Skip to main content

Impact of Non-Enzymatic Glycation in Neurodegenerative Diseases: Role of Natural Products in Prevention

  • Chapter
  • First Online:
The Benefits of Natural Products for Neurodegenerative Diseases

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 12))

Abstract

Non-enzymatic protein glycosylation is the addition of free carbonyls to the free amino groups of proteins, amino acids, lipoproteins and nucleic acids resulting in the formation of early glycation products. The early glycation products are also known as Maillard reaction which undergoes dehydration, cyclization and rearrangement to form advanced glycation end-products (AGEs). By and large the researchers in the past have also established that glycation and the AGEs are responsible for most type of metabolic disorders, including diabetes mellitus, cancer, neurological disorders and aging. The amassing of AGEs in the tissues of neurodegenerative diseases shows its involvement in diseases. Therefore, it is likely that inhibition of glycation reaction may extend the lifespan of an individual. The hunt for inhibitors of glycation, mainly using in vitro models, has identified natural compounds able to prevent glycation, especially polyphenols and other natural antioxidants. Extrapolation of results of in vitro studies on the in vivo situation is not straightforward due to differences in the conditions and mechanism of glycation, and bioavailability problems. Nevertheless, existing data allow postulating that enrichment of diet in natural anti-glycating agents may attenuate glycation and, in consequence may halt the aging and neurological problems.

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-3-319-28383-8_24

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad S, Akhter F, Moinuddin, Shahab U, Khan MS. Studies on glycation of human low density lipoprotein: a functional insight into physico-chemical analysis. Int J Biol Macromol. 2013;62:167–71.

    Article  CAS  PubMed  Google Scholar 

  • Ahmad S, Khan MS, Akhter F, et al. Glycoxidation of biological macromolecules: a critical approach to halt the menace of glycation. Glycobiology. 2014;24:979–90.

    Article  CAS  PubMed  Google Scholar 

  • Akhter F, Hashim A, Khan MS, et al. Antioxidant, α-amylase inhibitory and oxidative DNA damage protective property of Boerhaavia diffusa (Linn.) root. South Afr J Bot. 2013;88:265–72.

    Article  CAS  Google Scholar 

  • Akhter F, Khan MS, Ahmad S. Acquired immunogenicity of calf thymus DNA and LDL modified by d-ribose: a comparative study. Int J Biol Macromol. 2014;72:1222–7.

    Article  CAS  PubMed  Google Scholar 

  • Alam J, Cook JL. Transcriptional regulation of the heme oxygenase-1 gene via the stress response element pathway. Curr Pharm Des. 2003;9:2499–511.

    Article  CAS  PubMed  Google Scholar 

  • Arasteh A, Farahi S, Habibi-Rezaei M, Moosavi-Movahedi AA. Glycated albumin: an overview of the in vitro models of an in vivo potential disease marker. J Diabetes Metab Disord. 2014;13:49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmad S, Moinuddin, Dixit K, et al. Genotoxicity and immunogenicity of DNA-advanced glycation end products formed by methylglyoxal and lysine in presence of Cu2+. Biochem Biophys Res Commun. 2011; 407 (3): 568–574.

    Google Scholar 

  • Ahmad S, Shahab U, Baig MH, et al. Inhibitory effect of Metformin and Pyridoxamine in the formation of early, intermediate and advanced glycation end-products. PLoS ONE. 2013; 8 (9)e72128.

    Google Scholar 

  • Ashraf JM, Ahmad S, Rabbani G, et al. Physicochemical analysis of structural alteration and AGEs generation during glycation of H2A histone by 3-Deoxyglucosone. IUBMB Life, 2014; 66(10):686–93.

    Google Scholar 

  • Auluck PK, Caraveo G, Lindquist S. alpha-Synuclein: membrane interactions and toxicity in Parkinson’s disease. Annu Rev Cell Dev Biol. 2010;26:211–33.

    Article  CAS  PubMed  Google Scholar 

  • Babu PV, Sabitha KE, Shyamaladevi CS. Effect of green tea extract on advanced glycation and cross-linking of tail tendon collagen in streptozotocin induced diabetic rats. Food Chem Toxicol. 2008;46:280–5.

    Article  CAS  PubMed  Google Scholar 

  • Basta G, Lazzerini G, Del Turco S, et al. At least 2 distinct pathways generating reactive oxygen species mediate vascular cell adhesion molecule-1 induction by advanced glycation end products. Arterioscler Thromb Vasc Biol. 2005;25:1401–7.

    Article  CAS  PubMed  Google Scholar 

  • Basta G, Castagnini M, Del Turco S, et al. High plasma levels of the soluble receptor for advanced glycation endproducts in patients with symptomatic carotid atherosclerosis. Eur J Clin Invest. 2009;39:1065–72.

    Article  CAS  PubMed  Google Scholar 

  • Bennett MC. The role of alpha-synuclein in neurodegenerative diseases. Pharmacol Ther. 2005;105:311–31.

    Article  CAS  PubMed  Google Scholar 

  • Berchtold NC, Cotman CW. Evolution in the conceptualization of dementia and Alzheimer’s disease: Greco-Roman period to the 1960s. Neurobiol Aging. 1998;19:173–89.

    Article  CAS  PubMed  Google Scholar 

  • Beswick HT, Harding JJ. Conformational changes induced in lens alpha- and gamma-crystallins by modification with glucose 6-phosphate. Implications for cataract. Biochem J. 1987;246:761–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bierhaus A, Illmer T, Kasper M, et al. Advanced glycation end product (AGE)-mediated induction of tissue factor in cultured endothelial cells is dependent on RAGE. Circulation. 1997;96:2262–71.

    Article  CAS  PubMed  Google Scholar 

  • Bourdon E, Loreau N, Blache D. Glucose and free radicals impair the antioxidant properties of serum albumin. FASEB J. 1999;13:233–44.

    CAS  PubMed  Google Scholar 

  • Brown DR. Oligomeric alpha-synuclein and its role in neuronal death. IUBMB Life. 2010;62:334–9.

    CAS  PubMed  Google Scholar 

  • Brownlee M. The pathological implications of protein glycation. Clin Invest Med. 1995;18:275.

    CAS  PubMed  Google Scholar 

  • Burns A, Iliffe S. Alzheimer’s disease. BMJ (Clin Res Ed). 2009;338:b158.

    Article  Google Scholar 

  • Castellani R, Smith MA, Richey PJ, Petty G. Glycoxidation and oxidative stress in Parkinson disease and diffuse Lewy body disease. Brain Res. 1996;737:195–200.

    Article  CAS  PubMed  Google Scholar 

  • Chen X, de Silva HA, Pettenati MJ, et al. The human NACP/alpha-synuclein gene: chromosome assignment to 4q21.3–q22 and TaqI RFLP analysis. Genomics. 1995;26:425–7.

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Curtis TM, Stitt AW. Advanced glycation end products and diabetic retinopathy. Curr Med Chem. 2013;20:3234–40.

    Article  CAS  PubMed  Google Scholar 

  • Chou SM, Wang HS, Taniguchi A, Bucala R. Advanced glycation end products in neurofilament conglomeration of motoneurons in familial and sporadic amyotrophic lateral sclerosis. Mol Med. 1998;4:324–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Choudhary MI, Maher S, Begum A. Characterization and antiglycation activity of phenolic constituents from Viscum album (European Mistletoe). Chem Pharm Bull. 2010;58:980–2.

    Article  CAS  PubMed  Google Scholar 

  • Choudhuri S, Dutta D, Sen A, et al. Role of N-ε-carboxy methyl lysine, advanced glycation end products and reactive oxygen species for the development of nonproliferative and proliferative retinopathy in type 2 diabetes mellitus. Mol Vis. 2013;19:100–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clifford MN. Chlorogenic acids and other cinnamates—nature, occurrence and dietary burden. J Sci Food Agric. 1999;79:362–72.

    Article  CAS  Google Scholar 

  • Curtis TM, Hamilton R, Yong PH, et al. Müller glial dysfunction during diabetic retinopathy in rats is linked to accumulation of advanced glycation end-products and advanced lipoxidation end-products. Diabetologia. 2011;54:690–8.

    Article  CAS  PubMed  Google Scholar 

  • Dalfo E, Portero-Otin M, Ayala V, Martinez A, Pamplona R, Ferrer I. Evidence of oxidative stress in the neocortex in incidental Lewy body disease. J Neuropathol Exp Neurol. 2005;64:816–30.

    Article  CAS  PubMed  Google Scholar 

  • DeGroot J, Verzijl N, Wenting-Van Wijk MJ, et al. Age-related decrease in susceptibility of human articular cartilage to matrix metalloproteinase-mediated degradation: the role of advanced glycation end products. Arthritis Rheum. 2001;44:2562–71.

    Article  CAS  PubMed  Google Scholar 

  • Dexter DT, Carter CJ, Wells FR, et al. Basal lipid peroxidation in substantia nigra is increased in Parkinson’s disease. J Neurochem. 1989;52:381–9.

    Article  CAS  PubMed  Google Scholar 

  • Drickamer K, Taylor ME. Introduction to glycobiology. 2nd ed. USA: Oxford University Press; 2006.

    Google Scholar 

  • Dugé de Bernonville T, Guyot S, Paulin JP. Dihydrochalcones: Implication in resistance to oxidative stress and bioactivities against advanced glycation end-products and vasoconstriction. Phytochemistry. 2010;71:443–52.

    Article  CAS  PubMed  Google Scholar 

  • Dunn JA, McCance DR, Thorpe SR, Lyons TJ, Baynes JW. Age-dependent accumulation of N epsilon-(carboxymethyl)lysine and N epsilon-(carboxymethyl) hydroxylysine in human skin collagen. Biochemistry. 1991;30:1205–10.

    Article  CAS  PubMed  Google Scholar 

  • Dworkin JP, Miller SL. A kinetic estimate of the free aldehyde content of aldoses. Carbohydr Res. 2000;329:359–65.

    Article  CAS  PubMed  Google Scholar 

  • Dyer DG, Dunn JA, Thorpe SR. Accumulation of Maillard reaction products in skin collagen in diabetes and aging. J Clin Invest. 1993;91:2463–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Mesallamy HO, Hamdy NM, Ezzat OA, Reda AM. Levels of soluble advanced glycation end product-receptors and other soluble serum markers as indicators of diabetic neuropathy in the foot. J Investig Med. 2011;59:1233–8.

    Article  CAS  PubMed  Google Scholar 

  • Fiuza SM, Gomes C, Teixeira LJ. Phenolic acid derivatives with potential anticancer properties—a structure-activity relationship study. Part 1: methyl, propyl and octyl esters of caffeic and gallic acids. Bioorg Med Chem. 2004;12:3581–9.

    Article  CAS  PubMed  Google Scholar 

  • Frank RN. Diabetic retinopathy. N Engl J Med. 2004;350:48–58.

    Article  CAS  PubMed  Google Scholar 

  • Giehm L, Svergun DI, Otzen DE, Vestergaard B. Low-resolution structure of a vesicle disrupting α-synuclein oligomer that accumulates during fibrillation. Proc Natl Acad Sci U S A. 2011;108:3246–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glenn JV, Beattie JR, Barrett L, et al. Confocal Raman microscopy can quantify advanced glycation end product (AGE) modifications in Bruch’s membrane leading to accurate, nondestructive prediction of ocular aging. FASEB J. 2007;21:3542–52.

    Article  CAS  PubMed  Google Scholar 

  • Goedert M, Klug A, Crowther RA. Tau protein, the paired helical filament and Alzheimer disease. J Alzheimers Dis. 2006;9:195–207.

    CAS  PubMed  Google Scholar 

  • Guerrero E, Vasudevaraju P, Hegde ML, Britton GB, Rao KS. Recent advances in α-synuclein functions, advanced glycation, and toxicity: implications for Parkinson's disease. Mol Neurobiol. 2013;47:525–36.

    Article  CAS  PubMed  Google Scholar 

  • Gugliucci A, Bastos DH, Schulze J, Souza MF. Caffeic and chlorogenic acids in Ilex paraguariensis extracts are the main inhibitors of AGE generation by methylglyoxal in model proteins. Fitoterapia. 2009;80:339–44.

    Article  CAS  PubMed  Google Scholar 

  • Gul A, Rahman MA, Hasnain SN, Salim A, Simjee SU. Could oxidative stress associate with age products in cataractogenesis? Curr Eye Res. 2008;33:669–75.

    Article  CAS  PubMed  Google Scholar 

  • Harding JJ, Egerton M, van Heyningen R, Harding RS. Diabetes, glaucoma, sex, and cataract: analysis of combined data from two case control studies. Br J Ophthalmol. 1993;77:2–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harrington CR, Wischik CM, McArthur FK, Taylor GA, Edwardson JA, Candy JM. Alzheimer’s-disease-like changes in tau protein processing: association with aluminium accumulation in brains of renal dialysis patients. Lancet. 1994;343:993–7.

    Article  CAS  PubMed  Google Scholar 

  • Hashim Z, Zarina S. Advanced glycation end products in diabetic and non-diabetic human subjects suffering from cataract. Age (Dordr). 2011;33:377–84.

    Article  CAS  Google Scholar 

  • Hashim A, Khan MS, Ahmad S. Alleviation of hyperglycemia and hyperlipidemia by Phyllanthus virgatus forst extract and its partially purified fraction in streptozotocin induced diabetic rats. EXCLI J. 2014;13:809–24.

    PubMed  PubMed Central  Google Scholar 

  • Haus JM, Carrithers JA, Trappe SW, Trappe TA. Collagen, cross-linking, and advanced glycation end products in aging human skeletal muscle. J Appl Physiol. 2007;103:2068–76.

    Article  CAS  PubMed  Google Scholar 

  • Herenkranz JR, Lewis NG, Kahn CR, Roth J. Phlorizin: a review. Diabetes Metab Res Rev. 2005;21:31–8.

    Article  CAS  Google Scholar 

  • Hernández I, Alegre L, Van Breusegem F, Munné-Bosch S. How relevant are flavonoids as antioxidant in plants? Trends Plant Sci. 2009;14:125–32.

    Article  CAS  PubMed  Google Scholar 

  • Hsieh HM, Wu WM, Hu ML. Soy isoflavones attenuate oxidative stress and improve parameters related to aging and Alzheimer’s disease in C57BL/6J mice treated with D-galactose. Food Chem Toxicol. 2009;47:625–32.

    Article  CAS  PubMed  Google Scholar 

  • Hsu FL, Lin IM, Kuo DH, Chen WC, Su HC, Cheng JT. Antihyperglycemic effect of puerarin in streptozotocin-induced diabetes rats. J Nat Prod. 2003;66:788–92.

    Article  CAS  PubMed  Google Scholar 

  • Ichihashi M, Yagi M, Nomoto K, Yonei Y. Glycation stress and photo-aging in skin. Anti-Aging Med. 2011;8:23–9.

    Article  Google Scholar 

  • Iqbal D, Khan MS, Khan A, et al. In vitro screening for \( \beta \)-Hydroxy-\( \beta \)-methylglutaryl-CoA reductase inhibitory and antioxidant activity of sequentially extracted fractions of Ficus palmata Forsk. Biomed Res Int. 2014;14:1–10.

    Article  Google Scholar 

  • Jagtar AG, Patil PB. Antihyperglycemic activity and inhibition of advanced glycation end product formation by Cuminum cyminum in streptozotocin induced diabetic rats. Food Chem Toxicol. 2010;48:2030–6.

    Article  CAS  Google Scholar 

  • Jang DS, Yoo NH, Kim NH, et al. 3,5-Di-ocaffeoyl-epi-quinic acid from the leaves and stems of Erigeron annuus inhibits protein glycation, aldose reductase, and cataractogenesis. Biol Pharm Bull. 2010;33:329–33.

    Article  CAS  PubMed  Google Scholar 

  • Jeanmaire C, Danoux L, Pauly G. Glycation during human dermal intrinsic and actinic ageing: an in vivo and in vitro model study. Br J Dermatol. 2001;145:10–8.

    Article  CAS  PubMed  Google Scholar 

  • Kang J, Liu Y, Xie MX, Li S, Jiang M, Wang YD. Interactions of human serum albumin with chlorogenic acid and ferulic acid. Biochim Biophys Acta. 2004;1674:205–14.

    Article  CAS  PubMed  Google Scholar 

  • Kawanishi K, Ueda H, Moriyasu M. Aldose reductase inhibitors from the nature. Curr Med Chem. 2003;10:1353–74.

    Article  CAS  PubMed  Google Scholar 

  • Kayed R, Head E, Thompson JL, et al. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science. 2003;300:486–9.

    Article  CAS  PubMed  Google Scholar 

  • Kikuchi S, Shinpo K, Ogata A, et al. Detection of N-(carboxymethyl) lysine (CML) and non-CML advanced glycation end products in the anterior horn of amyotrophic lateral sclerosis spinal cord. Amyotroph Lateral Scler Other Motor Neuron Disord. 2002;3:63–8.

    Article  CAS  PubMed  Google Scholar 

  • Kikuzaki H, Hisamoto M, Hirose K, Akiyama K, Taniguchi H. Antioxidant properties of ferulic acid and its related compounds. J Agric Food Chem. 2002;50:2161–8.

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Lee YM, Lee GY, Jang DS, Bae KH, Kim JS. Constituents of the Root of Pueraria lobata inhibit formation of advanced glycation end products (AGEs). Arch Pharm Res. 2006;29:821–5.

    Article  CAS  PubMed  Google Scholar 

  • Kim KM, Jung DH, Jang DS, et al. Puerarin suppresses AGEs-induced inflammation in mouse mesangial cells: a possible pathway through the induction of heme oxygenase-1 expression. Toxicol Appl Pharmacol. 2010;244:106–13.

    Article  CAS  PubMed  Google Scholar 

  • Kuhla A, Ludwig SC, Kuhla B, Münch G, Vollmar B. Advanced glycation end products are mitogenic signals and trigger cell cycle reentry of neurons in Alzheimer’s disease brain. Neurobiology. 2015;36:753–61.

    CAS  Google Scholar 

  • Kumar MS, Reddy PY, Kumar PA, Surolia I, Reddy GB. Effect of dicarbonyl-induced browning on alpha-crystallin chaperone-like activity: physiological significance and caveats of in vitro aggregation assays. Biochem J. 2004;379:273–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Landis-Piwowar KR, Huo C, Chen D, et al. A novel prodrug of the green tea polyphenol (−)-epigallocatechin-3-gallate as a potential anticancer agent. Cancer Res. 2007;67:4303–10.

    Article  CAS  PubMed  Google Scholar 

  • Ledesma MD, Bonary P, Colaco C, Avila J. Analysis of microtubule-associated protein tau glycation in paired helical filaments. J Biol Chem. 1994;269:21614–9.

    CAS  PubMed  Google Scholar 

  • Lee DY, Chang GD. Methylglyoxal in cells elicits a negative feedback loop entailing transglutaminase 2 and glyoxalase 1. Redox Biol. 2014;2:196–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee GY, Jang DS, Lee YM, Kim JM, Kim JS. Naphthopyrone glucosides from the seeds of Cassia tora with inhibitory activity on advanced glycation end products (AGEs) formation. Arch Pharm Res. 2006;29:587–90.

    Article  CAS  PubMed  Google Scholar 

  • Lee D, Park CW, Paik SR, Choi KY. The modification of alpha-synuclein by dicarbonyl compounds inhibits its fibril-forming process. Biochim Biophys Acta. 2009;1794:421–30.

    Article  CAS  PubMed  Google Scholar 

  • Lozano R, Naghavi M, Foreman K, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380:2095–128.

    Article  PubMed  Google Scholar 

  • Lu J, Wu DM, Zheng YL, Hu B, Zhang ZF. Purple sweet potato color alleviates D-galactose-induced brain aging in old mice by promoting survival of neurons via PI3K pathway and inhibiting cytochrome C-mediated apoptosis. Brain Pathol. 2010;20:598–612.

    Article  CAS  PubMed  Google Scholar 

  • Lu’o’ng K, Nguyen LT. Thiamine and Parkinson’s disease. J Neurol Sci. 2012;316:1–8.

    Article  CAS  PubMed  Google Scholar 

  • Luthra M, Balasubramanian D. Nonenzymatic glycation alters protein structure and stability. A study of two eye lens crystallins. J Biol Chem. 1993;268:18119–27.

    CAS  PubMed  Google Scholar 

  • Ma HY, Gao HY, Sun L, Huang J, Xu XM, Wu LJ. Constituents with α-glucosidase and advanced glycation end-product formation inhibitory activities from Salvia miltiorrhiza Bge. J Nat Med. 2011;65:37–42.

    Article  CAS  PubMed  Google Scholar 

  • Makita Z, Bucala R, Rayfield EJ, et al. Reactive glycosylation endproducts in diabetic uremia and treatment of renal failure. Lancet. 1994;343:1519–22.

    Article  CAS  PubMed  Google Scholar 

  • Manzanaro S, Salva J, de la Fuente JA. Phenolic marine natural products as aldose reductase inhibitors. J Nat Prod. 2006;69:1485–7.

    Article  CAS  PubMed  Google Scholar 

  • Mao GX, Deng HB, Yuan LG, Li DD, Li YY, Wang Z. Protective role of salidroside against aging in a mouse model induced by D-galactose. Biomed Environ Sci. 2010;23:161–6.

    Article  CAS  PubMed  Google Scholar 

  • Matsuda H, Wang T, Managi H, Yoshikawa M. Structural requirements of flavonoids for inhibition of protein glycation and radical scavenging activities. Bioorg Med Chem. 2003;11:5317–23.

    Article  CAS  PubMed  Google Scholar 

  • Mazur WM, Duke JA, Wahala K, Rasku S, Adlercreutz H. Isoflavonoids and lignans in legumes: nutritional and heath aspects in humans. J Nutr Biochem. 1998;9:193–200.

    Article  CAS  Google Scholar 

  • Melpomeni P, Uribarri J, Vlassara H. Glucose, advanced glycation end products, and diabetes complications: what is new and what works. Clin Diabetes. 2003;21:186–7.

    Article  Google Scholar 

  • Meng J, Sakata N, Takebayashi S, et al. Glycoxidation in aortic collagen from STZ-induced diabetic rats and its relevance to vascular damage. Atherosclerosis. 1998;136:355–65.

    Article  CAS  PubMed  Google Scholar 

  • Meng G, Zhu H, Yang S, et al. Attenuating effects of Ganoderma lucidum polysaccharides on myocardial collagen cross-linking relates to advanced glycation end product and antioxidant enzymes in high-fat-diet and streptozotocin-induced diabetic rats. Carbohydr Polym. 2011;84:180–5.

    Article  CAS  Google Scholar 

  • Miroliaei M, Khazaei S, Moshkelgosha S, Shirvani M. Inhibitory effects of Lemon balm (Melissa officinalis, L.) extract on the formation of advanced glycation end products. Food Chem. 2011;129:267–71.

    Article  CAS  Google Scholar 

  • Mizutari K, Ono T, Ikeda K, Kayashima K, Horiuchi S. Photo-enhanced modification of human skin elastin in actinic elastosis by N(epsilon)-(carboxymethyl)lysine, one of the glycoxidation products of the Maillard reaction. J Invest Dermatol. 1997;108:797–802.

    Article  CAS  PubMed  Google Scholar 

  • Monnier VM, Stevens VJ, Cerami A. Maillard reactions involving proteins and carbohydrates in vivo: relevance to diabetes mellitus and aging. Prog Food Nutr Sci. 1981;5:315–27.

    CAS  PubMed  Google Scholar 

  • Munch G, Mayer S, Michaelis J. Influence of advanced glycation end-products and AGE-inhibitors on nucleation-dependent polymerization of β-amyloid peptide. Biochim Biophys Acta Mol Basis Dis. 1997;1360:17–29.

    Article  CAS  Google Scholar 

  • Munch G, Schinzel R, Loske C, et al. Alzheimer’s disease-synergistic effects of glucose deficit, oxidative stress and advanced glycation endproducts. J Neural Transm. 1998;105:439–61.

    Article  CAS  PubMed  Google Scholar 

  • Munch G, Luth HJ, Wong A. Crosslinking of alpha-synuclein by advanced glycation endproduct—an early pathophysiological step in Lewy body formation ? J Chem Neuroanat. 2000;20:253–7.

    Article  CAS  PubMed  Google Scholar 

  • Mustafa I, Ahmad S, Dixit K, Ahmad J, Ali A. Glycated human DNA is a preferred antigen for anti-DNA antibodies in diabetic patients. Diabetes Res Clin Pract. 2011;95:98–104.

    Article  CAS  PubMed  Google Scholar 

  • Nagaraj RH, Linetsky M, Stitt AW. The pathogenic role of Maillard reaction in the aging eye. Amino Acids. 2012;42:1205–20.

    Article  CAS  PubMed  Google Scholar 

  • Negre-Salvayre A, Salvayre R, Augé N, Pamplona R, Portero-Otín M. Hyperglycemia and glycation in diabetic complications. Antioxid Redox Signal. 2009;11:3071–109.

    Article  CAS  PubMed  Google Scholar 

  • Nowotny K, Jung T, Grune T, Hohn A. Accumulation of modified proteins and aggregate formation in aging. Exp Gerontol. 2014;57:122–31.

    Article  CAS  PubMed  Google Scholar 

  • Obeso JA, Goetz CG, Rodriguez-Oroz MC, et al. Missing pieces in the Parkinson’s disease puzzle. Nat Med. 2010;16:653–61.

    Article  CAS  PubMed  Google Scholar 

  • Peng X, Zheng Z, Cheung KW, Shan F, Ren GX, Chen SF, Wang M. Inhibitory effect of mung bean extract and its constituents vitexin and isovitexin on the formation of advanced glycation endproducts. Food Chem. 2008;106:457–81.

    Article  CAS  Google Scholar 

  • Peppa M, Uribarri J, Vlassara H. Aging and glycoxidant stress. Hormones (Athens). 2008;7:123–32.

    Google Scholar 

  • Peters T. Science Direct: all about albumin: biochemistry, genetics, and medical applications. San Diego, CA: Academic Press; 1996.

    Google Scholar 

  • Pontias I, Treutter D, Paulin JP, Brisset MN. Erwinia amylovora modifies phenolic profiles of susceptible and resistant apple through its type III secretion system. Physiol Plant. 2008;132:262–71.

    Article  CAS  Google Scholar 

  • Querfurth HW, LaFerla FM. Alzheimer’s disease. N Engl J Med. 2010;362:329–44.

    Article  CAS  PubMed  Google Scholar 

  • Rabbani N, Godfrey L, Xue M, et al. Glycation of LDL by methylglyoxal increases arterial atherogenicity. Diabetes. 2011;60(7):1973–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raheem M, Iram S, Khan MS, et al. Glycation-assisted synthesized gold nanoparticles inhibit growth of bone cancer cells, Colloid and Surfaces-B. 2014; 117:473–9.

    Google Scholar 

  • Ramasamy R, Vannucci SJ, Yan SS, Herold K, Yan SF, Schmidt AM. Advanced glycation end products and RAGE: a common thread in aging, diabetes, neurodegeneration, and inflammation. Glycobiology. 2005;15:16R–28.

    Article  CAS  PubMed  Google Scholar 

  • Reddy VP, Beyaz A. Inhibitors of the Maillard reaction and AGE breakers as therapeutics for multiple diseases. Drug Discov Today. 2006;11(13-14):646–54.

    Article  CAS  PubMed  Google Scholar 

  • Revett TJ, Baker GB, Jhamandas J, Kar S. Glutamate system, amyloid ß peptides and tau protein: functional interrelationships and relevance to Alzheimer disease pathology. J Psychiatry Neurosci. 2013;38:6–23.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rimbach G, Boesh-Saadatmandi C, Frank J, et al. Dietary isoflavones in the prevention of cardiovascular disease: a molecular perspective. Food Chem Toxicol. 2008;46:1308–19.

    Article  CAS  PubMed  Google Scholar 

  • Riviere S, Birlouez-Aragon I, Vellas B. Plasma protein glycation in Alzheimer’s disease. Glycoconj J. 1998;15:1039–42.

    Article  CAS  PubMed  Google Scholar 

  • Sasaki N, Fukatsu R, Tsuzuki K, et al. Advanced glycation end products in Alzheimer’s disease and other neurodegenerative diseases. Am J Pathol. 1998;153:1149–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sasaki N, Toki S, Choei H, Saito T, Nakano N, Hayashi Y, et al. Immunohistochemical distribution of the receptor for advanced glycation end products in neurons and astrocytes in Alzheimer’s disease. Brain Res. 2001;888:256–62.

    Article  CAS  PubMed  Google Scholar 

  • Sasaki N, Takeuchi M, Choei H, et al. Advanced glycation end products (AGE) and their receptor (RAGE) in the brain of patients with Creutzfeldt-Jakob disease with prion plaques. Neurosci Lett. 2002;326:117–20.

    Article  CAS  PubMed  Google Scholar 

  • Schapira AH. Mitochondrial diseases. Lancet. 2012;379:1825–34.

    Article  CAS  PubMed  Google Scholar 

  • Schapira AH. Recent developments in biomarkers in Parkinson disease. Curr Opin Neurol. 2013;26:395–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schipper HM. Brain iron deposition and the free radical-mitochondrial theory of ageing. Ageing Res Rev. 2004;3:265–301.

    Article  CAS  PubMed  Google Scholar 

  • Schleicher ED, Wagner E, Nerlich AG. Increased accumulation of the glycoxidation product N(epsilon)-(carboxymethyl)lysine in human tissues in diabetes and aging. J Clin Invest. 1997;99:457–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt AM, Hori O, Chen JX, et al. Advanced glycation end products interacting with their endothelial receptor induce expression of vascular cell adhesion molecule-1 (VCAM-1) in cultured human endothelial cells and in mice. A potential mechanism for the accelerated vasculopathy of diabetes. J Clin Invest. 1995;96:1395–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schrag A, Schott JM. Epidemiological, clinical, and genetic characteristics of early-onset parkinsonism. Lancet Neurol. 2006;5:355–63.

    Article  CAS  PubMed  Google Scholar 

  • Selkoe DG. Normal and abnormal biology of the b-amyloid precursor protein. Annu Rev Neurosci. 1994;17:489–517.

    Article  CAS  PubMed  Google Scholar 

  • Sell DR, Carlson EC, Monnier VM. Differential effects of type 2 (non-insulin-dependent) diabetes mellitus on pentosidine formation in skin and glomerular basement membrane. Diabetologia. 1993;36:936–41.

    Article  CAS  PubMed  Google Scholar 

  • Sell DR, Lane MA, Johnson WA. Longevity and the genetic determination of collagen glycoxidation kinetics in mammalian senescence. Proc Natl Acad Sci U S A. 1996;93:485–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Severin FF, Feniouk BA, Skulachev VP. Advanced glycation of cellular proteins as a possible basic component of the “master biological clock”. Biochemistry (Mosc). 2013;78:1043–7.

    Article  CAS  Google Scholar 

  • Shahab U, Tabrez S, Khan MS, et al. Immunogenicity of DNA-advanced glycation end product fashioned through glyoxal and arginine in the presence of Fe3+: its potential role in prompt recognition of diabetes mellitus auto-antibodies. Chemico Biol Int. 2014; 219; 229–240.

    Google Scholar 

  • Shaffer JL, Petrella JR, Sheldon FC, et al. Alzheimer’s disease neuroimaging initiative. Predicting cognitive decline in subjects at risk for Alzheimer disease by using combined cerebrospinal fluid, MR imaging, and PET biomarkers. Radiology. 2013;266:583–91.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shaikh S, Nicholson LF. Advanced glycation end products induce in vitro cross-linking of alpha-synuclein and accelerate the process of intracellular inclusion body formation. J Neurosci Res. 2008;86:2071–82.

    Article  CAS  PubMed  Google Scholar 

  • Shin DC, Kim CT, Lee YC, Choi WJ, Na YJ. Reduction of acrylamide by taurine in aqueous and potato chip model systems. Food Res Int. 2010;43:1356–60.

    Article  CAS  Google Scholar 

  • Shuvaev V, Laffont I, Serot JM, Fujii J, Taniguchi N, Siest G. Increased protein glycation in cerebrospinal fluid of Alzheimer’s disease. Neurobiol Aging. 2001;22:397–402.

    Article  CAS  PubMed  Google Scholar 

  • Smith MA, Taneda S, Richey PL, et al. Advanced Maillard reaction end products are associated with Alzheimer disease pathology. Proc Natl Acad Sci U S A. 1994;91:5710–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stadler RH, Blank I, Varga N, et al. Acrylamide from Maillard reaction products. Nature. 2002;419:449–50.

    Article  CAS  PubMed  Google Scholar 

  • Stitt AW. Advanced glycation: an important pathological event in diabetic and age related ocular disease. Br J Ophthalmol. 2001;85:746–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stitt AW, Hughes SJ, Canning P, et al. Substrates modified by advanced glycation end-products cause dysfunction and death in retinal pericytes by reducing survival signals mediated by platelet-derived growth factor. Diabetologia. 2004;47:1735–46.

    Article  CAS  PubMed  Google Scholar 

  • Sugimoto K, Nishizawa Y, Horiuchi S, Yagihashi S. Localization in human diabetic peripheral nerve of N(epsilon)-carboxymethyllysine-protein adducts, an advanced glycation endproduct. Diabetologia. 1997;40:1380–7.

    Article  CAS  PubMed  Google Scholar 

  • Sun Z, Peng X, Liu J, Fan K-W, Wang M, Chen F. Inhibitory effect of microalgal extracts on the formation of advanced glycation endproducts (AGEs). Food Chem. 2010;120:261–7.

    Article  CAS  Google Scholar 

  • Sun Z, Liu J, Zeng X, et al. Astaxanthin is responsible for antiglycoxidative properties of microalga Chlorella zofingiensis. Food Chem. 2011;126:1629–35.

    Article  CAS  PubMed  Google Scholar 

  • Swardfager W, Lanctôt K, Rothenburg L, Wong A, Cappell J, Herrmann N. A meta-analysis of cytokines in Alzheimer disease. Biol Psychiatry. 2010;68:930–41.

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi M, Makita Z, Yanagisawa K, Kameda Y, Koike T. Detection of noncarboxymethyllysine and carboxymethyllysine advanced glycation end products (AGE) in serum of diabetic patients. Mol Med. 1999;5:393–405.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takeuchi M, Iwaki M, Takino JI, et al. Immunological detection of fructose-derived advanced glycation end-products. Lab Invest. 2010;90:1117–27.

    Article  CAS  PubMed  Google Scholar 

  • Terao J, Kawai Y, Murota K. Vegetable flavonoids and cardiovascular disease. Asia Pac J Clin Nutr. 2008;17:291–3.

    CAS  PubMed  Google Scholar 

  • Thornalley PJ. Glutathione-dependent detoxification of alpha-oxoaldehydes by the glyoxalase system: involvement in disease mechanisms and antiproliferative activity of glyoxalase l inhibitor. Chem Biol Interact. 1998;112:137–51.

    Article  Google Scholar 

  • Thornalley PJ. Use of aminoguanidine (Pimagedine) to prevent the formation of advanced glycation endproducts. Arch Biochem Biophys. 2003;419:31–40.

    Article  CAS  PubMed  Google Scholar 

  • Tsao R. Chemistry and biochemistry of dietary polyphenols. Nutrients. 2010;2:1231–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuji-Naito K, Saeki H, Hamano M. Inhibitory effects of Chrysanthemum species extracts on formation of advanced glycation end products. Food Chem. 2009;116:854–9.

    Article  CAS  Google Scholar 

  • Uribarri J, Cai W, Peppa M, et al. Circulating glycotoxins and dietary advanced glycation endproducts: two links to inflammatory response, oxidative stress, and aging. J Gerontol A Biol Sci Med Sci. 2007;62:427–33.

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Puyvelde K, Mets T, Njemini R, Beyer I, Bautmans I. Effect of advanced glycation end product intake on inflammation and aging: A systematic review. Nutr Rev. 2014;72:638–50.

    Article  PubMed  Google Scholar 

  • Van Rooijen BD, Claessens MM, Subramaniam V. Membrane permeabilization by oligomeric alpha-synuclein: in search of the mechanism. PLoS One. 2010;5:e14292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vasan S, Foiles P, Founds H. Therapeutic potential of breakers of advanced glycation end product-protein crosslinks. Arch Biochem Biophys. 2003;419:89–96.

    Article  CAS  PubMed  Google Scholar 

  • Vasu VT, Modi H, Thaikoottathil JV, Gupta S. Hypolipidaemic and antioxidant effect of Enicostemma littorale Blume aqueous extract in cholesterol fed rats. J Ethnopharmacol. 2005;101:277–82.

    Article  PubMed  Google Scholar 

  • Verzelloni E, Tagliazucchi D, Rio D, Calani L, Conte A. Antiglycative and antioxidative properties of coffee fractions. Food Chem. 2011;124:1430–5.

    Article  CAS  Google Scholar 

  • Verzijl N, DeGroot J, Oldehinkel E, et al. Age-related accumulation of Maillard reaction products in human articular cartilage collagen. Biochem J. 2000a;350:381–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verzijl N, DeGroot J, Thorpe SR, et al. Effect of collagen turnover on the accumulation of advanced glycation end products. J Biol Chem. 2000b;275:39027–31.

    Article  CAS  PubMed  Google Scholar 

  • Vinson JA, Proch J, Bose P, et al. Chocolate is a powerful ex vivo and in vivo antioxidant, an antiatherosclerotic agent in an animal model, and a significant contributor to antioxidants in the European and American diets. J Agric Food Chem. 2006;54:8071–6.

    Article  CAS  PubMed  Google Scholar 

  • Vitek MP, Bhattacharya K, Glendening JM, et al. Advanced glycation end products contribute to amyloidosis in Alzheimer disease. Proc Natl Acad Sci U S A. 1994;91:4766–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vlassara H, Brownlee M, Cerami A. Nonenzymatic glycosylation of peripheral nerve protein in diabetes mellitus. Proc Natl Acad Sci U S A. 1981;78:5190–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vlassara H, Cai W, Crandall J, et al. Inflammatory mediators are induced by dietary glycotoxins, a major risk factor for diabetic angiopathy. Proc Natl Acad Sci U S A. 2002;99:15596–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Volles MJ, Lansbury PT. Zeroing in on the pathogenic form of alphasynuclein and its mechanism of neurotoxicity in Parkinson's disease. Biochemistry. 2003;42:7871–8.

    Article  CAS  PubMed  Google Scholar 

  • Wang PC, Zhang J, Zhang ZY, Tong TJ. Aminoguanidine delays the replicative senescence of human diploid fibroblasts. Chin Med J. 2007;120:2028–35.

    CAS  PubMed  Google Scholar 

  • Wang J, Sun B, Cao Y, Tian Y. Protein glycation inhibitory activity of wheat bran feruloyl oligosaccharides. Food Chem. 2009;112:350–3.

    Article  CAS  Google Scholar 

  • Wautier MP, Chappey O, Corda S, Stern DM, Schmidt AM, Wautier JL. Activation of NADPH oxidase by AGE links oxidant stress to altered gene expression via RAGE. Am J Physiol Endocrinol Metab. 2001;280:E685–94.

    CAS  PubMed  Google Scholar 

  • Wei Y, Chen L, Chen J, Ge L, He RQ. Rapid glycation with D-ribose induces globular amyloid-like aggregations of BSA with high cytotoxicity to SH-SY5Y cells. BMC Cell Biol. 2009;10:10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitton PS. Inflammation as a causative factor in the aetiology of Parkinson’s disease. Br J Pharmacol. 2007;150:963–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams AH. Dihydrochalcones; their occurrence and use as indicators in plant chemical taxonomy. Nature. 1964;202:824–5.

    Article  CAS  Google Scholar 

  • Yan SD, Chen X, Schmidt AM, et al. Glycated tau protein in Alzheimer disease: a mechanism for induction of oxidant stress. Proc Natl Acad Sci U S A. 1994;91:7787–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan SD, Chen X, Fu J, et al. RAGE and amyloid-beta peptide neurotoxicity in Alzheimer’s disease. Nature. 1996;382:685–91.

    Article  CAS  PubMed  Google Scholar 

  • Yazdanparast R, Ardestani A, Jamshidi S. Experimental diabetes treated with Achillea santolina: effect on pancreatic oxidative parameters. J Ethnopharmacol. 2007;112:13–8.

    Article  PubMed  Google Scholar 

  • Zeevalk GD, Razmpour R, Bernard LP. Glutathione and Parkinson’s disease: is this the elephant in the room? Biomed Pharmacother. 2008;62:236–49.

    Article  CAS  PubMed  Google Scholar 

  • Zhou C, Huang Y, Przedborski S. Oxidative stress in Parkinson’s disease: a mechanism of pathogenic and therapeutic significance. Ann N Y Acad Sci. 2008;1147:93–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zong H, Ward M, Stitt AW. AGEs, RAGE, and diabetic retinopathy. Curr Diab Rep. 2011;11:244–52.

    Article  PubMed  Google Scholar 

Download references

Compliance with Ethics Requirements

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saheem Ahmad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ahmad, S., Farhan, M. (2016). Impact of Non-Enzymatic Glycation in Neurodegenerative Diseases: Role of Natural Products in Prevention. In: Essa, M., Akbar, M., Guillemin, G. (eds) The Benefits of Natural Products for Neurodegenerative Diseases. Advances in Neurobiology, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-319-28383-8_8

Download citation

Publish with us

Policies and ethics