Zhang L et al (2013) Continued success in providing timely palliative radiation therapy at the Rapid Response Radiotherapy Program: a review of 2008–2012. Curr Oncol 20:e206–e211

    Google Scholar 

Download references

Compliance with ethical guidelines

Conflict of interest

M. Kocher, A. Wittig, M. D. Piroth, H. Treuer, H. Seegenschmiedt, M. Ruge, A-L. Grosu, and M. Guckenberger state that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Kocher M.D..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kocher, M., Wittig, A., Piroth, M. et al. Stereotactic radiosurgery for treatment of brain metastases. Strahlenther Onkol 190, 521–532 (2014). https://doi.org/10.1007/s00066-014-0648-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-014-0648-7

Keywords

Schlüsselwörter

Navigation