Skip to main content
Log in

Autophagy and its function in radiosensitivity

  • Review
  • Published:
Tumor Biology

Abstract

Autophagy differs from apoptosis and is independent of phagocytes by the appearance of autophagosomes, autolysosomes, and complete nuclei in the cell. This process significantly contributes to the antineoplastic effects of radiation. Radiation is an important strategy in cancer treatment; however, many types of cancer show radioresistance. The effects of radiotherapy are affected by factors, including the degree of tumor tissue hypoxia, the ability to repair DNA damage, and the presence of cancer stem cells. We review the relationships among autophagy, the three factors in cancer radiation, and the possible underlying molecular mechanisms. The therapeutic implications of these relationships and mechanisms in clinical settings are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ULK1:

Unc-51-like autophagy activating kinase 1

mTORC:

Mammalian target of rapamycin

AMPK:

Adenosine monophosphate-activated protein kinase

BECN1:

The class III phosphoinositol-3-kinase Vps34 in a complex with Beclin

LC3:

Light chain 3

HIF-1:

Hypoxia-inducible factor 1

ROS:

Reactive oxygen species

BNIP3:

BCL2 adenovirus E1B 19-kDa interacting protein 3

PI3K:

Phosphoinositide 3 kinase

IR:

Ionizing radiation

DSBs:

DNA double-strand breaks

PERK-ATF4:

Type 1 transmembrane ER-resident protein kinase-activating transcription factor 4

UVRAG:

UV irradiation resistance-associated gene

PARP-1:

Poly(ADP-ribose) polymerase 1

FOXOs:

Forkhead box class O family member proteins

ATM:

Serine/threonine-protein kinase

References

  1. Dalby KN, Tekedereli I, Lopez-Berestein G, Ozpolat B. Targeting the prodeath and prosurvival functions of autophagy as novel therapeutic strategies in cancer. Autophagy. 2010;6:322–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hara T, Takamura A, Kishi C, Iemura S, Natsume T, Guan JL, et al. FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells. J Cell Biol. 2008;181:497–510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hosokawa N, Hara T, Kaizuka T, Kishi C, Takamura A, Miura Y, et al. Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol Biol Cell. 2009;20:1981–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hosokawa N, Sasaki T, Iemura S, Natsume T, Hara T, Mizushima N. Atg101, a novel mammalian autophagy protein interacting with Atg13. Autophagy. 2009;5:973–9.

    Article  CAS  PubMed  Google Scholar 

  5. Egan DF, Shackelford DB, Mihaylova MM, Gelino S, Kohnz RA, Mair W, et al. Phosphorylation of Ulk1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science (NY). 2011;331:456–61.

    Article  CAS  Google Scholar 

  6. Kihara A, Noda T, Ishihara N, Ohsumi Y. Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae. J Cell Biol. 2001;152:519–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 2000;19:5720–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fujita N, Itoh T, Omori H, Fukuda M, Noda T, Yoshimori T. The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy. Mol Biol Cell. 2008;19:2092–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ichimura Y, Kirisako T, Takao T, Satomi Y, Shimonishi Y, Ishihara N, et al. A ubiquitin-like system mediates protein lipidation. Nature. 2000;408:488–92.

    Article  CAS  PubMed  Google Scholar 

  10. Kirisako T, Ichimura Y, Okada H, Kabeya Y, Mizushima N, Yoshimori T, et al. The reversible modification regulates the membrane-binding state of Apg8/Aut7 essential for autophagy and the cytoplasm to vacuole targeting pathway. J Cell Biol. 2000;151:263–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mizushima N, Yamamoto A, Hatano M, Kobayashi Y, Kabeya Y, Suzuki K, et al. Dissection of autophagosome formation using APG5-deficient mouse embryonic stem cells. J Cell Biol. 2001;152:657–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Koritzinsky M, Wouters BG. The roles of reactive oxygen species and autophagy in mediating the tolerance of tumor cells to cycling hypoxia. Semin Radiat Oncol. 2013;23:252–61.

    Article  PubMed  Google Scholar 

  13. Gewirtz DA. The four faces of autophagy: implications for cancer therapy. Cancer Res. 2014;74:647–51.

    Article  CAS  PubMed  Google Scholar 

  14. Marino G, Salvador-Montoliu N, Fueyo A, Knecht E, Mizushima N, Lopez-Otin C. Tissue-specific autophagy alterations and increased tumorigenesis in mice deficient in ATG4C/autophagin-3. J Biol Chem. 2007;282:18573–83.

    Article  CAS  PubMed  Google Scholar 

  15. Honscheid P, Datta K, Muders MH. Autophagy: detection, regulation and its role in cancer and therapy response. Int J Radiat Biol. 2014;90:628–35.

    Article  PubMed  CAS  Google Scholar 

  16. Kim JJ, Tannock IF. Repopulation of cancer cells during therapy: an important cause of treatment failure. Nat Rev Cancer. 2005;5:516–25.

    Article  CAS  PubMed  Google Scholar 

  17. Chatterjee S, Willis N, Locks SM, Mott JH, Kelly CG. Dosimetric and radiobiological comparison of helical tomotherapy, forward-planned intensity-modulated radiotherapy and two-phase conformal plans for radical radiotherapy treatment of head and neck squamous cell carcinomas. Br J Radiol. 2011;84:1083–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hasan M, Glees P. Ultrastructural features of the human frontal cortex neurons of maturing and hydrocephalic cerebrum. Archivio italiano di anatomia e di embriologia. Ital J Anat Embryol. 1990;95:17–26.

    CAS  Google Scholar 

  19. Hu YL, Jahangiri A, Delay M, Aghi MK. Tumor cell autophagy as an adaptive response mediating resistance to treatments such as antiangiogenic therapy. Cancer Res. 2012;72:4294–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mo N, Lu YK, Xie WM, Liu Y, Zhou WX, Wang HX, et al. Inhibition of autophagy enhances the radiosensitivity of nasopharyngeal carcinoma by reducing Rad51 expression. Oncol Rep. 2014;32:1905–12.

    CAS  PubMed  Google Scholar 

  21. Sun Q, Liu T, Yuan Y, Guo Z, Xie G, Du S, et al. MiR-200c inhibits autophagy and enhances radiosensitivity in breast cancer cells by targeting UBQLN1. Int J Cancer J Int Cancer. 2014.

  22. Sun Y, Xing X, Liu Q, Wang Z, Xin Y, Zhang P, et al. Hypoxia-induced autophagy reduces radiosensitivity by the HIF-1alpha/miR-210/Bcl-2 pathway in colon cancer cells. Int J Oncol. 2014.

  23. Yuan X, Du J, Hua S, Zhang H, Gu C, Wang J, et al. Suppression of autophagy augments the radiosensitizing effects of STAT3 inhibition on human glioma cells. Exp Cell Res. 2014.

  24. Wu SY, Liu YW, Wang YK, Lin TH, Li YZ, Chen SH, et al. Ionizing radiation induces autophagy in human oral squamous cell carcinoma. J BUON: Off J Balkan Union Oncol. 2014;19:137–44.

    Google Scholar 

  25. Kim KW, Mutter RW, Cao C, Albert JM, Freeman M, Hallahan DE, et al. Autophagy for cancer therapy through inhibition of pro-apoptotic proteins and mammalian target of rapamycin signaling. J Biol Chem. 2006;281:36883–90.

    Article  CAS  PubMed  Google Scholar 

  26. Thomlinson RH, Gray LH. The histological structure of some human lung cancers and the possible implications for radiotherapy. Br J Cancer. 1955;9:539–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wijsman R, Kaanders JH, Oyen WJ, Bussink J. Hypoxia and tumor metabolism in radiation oncology: targets visualized by positron emission tomography. Q J Nucl Med Mol Imaging: Off Publ Ital Assoc Nucl Med (AIMN) Int Assoc of Radiopharmacol (IAR) Sect So. 2013;57:244–56.

    CAS  Google Scholar 

  28. Rouschop KM, van den Beucken T, Dubois L, Niessen H, Bussink J, Savelkouls K, et al. The unfolded protein response protects human tumor cells during hypoxia through regulation of the autophagy genes MAP1LC3B and ATG5. J Clin Invest. 2010;120:127–41.

    Article  CAS  PubMed  Google Scholar 

  29. He WS, Dai XF, Jin M, Liu CW, Rent JH. Hypoxia-induced autophagy confers resistance of breast cancer cells to ionizing radiation. Oncol Res. 2012;20:251–8.

    Article  PubMed  CAS  Google Scholar 

  30. Moeller BJ, Dreher MR, Rabbani ZN, Schroeder T, Cao Y, Li CY, et al. Pleiotropic effects of HIF-1 blockade on tumor radiosensitivity. Cancer Cell. 2005;8:99–110.

    Article  CAS  PubMed  Google Scholar 

  31. Seagroves TN, Ryan HE, Lu H, Wouters BG, Knapp M, Thibault P, et al. Transcription factor HIF-1 is a necessary mediator of the pasteur effect in mammalian cells. Mol Cell Biol. 2001;21:3436–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer. 2003;3:721–32.

    Article  CAS  PubMed  Google Scholar 

  33. Park CW, Hong SM, Kim ES, Kwon JH, Kim KT, Nam HG, et al. Bnip3 is degraded by Ulk1-dependent autophagy via mTORC1 and AMPK. Autophagy. 2013;9:345–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Vande Velde C, Cizeau J, Dubik D, Alimonti J, Brown T, Israels S, et al. Bnip3 and genetic control of necrosis-like cell death through the mitochondrial permeability transition pore. Mol Cell Biol. 2000;20:5454–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pattingre S, Levine B. Bcl-2 inhibition of autophagy: a new route to cancer? Cancer Res. 2006;66:2885–8.

    Article  CAS  PubMed  Google Scholar 

  36. Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N, et al. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell. 2005;122:927–39.

    Article  CAS  PubMed  Google Scholar 

  37. Li Y, Wang Y, Kim E, Beemiller P, Wang CY, Swanson J, et al. Bnip3 mediates the hypoxia-induced inhibition on mammalian target of rapamycin by interacting with Rheb. J Biol Chem. 2007;282:35803–13.

    Article  CAS  PubMed  Google Scholar 

  38. Brugarolas J, Lei K, Hurley RL, Manning BD, Reiling JH, Hafen E, et al. Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex. Genes Dev. 2004;18:2893–904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Liu L, Cash TP, Jones RG, Keith B, Thompson CB, Simon MC. Hypoxia-induced energy stress regulates mRNA translation and cell growth. Mol Cell. 2006;21:521–31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Schaaf MB, Cojocari D, Keulers TG, Jutten B, Starmans MH, de Jong MC, et al. The autophagy associated gene, Ulk1, promotes tolerance to chronic and acute hypoxia. Radiother Oncol: J Eur Soc Ther Radiol Oncol. 2013;108:529–34.

    Article  CAS  Google Scholar 

  41. Mathew R, Karantza-Wadsworth V, White E. Role of autophagy in cancer. Nat Rev Cancer. 2007;7:961–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Katayama M, Kawaguchi T, Berger MS, Pieper RO. DNA damaging agent-induced autophagy produces a cytoprotective adenosine triphosphate surge in malignant glioma cells. Cell Death Differ. 2007;14:548–58.

    Article  CAS  PubMed  Google Scholar 

  43. Maiuri MC, Zalckvar E, Kimchi A, Kroemer G. Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol. 2007;8:741–52.

    Article  CAS  PubMed  Google Scholar 

  44. Zhang H, Bosch-Marce M, Shimoda LA, Tan YS, Baek JH, Wesley JB, et al. Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem. 2008;283:10892–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rouschop KM, Ramaekers CH, Schaaf MB, Keulers TG, Savelkouls KG, Lambin P, et al. Autophagy is required during cycling hypoxia to lower production of reactive oxygen species. Radiother Oncol: J Eur Soc Ther Radiol Oncol. 2009;92:411–6.

    Article  CAS  Google Scholar 

  46. Emerling BM, Weinberg F, Snyder C, Burgess Z, Mutlu GM, Viollet B, et al. Hypoxic activation of AMPK is dependent on mitochondrial ROS but independent of an increase in AMP/ATP ratio. Free Radic Biol Med. 2009;46:1386–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gusarova GA, Trejo HE, Dada LA, Briva A, Welch LC, Hamanaka RB, et al. Hypoxia leads to Na, K-ATPase downregulation via Ca(2+) release-activated Ca(2+) channels and AMPK activation. Mol Cell Biol. 2011;31:3546–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mungai PT, Waypa GB, Jairaman A, Prakriya M, Dokic D, Ball MK, et al. Hypoxia triggers ampk activation through reactive oxygen species-mediated activation of calcium release-activated calcium channels. Mol Cell Biol. 2011;31:3531–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Papandreou I, Lim AL, Laderoute K, Denko NC. Hypoxia signals autophagy in tumor cells via AMPK activity, independent of HIF-1, BNIP3, and BNIP3l. Cell Death Differ. 2008;15:1572–81.

    Article  CAS  PubMed  Google Scholar 

  50. Inoki K, Zhu T, Guan KL. TSC2 mediates cellular energy response to control cell growth and survival. Cell. 2003;115:577–90.

    Article  CAS  PubMed  Google Scholar 

  51. Zhao M, Klionsky DJ. AMPK-dependent phosphorylation of Ulk1 induces autophagy. Cell Metab. 2011;13:119–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kim J, Kundu M, Viollet B, Guan KL. Ampk and mtor regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol. 2011;13:132–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Huang X, Qi Q, Hua X, Li X, Zhang W, Sun H, et al. Beclin 1, an autophagy-related gene, augments apoptosis in u87 glioblastoma cells. Oncol Rep. 2014;31:1761–7.

    CAS  PubMed  Google Scholar 

  54. Edinger AL, Thompson CB. Defective autophagy leads to cancer. Cancer Cell. 2003;4:422–4.

    Article  CAS  PubMed  Google Scholar 

  55. Amaravadi RK, Yu D, Lum JJ, Bui T, Christophorou MA, Evan GI, et al. Autophagy inhibition enhances therapy-induced apoptosis in a myc-induced model of lymphoma. J Clin Invest. 2007;117:326–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Little CD, Nau MM, Carney DN, Gazdar AF, Minna JD. Amplification and expression of the c-myc oncogene in human lung cancer cell lines. Nature. 1983;306:194–6.

    Article  CAS  PubMed  Google Scholar 

  57. Baskar R, Lee KA, Yeo R, Yeoh KW. Cancer and radiation therapy: current advances and future directions. Int J Med Sci. 2012;9:193–9.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Prise KM, Schettino G, Folkard M, Held KD. New insights on cell death from radiation exposure. Lancet Oncol. 2005;6:520–8.

    Article  CAS  PubMed  Google Scholar 

  59. Selzer E, Hebar A. Basic principles of molecular effects of irradiation. Wien Med Wochenschr. 2012;162:47–54.

    Article  PubMed  Google Scholar 

  60. Hakem R. DNA-damage repair; the good, the bad, and the ugly. EMBO J. 2008;27:589–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lindahl T, Wood RD. Quality control by DNA repair. Science (NY). 1999;286:1897–905.

    Article  CAS  Google Scholar 

  62. Park JM, Tougeron D, Huang S, Okamoto K, Sinicrope FA. Beclin 1 and UVRAG confer protection from radiation-induced DNA damage and maintain centrosome stability in colorectal cancer cells. PLoS One. 2014;9:e100819.

    Article  PubMed  CAS  Google Scholar 

  63. Szabo C, Dawson VL. Role of poly(adp-ribose) synthetase in inflammation and ischaemia-reperfusion. Trends Pharmacol Sci. 1998;19:287–98.

    Article  CAS  PubMed  Google Scholar 

  64. Calabrese CR, Almassy R, Barton S, Batey MA, Calvert AH, Canan-Koch S, et al. Anticancer chemosensitization and radiosensitization by the novel poly(adp-ribose) polymerase-1 inhibitor ag14361. J Natl Cancer Inst. 2004;96:56–67.

    Article  CAS  PubMed  Google Scholar 

  65. Polager S, Ofir M, Ginsberg D. E2f1 regulates autophagy and the transcription of autophagy genes. Oncogene. 2008;27:4860–4.

    Article  CAS  PubMed  Google Scholar 

  66. Albert JM, Cao C, Kim KW, Willey CD, Geng L, Xiao D, et al. Inhibition of poly(adp-ribose) polymerase enhances cell death and improves tumor growth delay in irradiated lung cancer models. Clin Cancer Res: Off J Am Assoc Cancer Res. 2007;13:3033–42.

    Article  CAS  Google Scholar 

  67. Alexander A, Cai SL, Kim J, Nanez A, Sahin M, MacLean KH, et al. ATM signals to TSC2 in the cytoplasm to regulate mTORC1 in response to ROS. Proc Natl Acad Sci U S A. 2010;107:4153–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Munoz-Gamez JA, Rodriguez-Vargas JM, Quiles-Perez R, Aguilar-Quesada R, Martin-Oliva D, de Murcia G, et al. Parp-1 is involved in autophagy induced by DNA damage. Autophagy. 2009;5:61–74.

    Article  CAS  PubMed  Google Scholar 

  69. Ethier C, Tardif M, Arul L, Poirier GG. Parp-1 modulation of mTOR signaling in response to a DNA alkylating agent. PLoS One. 2012;7:e47978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Huang Q, Wu YT, Tan HL, Ong CN, Shen HM. A novel function of poly(adp-ribose) polymerase-1 in modulation of autophagy and necrosis under oxidative stress. Cell Death Differ. 2009;16:264–77.

    Article  CAS  PubMed  Google Scholar 

  71. Meley D, Bauvy C, Houben-Weerts JH, Dubbelhuis PF, Helmond MT, Codogno P, et al. Amp-activated protein kinase and the regulation of autophagic proteolysis. J Biol Chem. 2006;281:34870–9.

    Article  CAS  PubMed  Google Scholar 

  72. Walker JW, Jijon HB, Madsen KL. Amp-activated protein kinase is a positive regulator of poly(adp-ribose) polymerase. Biochem Biophys Res Commun. 2006;342:336–41.

    Article  CAS  PubMed  Google Scholar 

  73. Corradetti MN, Guan KL. Upstream of the mammalian target of rapamycin: do all roads pass through mTOR? Oncogene. 2006;25:6347–60.

    Article  CAS  PubMed  Google Scholar 

  74. Sarbassov DD, Ali SM, Sabatini DM. Growing roles for the mtor pathway. Curr Opin Cell Biol. 2005;17:596–603.

    Article  CAS  PubMed  Google Scholar 

  75. Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, et al. Ampk phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell. 2008;30:214–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Vogelstein B, Lane D, Levine AJ. Surfing the p53 network. Nature. 2000;408:307–10.

    Article  CAS  PubMed  Google Scholar 

  77. Zong WX, Moll U. P53 in autophagy control. Cell Cycle. 2008;7:2947.

    Article  CAS  PubMed  Google Scholar 

  78. Mihara M, Erster S, Zaika A, Petrenko O, Chittenden T, Pancoska P, et al. P53 has a direct apoptogenic role at the mitochondria. Mol Cell. 2003;11:577–90.

    Article  CAS  PubMed  Google Scholar 

  79. Levine B, Abrams J. P53: the janus of autophagy? Nat Cell Biol. 2008;10:637–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Tasdemir E, Chiara Maiuri M, Morselli E, Criollo A, D'Amelio M, Djavaheri-Mergny M, et al. A dual role of p53 in the control of autophagy. Autophagy. 2008;4:810–4.

    Article  CAS  PubMed  Google Scholar 

  81. Tasdemir E, Maiuri MC, Galluzzi L, Vitale I, Djavaheri-Mergny M, D'Amelio M, et al. Regulation of autophagy by cytoplasmic p53. Nat Cell Biol. 2008;10:676–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Feng Z, Zhang H, Levine AJ, Jin S. The coordinate regulation of the p53 and mTOR pathways in cells. Proc Natl Acad Sci U S A. 2005;102:8204–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Fortini P, Dogliotti E. Mechanisms of dealing with DNA damage in terminally differentiated cells. Mutat Res. 2010;685:38–44.

    Article  CAS  PubMed  Google Scholar 

  84. Jin S. P53, autophagy and tumor suppression. Autophagy. 2005;1:171–3.

    Article  CAS  PubMed  Google Scholar 

  85. Kang KB, Zhu C, Yong SK, Gao Q, Wong MC. Enhanced sensitivity of celecoxib in human glioblastoma cells: induction of DNA damage leading to p53-dependent g1 cell cycle arrest and autophagy. Mol Cancer. 2009;8:66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Crighton D, Wilkinson S, O'Prey J, Syed N, Smith P, Harrison PR, et al. Dram, a p53-induced modulator of autophagy, is critical for apoptosis. Cell. 2006;126:121–34.

    Article  CAS  PubMed  Google Scholar 

  87. Crighton D, Wilkinson S, Ryan KM. Dram links autophagy to p53 and programmed cell death. Autophagy. 2007;3:72–4.

    Article  CAS  PubMed  Google Scholar 

  88. Kruse JP, Gu W. Msl2 promotes mdm2-independent cytoplasmic localization of p53. J Biol Chem. 2009;284:3250–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Sanchez AM, Candau RB, Bernardi H. Foxo transcription factors: their roles in the maintenance of skeletal muscle homeostasis. Cell Mol Life Sci: CMLS. 2014;71:1657–71.

    Article  CAS  PubMed  Google Scholar 

  90. Tran H, Brunet A, Grenier JM, Datta SR, Fornace Jr AJ, DiStefano PS, et al. DNA repair pathway stimulated by the forkhead transcription factor foxo3a through the gadd45 protein. Science (NY). 2002;296:530–4.

    Article  CAS  Google Scholar 

  91. Tsai WB, Chung YM, Takahashi Y, Xu Z, Hu MC. Functional interaction between foxo3a and atm regulates DNA damage response. Nat Cell Biol. 2008;10:460–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Alexander A, Kim J, Walker CL. Atm engages the tsc2/mtorc1 signaling node to regulate autophagy. Autophagy. 2010;6:672–3.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Chiacchiera F, Simone C. The ampk-foxo3a axis as a target for cancer treatment. Cell Cycle. 2010;9:1091–6.

    Article  CAS  PubMed  Google Scholar 

  94. Mammucari C, Milan G, Romanello V, Masiero E, Rudolf R, Del Piccolo P, et al. Foxo3 controls autophagy in skeletal muscle in vivo. Cell Metab. 2007;6:458–71.

    Article  CAS  PubMed  Google Scholar 

  95. Salminen A, Kaarniranta K. Regulation of the aging process by autophagy. Trends Mol Med. 2009;15:217–24.

    Article  CAS  PubMed  Google Scholar 

  96. Clarke MF, Dick JE, Dirks PB, Eaves CJ, Jamieson CH, Jones DL, et al. Cancer stem cells–perspectives on current status and future directions: Aacr workshop on cancer stem cells. Cancer Res. 2006;66:9339–44.

    Article  CAS  PubMed  Google Scholar 

  97. Baumann M, Krause M, Hill R. Exploring the role of cancer stem cells in radioresistance. Nat Rev Cancer. 2008;8:545–54.

    Article  CAS  PubMed  Google Scholar 

  98. Ueda Y, Wei FY, Hide T, Michiue H, Takayama K, Kaitsuka T, et al. Induction of autophagic cell death of glioma-initiating cells by cell-penetrating d-isomer peptides consisting of pas and the p53 c-terminus. Biomaterials. 2012;33:9061–9.

    Article  CAS  PubMed  Google Scholar 

  99. Phillips TM, McBride WH, Pajonk F. The response of cd24(-/low)/cd44+ breast cancer-initiating cells to radiation. J Natl Cancer Inst. 2006;98:1777–85.

    Article  PubMed  Google Scholar 

  100. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res. 2003;63:5821–8.

    CAS  PubMed  Google Scholar 

  101. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, et al. Identification of human brain tumour initiating cells. Nature. 2004;432:396–401.

    Article  CAS  PubMed  Google Scholar 

  102. Hemmati HD, Nakano I, Lazareff JA, Masterman-Smith M, Geschwind DH, Bronner-Fraser M, et al. Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci U S A. 2003;100:15178–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Uchida N, Buck DW, He D, Reitsma MJ, Masek M, Phan TV, et al. Direct isolation of human central nervous system stem cells. Proc Natl Acad Sci U S A. 2000;97:14720–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Diehn M, Cho RW, Lobo NA, Kalisky T, Dorie MJ, Kulp AN, et al. Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature. 2009;458:780–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Tothova Z, Gilliland DG. A radical bailout strategy for cancer stem cells. Cell Stem Cell. 2009;4:196–7.

    Article  CAS  PubMed  Google Scholar 

  106. Menendez JA, Joven J. Energy metabolism and metabolic sensors in stem cells: the metabostem crossroads of aging and cancer. Adv Exp Med Biol. 2014;824:117–40.

    Article  CAS  PubMed  Google Scholar 

  107. Lomonaco SL, Finniss S, Xiang C, Decarvalho A, Umansky F, Kalkanis SN, et al. The induction of autophagy by gamma-radiation contributes to the radioresistance of glioma stem cells. Int J Cancer: J Int Cancer. 2009;125:717–22.

    Article  CAS  Google Scholar 

  108. Winardi D, Tsai HP, Chai CY, Chung CL, Loh JK, Chen YH, et al. Correlation of altered expression of the autophagy marker lc3b with poor prognosis in astrocytoma. Bio Med Res Int. 2014;2014:723176.

    Google Scholar 

  109. Martinez-Outschoorn UE, Prisco M, Ertel A, Tsirigos A, Lin Z, Pavlides S, et al. Ketones and lactate increase cancer cell “stemness,” driving recurrence, metastasis and poor clinical outcome in breast cancer: achieving personalized medicine via metabolo-genomics. Cell Cycle. 2011;10:1271–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Cecconi F, Levine B. The role of autophagy in mammalian development: cell makeover rather than cell death. Dev Cell. 2008;15:344–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Gewirtz DA. An autophagic switch in the response of tumor cells to radiation and chemotherapy. Biochem Pharmacol. 2014;90:208–11.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Our study was supported by the Natural Science Foundation of China (No. 81272504, 81472809), the Innovation Team (No. LJ201123-EH11), Jiangsu Provincial Science and Technology Projects BK2011854 (DA11), and the Six Major Talent Peak Project of Jiangsu Province. The priority academic program development of Jiangsu Higher Education Institution (JX10231801), grants from the Key Academic Discipline of Jiangsu Province “Medical Aspects of Specific Environments,” and “333” Project of Jiangsu Province BRA2012210 (RS12) funded our study.

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinchen Sun.

Additional information

Yan Yang, Yuehua Yang and Xi Yang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Yang, Y., Yang, X. et al. Autophagy and its function in radiosensitivity. Tumor Biol. 36, 4079–4087 (2015). https://doi.org/10.1007/s13277-015-3496-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-3496-x

Keywords

Navigation