Skip to main content

Advertisement

Log in

The pathogenic role of Maillard reaction in the aging eye

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

The proteins of the human eye are highly susceptible to the formation of advanced glycation end products (AGEs) from the reaction of sugars and carbonyl compounds. AGEs progressively accumulate in the aging lens and retina and accumulate at a higher rate in diseases that adversely affect vision such as, cataract, diabetic retinopathy and age-related macular degeneration. In the lens AGEs induce irreversible changes in structural proteins, which lead to lens protein aggregation and formation of high-molecular-weight aggregates that scatter light and impede vision. In the retina AGEs modify intra- and extracellular proteins that lead to an increase in oxidative stress and formation of pro-inflammatory cytokines, which promote vascular dysfunction. This review outlines recent advances in AGE research focusing on the mechanisms of their formation and their role in cataract and pathologies of the retina. The therapeutic action and pharmacological strategies of anti-AGE agents that can inhibit or prevent AGE formation in the eye are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agardh E, Hultberg B, Agardh C (2000) Effects of inhibition of glycation and oxidative stress on the development of cataract and retinal vessel abnormalities in diabetic rats. Curr Eye Res 21:543–549

    PubMed  CAS  Google Scholar 

  • Ahmed MU, Thorpe SR, Baynes JW (1986) Identification of N epsilon-carboxymethyllysine as a degradation product of fructoselysine in glycated protein. J Biol Chem 261:4889–4894

    PubMed  CAS  Google Scholar 

  • Ahmed MU, Brinkmann Frye E, Degenhardt TP et al (1997) N-epsilon-(carboxyethyl)lysine, a product of the chemical modification of proteins by methylglyoxal, increases with age in human lens proteins. Biochem J 324(Pt 2):565–570

    PubMed  CAS  Google Scholar 

  • Ahmed N, Thornalley PJ, Dawczynski J et al (2003) Methylglyoxal-derived hydroimidazolone advanced glycation end-products of human lens proteins. Invest Ophthalmol Vis Sci 44:5287–5292

    PubMed  Google Scholar 

  • Albon J, Karwatowski WS, Avery N et al (1995) Changes in the collagenous matrix of the aging human lamina cribrosa. Br J Ophthalmol 79:368–375

    PubMed  CAS  Google Scholar 

  • Albon J, Purslow PP, Karwatowski WS et al (2000) Age related compliance of the lamina cribrosa in human eyes. Br J Ophthalmol 84:318–323

    PubMed  CAS  Google Scholar 

  • Amano S, Kaji Y, Oshika T et al (2001) Advanced glycation end products in human optic nerve head. Br J Ophthalmol 85:52–55

    PubMed  CAS  Google Scholar 

  • Argirov OK, Lin B, Ortwerth BJ (2004) 2-ammonio-6-(3-oxidopyridinium-1-yl)hexanoate (OP-lysine) is a newly identified advanced glycation end product in cataractous and aged human lenses. J Biol Chem 279:6487–6495

    PubMed  CAS  Google Scholar 

  • Argirov OK, Lin B, Ortwerth BJ (2005) Phototransformations of advanced glycation end products in the human eye lens due to ultraviolet A light irradiation. Ann N Y Acad Sci 1043:166–173

    PubMed  CAS  Google Scholar 

  • Argirova MD, Breipohl W (2002) Glycated proteins can enhance photooxidative stress in aged and diabetic lenses. Free Radic Res 36:1251–1259

    PubMed  CAS  Google Scholar 

  • Basta G, Schmidt AM, De Caterina R (2004) Advanced glycation end products and vascular inflammation: implications for accelerated atherosclerosis in diabetes. Cardiovasc Res 63:582–592

    PubMed  CAS  Google Scholar 

  • Bazan NG (1982) Metabolism of phospholipids in the retina. Vis Res 22:1539–1548

    PubMed  CAS  Google Scholar 

  • Beatty S, Koh H, Phil M et al (2000) The role of oxidative stress in the pathogenesis of age-related macular degeneration. Surv Ophthalmol 45:115–134

    PubMed  CAS  Google Scholar 

  • Bhattacharyya J, Shipova EV, Santhoshkumar P et al (2007) Effect of a single AGE modification on the structure and chaperone activity of human alphaB-crystallin. Biochemistry 46:14682–14692

    PubMed  CAS  Google Scholar 

  • Bhatwadekar A, Stitt AW (2007) AGEs and RAGE inhibitors in the treatment of diabetic retinopathy. Expert Rev Ophthalmol 2:105–120

    CAS  Google Scholar 

  • Biemel KM, Friedl DA, Lederer MO (2002) Identification and quantification of major Maillard cross-links in human serum albumin and lens protein: evidence for glucosepane as the dominant compound. J Biol Chem 277:24907–24915

    PubMed  CAS  Google Scholar 

  • Binder S, Stanzel BV, Krebs I et al (2007) Transplantation of the RPE in AMD. Prog Retin Eye Res 26:516–554

    PubMed  Google Scholar 

  • Bird AC, Bressler NM, Bressler SB et al (1995) An international classification and grading system for age-related maculopathy and age-related macular degeneration. Int ARM Epidemiol Study Group Surv Ophthalmol 39:367–374

    CAS  Google Scholar 

  • Biswas A, Miller A, Oya-Ito T et al (2006) Effect of site-directed mutagenesis of methylglyoxal-modifiable arginine residues on the structure and chaperone function of human alphaA-crystallin. Biochemistry 45:4569–4577

    PubMed  CAS  Google Scholar 

  • Biswas A, Lewis S, Wang B et al (2008a) Chemical modulation of the chaperone function of human alphaA-crystallin. J Biochem 144:21–32

    PubMed  CAS  Google Scholar 

  • Biswas A, Wang B, Miyagi M et al (2008b) Effect of methylglyoxal modification on stress-induced aggregation of client proteins and their chaperoning by human alphaA-crystallin. Biochem J 409:771–777

    PubMed  CAS  Google Scholar 

  • Bloemendal H, de Jong WW (1991) Lens proteins and their genes. Prog Nucleic Acid Res Mol Biol 41:259–281

    PubMed  CAS  Google Scholar 

  • Bolton WK, Cattran DC, Williams ME et al (2004) Randomized trial of an inhibitor of formation of advanced glycation end products in diabetic nephropathy. Am J Nephrol 24:32–40

    PubMed  CAS  Google Scholar 

  • Boulton M, Dayhaw-Barker P (2001) The role of the retinal pigment epithelium: topographical variation and ageing changes. Eye 15:384–389

    PubMed  CAS  Google Scholar 

  • Boulton M, Roanowska M, Wess T (2004) Ageing of the retinal pigment epithelium: implications for transplantation. Graefes Arch Clin Exp Ophthalmol 242:76–84

    PubMed  Google Scholar 

  • Bron AJ, Vrensen GF, Koretz J et al (2000) The ageing lens. Ophthalmologica 214:86–104

    PubMed  CAS  Google Scholar 

  • Brown TR, Su B, Brown KA et al (2003) Modulation of in vivo 3-deoxyglucosone levels. Biochem Soc Trans 31:1433–1437

    PubMed  CAS  Google Scholar 

  • Calfee CS, Budev MM, Matthay MA et al (2007) Plasma receptor for advanced glycation end-products predicts duration of ICU stay and mechanical ventilation in patients after lung transplantation. J Heart Lung Transplant 26:675–680

    PubMed  Google Scholar 

  • Catala A (2006) An overview of lipid peroxidation with emphasis in outer segments of photoreceptors and the chemiluminescence assay. Int J Biochem Cell Biol 38:1482–1495

    PubMed  CAS  Google Scholar 

  • Cefalu WT, Bell-Farrow AD, Wang ZQ et al (1995) Caloric restriction decreases age-dependent accumulation of the glycoxidation products, Nisin-(Carboxymethyl)lysine and pentosidine. Rat Skin Coll J Gerontol 50:B337–B341

    CAS  Google Scholar 

  • Chellan P, Nagaraj RH (1999) Protein crosslinking by the Maillard reaction: dicarbonyl-derived imidazolium crosslinks in aging and diabetes. Arch Biochem Biophys 368:98–104

    PubMed  CAS  Google Scholar 

  • Cheng R, Lin B, Lee KW et al (2001) Similarity of the yellow chromophores isolated from human cataracts with those from ascorbic acid-modified calf lens proteins: evidence for ascorbic acid glycation during cataract formation. Biochim Biophys Acta 1537:14–26

    PubMed  CAS  Google Scholar 

  • Cheng R, Feng Q, Argirov OK et al (2004) Structure elucidation of a novel yellow chromophore from human lens protein. J Biol Chem 279:45441–45449

    PubMed  CAS  Google Scholar 

  • Cheng R, Feng Q, Argirov OK et al (2005) K2P–a novel cross-link from human lens protein. Ann N Y Acad Sci 1043:184–194

    PubMed  CAS  Google Scholar 

  • Cheng R, Feng Q, Ortwerth BJ (2006) LC–MS display of the total modified amino acids in cataract lens proteins and in lens proteins glycated by ascorbic acid in vitro. Biochim Biophys Acta 1762:533–543

    PubMed  CAS  Google Scholar 

  • Cingolani C, Rogers B, Lu L et al (2006) Retinal degeneration from oxidative damage. Free Radic Biol Med 40:660–669

    PubMed  CAS  Google Scholar 

  • Cooper ME (2004) Importance of advanced glycation end products in diabetes-associated cardiovascular and renal disease. Am J Hypertens 17:31S–38S

    PubMed  CAS  Google Scholar 

  • Crabb JW, Miyagi M, Gu X et al (2002a) Drusen proteome analysis: an approach to the etiology of age-related macular degeneration. Proc Natl Acad Sci USA 99:14682–14687

    PubMed  CAS  Google Scholar 

  • Crabb JW, O’Neil J, Miyagi M et al (2002b) Hydroxynonenal inactivates cathepsin B by forming Michael adducts with active site residues. Protein Sci 11:831–840

    PubMed  CAS  Google Scholar 

  • de Jong PT (2006) Age-related macular degeneration. N Engl J Med 355:1474–1485

    PubMed  Google Scholar 

  • Degenhardt TP, Thorpe SR, Baynes JW (1998) Chemical modification of proteins by methylglyoxal. Cell Mol Biol (Noisy-le-grand) 44:1139–1145

    CAS  Google Scholar 

  • Delaye M, Tardieu A (1983) Short-range order of crystallin proteins accounts for eye lens transparency. Nature 302:415–417

    PubMed  CAS  Google Scholar 

  • Derham BK, Harding JJ (1997) Effect of aging on the chaperone-like function of human alpha-crystallin assessed by three methods. Biochem J 328(Pt 3):763–768

    PubMed  CAS  Google Scholar 

  • Devamanoharan PS, Ali AH, Varma SD (1997) Prevention of lens protein glycation by taurine. Mol Cell Biochem 177:245–250

    PubMed  CAS  Google Scholar 

  • Ebrahem Q, Renganathan K, Sears J et al (2006) Carboxyethylpyrrole oxidative protein modifications stimulate neovascularization: Implications for age-related macular degeneration. Proc Natl Acad Sci USA 103:13480–13484

    PubMed  CAS  Google Scholar 

  • Ethen CM, Reilly C, Feng X et al (2007) Age-related macular degeneration and retinal protein modification by 4-hydroxy-2-nonenal. Invest Ophthalmol Vis Sci 48:3469–3479

    PubMed  Google Scholar 

  • Fan X, Monnier VM (2008) Inhibition of crystallin ascorbylation by nucleophilic compounds in the hSVCT2 mouse model of lenticular aging. Invest Ophthalmol Vis Sci 49:4945–4952

    PubMed  Google Scholar 

  • Fan X, Reneker LW, Obrenovich ME et al (2006) Vitamin C mediates chemical aging of lens crystallins by the Maillard reaction in a humanized mouse model. Proc Natl Acad Sci USA 103:16912–16917

    PubMed  CAS  Google Scholar 

  • Fan X, Zhang J, Theves M et al (2009) Mechanism of lysine oxidation in human lens crystallins during aging and in diabetes. J Biol Chem 284:34618–34627

    PubMed  CAS  Google Scholar 

  • Franke S, Dawczynski J, Strobel J et al (2003) Increased levels of advanced glycation end products in human cataractous lenses. J Cataract Refract Surg 29:998–1004

    PubMed  Google Scholar 

  • Frye EB, Degenhardt TP, Thorpe SR et al (1998) Role of the Maillard reaction in aging of tissue proteins dvanced glycation end product-dependent increase in imidazolium cross-links in human lens proteins. AJ Biol Chem 273:18714–18719

    CAS  Google Scholar 

  • Ganea E, Harding JJ (2006) Glutathione-related enzymes and the eye. Curr Eye Res 31:1–11

    PubMed  CAS  Google Scholar 

  • Gangadhariah MH, Wang B, Linetsky M, et al. (2010) Hydroimidazolone modification of human alphaA-crystallin: effect on the chaperone function and protein refolding ability. Biochim Biophys Acta 1802:432–441

    Google Scholar 

  • Gangadhariah MH, Mailankot M, Reneker L, et al (2010) Inhibition of methylglyoxal-mediated protein modification in glyoxalase I overexpressing mouse lenses. J Ophthalmol (epub):id-274317

  • Gardiner TA, Anderson HR, Stitt AW (2003) Inhibition of advanced glycation end-products protects against retinal capillary basement membrane expansion during long-term diabetes. J Pathol 201:328–333

    PubMed  CAS  Google Scholar 

  • Garlick RL, Mazer JS, Chylack LT Jr et al (1984) Nonenzymatic glycation of human lens crystallin effect of aging and diabetes mellitus. J Clin Invest 74:1742–1749

    PubMed  CAS  Google Scholar 

  • Glenn JV, Beattie JR, Barrett L et al (2007) Confocal Raman microscopy can quantify advanced glycation end product (AGE) modifications in Bruch’s membrane leading to accurate nondestructive prediction of ocular aging. Faseb J 21:3542–3552

    PubMed  CAS  Google Scholar 

  • Glenn JV, Mahaffy H, Wu K et al (2009) Advanced glycation end product (AGE) accumulation on Bruch's membrane: links to age-related RPE dysfunction. Invest Ophthalmol Vis Sci 50:441–451

    Google Scholar 

  • Gu X, Meer SG, Miyagi M et al (2003) Carboxyethylpyrrole protein adducts and autoantibodies, biomarkers for age-related macular degeneration. J Biol Chem 278:42027–42035

    PubMed  CAS  Google Scholar 

  • Gu J, Pauer GJ, Yue X et al (2009) Assessing susceptibility to age-related macular degeneration with proteomic and genomic biomarkers. Mol Cell Proteomics 8:1338–1349

    PubMed  CAS  Google Scholar 

  • Haik GM Jr, Lo TW, Thornalley PJ (1994) Methylglyoxal concentration and glyoxalase activities in the human lens. Exp Eye Res 59:497–500

    PubMed  CAS  Google Scholar 

  • Hammes HP, Martin S, Federlin K et al (1991) Aminoguanidine treatment inhibits the development of experimental diabetic retinopathy. Proc Natl Acad Sci (USA) 88:11555–11558

    CAS  Google Scholar 

  • Handa JT, Verzijl N, Matsunaga H et al (1999) Increase in the advanced glycation end product pentosidine in Bruch’s membrane with age. Invest Ophthalmol Vis Sci 40:775–779

    PubMed  CAS  Google Scholar 

  • Harding J (1991) Cataract: biochemistry, epidemiology and pharmacology. Chapman & Hall, London

  • Harding JJ (1992) Pharmacological treatment strategies in age-related cataracts. Drugs Aging 2:287–300

    PubMed  CAS  Google Scholar 

  • Hartog JW, Voors AA, Bakker SJ et al (2007) Advanced glycation end-products (AGEs) and heart failure: pathophysiology and clinical implications. Eur J Heart Fail 9:1146–1155

    PubMed  CAS  Google Scholar 

  • Harwerth RS, Wheat JL, Rangaswamy NV (2008) Age-related losses of retinal ganglion cells and axons. Invest Ophthalmol Vis Sci 49:4437–4443

    PubMed  Google Scholar 

  • Horwitz J (1993) Proctor lecture the function of alpha-crystallin. Invest Ophthalmol Vis Sci 34:10–22

    PubMed  CAS  Google Scholar 

  • Horwitz J (2009) Alpha crystallin: the quest for a homogeneous quaternary structure. Exp Eye Res 88:190–194

    PubMed  CAS  Google Scholar 

  • Howes KA, Liu Y, Dunaief JL et al (2004) Receptor for advanced glycation end products and age-related macular degeneration. Invest Ophthalmol Vis Sci 45:3713–3720

    PubMed  Google Scholar 

  • Huijberts MS, Schaper NC, Schalkwijk CG (2008) Advanced glycation end products and diabetic foot disease. Diabetes Metab Res Rev 24(Suppl 1):19–24

    Google Scholar 

  • Ishibashi T, Murata T, Hangai M et al (1998) Advanced glycation end products in age-related macular degeneration. Arch Ophthalmol 116:1629–1632

    PubMed  CAS  Google Scholar 

  • Jaenicke R (1994) Eye-lens proteins: structure, superstructure, stability, genetics. Naturwissenschaften 81:423–429

    PubMed  CAS  Google Scholar 

  • Jandeleit-Dahm K, Watson A, Soro-Paavonen A (2008) The AGE/RAGE axis in diabetes-accelerated atherosclerosis. Clin Exp Pharmacol Physiol 35:329–334

    PubMed  CAS  Google Scholar 

  • Januszewski AS, Alderson NL, Metz TO et al (2003) Role of lipids in chemical modification of proteins and development of complications in diabetes. Biochem Soc Trans 31:1413–1416

    PubMed  CAS  Google Scholar 

  • Jiaan DB, Seftel AD, Fogarty J et al (1995) Age-related increase in an advanced glycation end product in penile tissue. World J Urol 13:369–375

    PubMed  CAS  Google Scholar 

  • Kaji Y, Usui T, Oshika T et al (2000) Advanced glycation end products in diabetic corneas. Invest Ophthalmol Vis Sci 41:362–368

    PubMed  CAS  Google Scholar 

  • Kern TS, Engerman RL (2001) Pharmacological inhibition of diabetic retinopathy: aminoguanidine and aspirin. Diabetes 50:1636–1642

    PubMed  CAS  Google Scholar 

  • Kessel L, Kalinin S, Soroka V et al (2005) Impact of UVR-A on whole human lenses, supernatants of buffered human lens homogenates, and purified argpyrimidine and 3-OH-kynurenine. Acta Ophthalmol Scand 83:221–227

    PubMed  CAS  Google Scholar 

  • Klein R, Klein BE, Tomany SC et al (2002) Ten-year incidence and progression of age-related maculopathy: The Beaver Dam eye study. Ophthalmology 109:1767–1779

    PubMed  Google Scholar 

  • Kumar MS, Reddy PY, Kumar PA, et al (2004) Effect of dicarbonyl-induced browning on alpha-crystallin chaperone-like activity: physiological significance and caveats of in vitro aggregation assays. Biochem J 379:273–282

    Google Scholar 

  • Kumar MS, Reddy PY, Sreedhar B et al (2005) Alphab-crystallin-assisted reactivation of glucose-6-phosphate dehydrogenase upon refolding. Biochem J 391:335–341

    PubMed  CAS  Google Scholar 

  • Kumar PA, Kumar MS, Reddy GB (2007) Effect of glycation on alpha-crystallin structure and chaperone-like function. Biochem J 408:251–258

    PubMed  CAS  Google Scholar 

  • Lal S, Szwergold BS, Kappler F et al (1993) Detection of fructose-3-phosphokinase activity in intact mammalian lenses by 31P NMR spectroscopy. J Biol Chem 268:7763–7767

    PubMed  CAS  Google Scholar 

  • Larsen M, Kjer B, Bendtson I et al (1989) Lens fluorescence in relation to metabolic control of insulin-dependent diabetes mellitus. Arch Ophthalmol 107:59–62

    PubMed  CAS  Google Scholar 

  • Lee KW, Meyer N, Ortwerth BJ (1999) Chromatographic comparison of the UVA sensitizers present in brunescent cataracts and in calf lens proteins ascorbylated in vitro. Exp Eye Res 69:375–384

    PubMed  CAS  Google Scholar 

  • Liang JN (1987) Fluorescence study of the effects of aging and diabetes mellitus on human lens alpha-crystallin. Curr Eye Res 6:351–355

    PubMed  CAS  Google Scholar 

  • Linetsky M, Ortwerth BJ (1996) Quantitation of the reactive oxygen species generated by the UVA irradiation of ascorbic acid-glycated lens proteins. Photochem Photobiol 63:649–655

    PubMed  CAS  Google Scholar 

  • Linetsky MD, Shipova EV, Legrand RD et al (2005) Glucose-derived Amadori compounds of glutathione. Biochim Biophys Acta 1724:181–193

    PubMed  CAS  Google Scholar 

  • Linetsky M, Shipova E, Cheng R et al (2008) Glycation by ascorbic acid oxidation products leads to the aggregation of lens proteins. Biochim Biophys Acta 1782:22–34

    PubMed  CAS  Google Scholar 

  • Lo TW, Westwood ME, McLellan AC et al (1994) Binding and modification of proteins by methylglyoxal under physiological conditions. A kinetic and mechanistic study with N alpha-acetylarginine, N alpha-acetylcysteine, and N alpha-acetyllysine, and bovine serum albumin. J Biol Chem 269:32299–32305

    PubMed  CAS  Google Scholar 

  • Lohmann W, Wunderling M, Schmehl W et al (1986) Nuclear cataract and ascorbic acid. Naturwissenschaften 73:266–267

    PubMed  CAS  Google Scholar 

  • Lou MF (2000) Thiol regulation in the lens. J Ocul Pharmacol Ther 16:137–148

    PubMed  CAS  Google Scholar 

  • Lutze M, Bresnick GH (1991) Lenses of diabetic patients “yellow” at an accelerated rate similar to older normals. Invest Ophthalmol Vis Sci 32:194–199

    PubMed  CAS  Google Scholar 

  • Lyons TJ, Silvestri G, Dunn JA et al (1991) Role of glycation in modification of lens crystallins in diabetic and nondiabetic senile cataracts. Diabetes 40:1010–1015

    PubMed  CAS  Google Scholar 

  • Mailankot M, Padmanabha S, Pasupuleti N, et al (2009) Glyoxalase I activity and immunoreactivity in the aging human lens. Biogerontology

  • Malik NS, Moss SJ, Ahmed N et al (1992) Ageing of the human corneal stroma: structural and biochemical changes. Biochim Biophys Acta 1138:222–228

    PubMed  CAS  Google Scholar 

  • McNulty R, Wang H, Mathias RT et al (2004) Regulation of tissue oxygen levels in the mammalian lens. J Physiol 559:883–898

    PubMed  CAS  Google Scholar 

  • Miller AG, Smith DG, Bhat M et al (2006) Glyoxalase I is critical for human retinal capillary pericyte survival under hyperglycemic conditions. J Biol Chem 281:11864–11871

    PubMed  CAS  Google Scholar 

  • Monnier VM, Cerami A (1981) Nonenzymatic browning in vivo: possible process for aging of long-lived proteins. Science 211:491–493

    PubMed  CAS  Google Scholar 

  • Monnier VM, Sell DR, Nagaraj RH et al (1992) Maillard reaction-mediated molecular damage to extracellular matrix and other tissue proteins in diabetes, aging, and uremia. Diabetes 41(Suppl 2):36–41

    PubMed  CAS  Google Scholar 

  • Monnier VM, Nagaraj RH, Portero-Otin M et al (1996) Structure of advanced Maillard reaction products and their pathological role. Nephrol Dial Transplant 11(Suppl 5):20–26

    PubMed  CAS  Google Scholar 

  • Monnier VM, Mustata GT, Biemel KL et al (2005) Cross-linking of the extracellular matrix by the Maillard reaction in aging and diabetes: an update on “a puzzle nearing resolution”. Ann N Y Acad Sci 1043:533–544

    PubMed  CAS  Google Scholar 

  • Morcos M, Du X, Pfisterer F, et al (2008) Glyoxalase-1 prevents mitochondrial protein modification and enhances life span in Caenorhabditis elegans. Aging Cell 7:260–269

    Google Scholar 

  • Munch G, Kuhla B, Luth HJ et al (2003) Anti-AGEing defences against Alzheimer’s disease. Biochem Soc Trans 31:1397–1399

    PubMed  CAS  Google Scholar 

  • Nagaraj RH, Monnier VM (1992) Isolation and characterization of a blue fluorophore from human eye lens crystallins: in vitro formation from Maillard reaction with ascorbate and ribose. Biochim Biophys Acta 1116:34–42

    PubMed  CAS  Google Scholar 

  • Nagaraj RH, Sady C (1996) The presence of a glucose-derived Maillard reaction product in the human lens. FEBS Lett 382:234–238

    PubMed  CAS  Google Scholar 

  • Nagaraj RH, Sell DR, Prabhakaram M et al (1991) High correlation between pentosidine protein crosslinks and pigmentation implicates ascorbate oxidation in human lens senescence and cataractogenesis. Proc Natl Acad Sci USA 88:10257–10261

    PubMed  CAS  Google Scholar 

  • Nagaraj RH, Kern TS, Sell DR et al (1996a) Evidence of a glycemic threshold for the formation of pentosidine in diabetic dog lens but not in collagen. Diabetes 45:587–594

    PubMed  CAS  Google Scholar 

  • Nagaraj RH, Shipanova IN, Faust FM (1996b) Protein cross-linking by the Maillard reaction. Isolation, characterization, and in vivo detection of a lysine-lysine cross-link derived from methylglyoxal. J Biol Chem 271:19338–19345

    PubMed  CAS  Google Scholar 

  • Nagaraj RH, Shamsi FA, Huber B et al (1999) Immunochemical detection of oxalate monoalkylamide, an ascorbate-derived Maillard reaction product in the human lens. FEBS Lett 453:327–330

    PubMed  CAS  Google Scholar 

  • Nagaraj RH, Oya-Ito T, Padayatti PS et al (2003) Enhancement of chaperone function of alpha-crystallin by methylglyoxal modification. Biochemistry 42:10746–10755

    PubMed  CAS  Google Scholar 

  • Nagaraj RH, Padmanabha S, Mailankot M et al (2010) Modulation of advanced glycation endproduct synthesis by kynurenines in human lens proteins. Biochim Biophys Acta 1804:829–838

    PubMed  CAS  Google Scholar 

  • Ni J, Yuan X, Gu J et al (2009) Plasma protein pentosidine and carboxymethyllysine, biomarkers for age-related macular degeneration. Mol Cell Proteomics 8:1921–1933

    PubMed  CAS  Google Scholar 

  • Ohshima H, Oyobikawa M, Tada A et al (2009) Melanin and facial skin fluorescence as markers of yellowish discoloration with aging. Skin Res Technol 15:496–502

    PubMed  Google Scholar 

  • Oimomi M, Maeda Y, Hata F et al (1988) Glycation of cataractous lens in non-diabetic senile subjects and in diabetic patients. Exp Eye Res 46:415–420

    PubMed  CAS  Google Scholar 

  • Ortwerth BJ, Olesen PR (1988a) Glutathione inhibits the glycation and crosslinking of lens proteins by ascorbic acid. Exp Eye Res 47:737–750

    PubMed  CAS  Google Scholar 

  • Ortwerth BJ, Olesen PR (1988b) Ascorbic acid-induced crosslinking of lens proteins: evidence supporting a Maillard reaction. Biochim Biophys Acta 956:10–22

    PubMed  CAS  Google Scholar 

  • Ortwerth BJ, Speaker JA, Prabhakaram M et al (1994) Ascorbic acid glycation: the reactions of L-threose in lens tissue. Exp Eye Res 58:665–674

    PubMed  CAS  Google Scholar 

  • Ortwerth BJ, Linetsky M, Olesen PR (1995) Ascorbic acid glycation of lens proteins produces UVA sensitizers similar to those in human lens. Photochem Photobiol 62:454–462

    PubMed  CAS  Google Scholar 

  • Ortwerth BJ, Prabhakaram M, Nagaraj RH et al (1997) The relative UV sensitizer activity of purified advanced glycation endproducts. Photochem Photobiol 65:666–672

    PubMed  CAS  Google Scholar 

  • Ortwerth BJ, Chemoganskiy V, Mossine VV et al (2003) The effect of UVA light on the anaerobic oxidation of ascorbic acid and the glycation of lens proteins. Invest Ophthalmol Vis Sci 44:3094–3102

    PubMed  Google Scholar 

  • Ortwerth BJ, Bhattacharyya J, Shipova E (2009) Tryptophan metabolites from young human lenses and the photooxidation of ascorbic acid by UVA light. Invest Ophthalmol Vis Sci 50:3311–3319

    PubMed  Google Scholar 

  • Oturai PS, Christensen M, Rolin B et al (2000) Effects of advanced glycation end-product inhibition and cross-link breakage in diabetic rats. Metabolism 49:996–1000

    PubMed  CAS  Google Scholar 

  • Padayatti PS, Ng AS, Uchida K et al (2001) Argpyrimidine, a blue fluorophore in human lens proteins: high levels in brunescent cataractous lenses. Invest Ophthalmol Vis Sci 42:1299–1304

    PubMed  CAS  Google Scholar 

  • Padival S, Nagaraj RH (2006) Pyridoxamine inhibits Maillard reactions in diabetic rat lenses. Ophthalmic Res 38:294–302

    PubMed  CAS  Google Scholar 

  • Parikh RS, Parikh SR, Sekhar GC et al (2007) Normal age-related decay of retinal nerve fiber layer thickness. Ophthalmology 114:921–926

    PubMed  Google Scholar 

  • Perry RE, Swamy MS, Abraham EC (1987) Progressive changes in lens crystallin glycation and high-molecular-weight aggregate formation leading to cataract development in streptozotocin-diabetic rats. Exp Eye Res 44:269–282

    PubMed  CAS  Google Scholar 

  • Prabhakaram M, Ortwerth BJ (1992) The glycation and cross-linking of isolated lens crystallins by ascorbic acid. Exp Eye Res 55:451–459

    PubMed  CAS  Google Scholar 

  • Prabhakaram M, Katz ML, Ortwerth BJ (1996) Glycation mediated crosslinking between alpha-crystallin and MP26 in intact lens membranes. Mech Ageing Dev 91:65–78

    PubMed  CAS  Google Scholar 

  • Puttaiah S, Zhang Y, Pilch HA et al (2006) Detection of dideoxyosone intermediates of glycation using a monoclonal antibody: characterization of major epitope structures. Arch Biochem Biophys 446:186–196

    PubMed  CAS  Google Scholar 

  • Puttaiah S, Biswas A, Staniszewska M et al (2007) Methylglyoxal inhibits glycation-mediated loss in chaperone function and synthesis of pentosidine in alpha-crystallin. Exp Eye Res 84:914–921

    PubMed  CAS  Google Scholar 

  • Reddy S, Bichler J, Wells-Knecht KJ et al (1995) N epsilon-(carboxymethyl)lysine is a dominant advanced glycation end product (AGE) antigen in tissue proteins. Biochemistry 34:10872–10878

    PubMed  CAS  Google Scholar 

  • Reddy VP, Garrett MR, Perry G, et al (2005) Carnosine: a versatile antioxidant and antiglycating agent. Sci Aging Knowl Environ 2005 (18):pe12 (review)

  • Ren XY, Li YN, Qi JS et al (2008) Peroxynitrite-induced protein nitration contributes to liver mitochondrial damage in diabetic rats. J Diabetes Complicat 22:357–364

    PubMed  Google Scholar 

  • Schlotterer A, Kukudov G, Bozorgmehr F et al (2009) C. elegans as model for the study of high glucose-mediated life span reduction. Diabetes 58:2450–2456

    PubMed  CAS  Google Scholar 

  • Schutt F, Bergmann M, Holz FG et al (2003) Proteins modified by malondialdehyde, 4-hydroxynonenal, or advanced glycation end products in lipofuscin of human retinal pigment epithelium. Invest Ophthalmol Vis Sci 44:3663–3668

    PubMed  Google Scholar 

  • Sell DR, Monnier VM (1989) Structure elucidation of a senescence cross-link from human extracellular matrix. Implication of pentoses in the aging process. J Biol Chem 264:21597–21602

    PubMed  CAS  Google Scholar 

  • Sell DR, Monnier VM (1995) Aging of long-lived proteins: extracellular matrix (collagens, elastins, proteoglycans) and lens crystallins. Handbook of physiology section II aging. American Physiological Society, New York, pp 235–305

  • Sell DR, Monnier VM (2004) Conversion of arginine into ornithine by advanced glycation in senescent human collagen and lens crystallins. J Biol Chem 279:54173–54184

    PubMed  CAS  Google Scholar 

  • Sell DR, Lane MA, Obrenovich ME et al (2003) The effect of caloric restriction on glycation and glycoxidation in skin collagen of nonhuman primates. J Gerontol Biol Sci 58A:508–516

    CAS  Google Scholar 

  • Sell DR, Biemel KM, Reihl O et al (2005) Glucosepane is a major protein cross-link of the senescent human extracellular matrix Relationship with diabetes. J Biol Chem 280:12310–12315

    PubMed  CAS  Google Scholar 

  • Selwood T, Thornalley PJ (1993) Binding of methylglyoxal to albumin and formation of fluorescent adducts. Inhibition by arginine, N-alpha-acetylarginine and aminoguanidine. Biochem Soc Trans 21:170S

    Google Scholar 

  • Shamsi FA, Nagaraj RH (1999) Immunochemical detection of dicarbonyl-derived imidazolium protein crosslinks in human lenses. Curr Eye Res 19:276–284

    PubMed  CAS  Google Scholar 

  • Shamsi FA, Sharkey E, Creighton D et al (2000) Maillard reactions in lens proteins: methylglyoxal-mediated modifications in the rat lens. Exp Eye Res 70:369–380

    PubMed  CAS  Google Scholar 

  • Sharma KK, Santhoshkumar P (2009) Lens aging: effects of crystallins. Biochim Biophys Acta 1790:1095–1108

    PubMed  CAS  Google Scholar 

  • Shinohara M, Thornalley PJ, Giardino I et al (1998) Overexpression of glyoxalase-I in bovine endothelial cells inhibits intracellular advanced glycation endproduct formation and prevents hyperglycemia-induced increases in macromolecular endocytosis. J Clin Invest 101:1142–1147

    PubMed  CAS  Google Scholar 

  • Shipanova IN, Glomb MA, Nagaraj RH (1997) Protein modification by methylglyoxal: chemical nature and synthetic mechanism of a major fluorescent adduct. Arch Biochem Biophys 344:29–36

    PubMed  CAS  Google Scholar 

  • Shui YB, Beebe DC (2008) Age-dependent control of lens growth by hypoxia. Invest Ophthalmol Vis Sci 49:1023–1029

    PubMed  Google Scholar 

  • Slight SH, Feather MS, Ortwerth BJ (1990) Glycation of lens proteins by the oxidation products of ascorbic acid. Biochim Biophys Acta 1038:367–374

    PubMed  CAS  Google Scholar 

  • Staniszewska MM, Nagaraj RH (2006) Upregulation of glyoxalase I fails to normalize methylglyoxal levels: a possible mechanism for biochemical changes in diabetic mouse lenses. Mol Cell Biochem 288:29–36

    PubMed  CAS  Google Scholar 

  • Stitt AW (2010) AGEs and diabetic retinopathy. Invest Ophthalmol Vis Sci 51:4867–4874

    Google Scholar 

  • Stitt AW, Moore JE, Sharkey JA et al (1998) Advanced glycation end products in vitreous: Structural and functional implications for diabetic vitreopathy. Invest Ophthalmol Vis Sci 39:2517–2523

    PubMed  CAS  Google Scholar 

  • Stitt AW, Gardiner TA, Alderson NL et al (2002a) The AGE inhibitor pyridoxamine inhibits development of retinopathy in experimental diabetes. Diabetes 51:2826–2832

    PubMed  CAS  Google Scholar 

  • Stitt AW, Jenkins AJ, Cooper ME (2002b) Advanced glycation end products and diabetic complications. Expert Opin Investig Drugs 11:1205–1223

    PubMed  Google Scholar 

  • Suarez G (1989) Nonenzymatic browning of proteins and the sorbitol pathway. Prog Clin Biol Res 304:141–162

    PubMed  CAS  Google Scholar 

  • Suarez G, Rajaram R, Bhuyan KC et al (1988) Administration of an aldose reductase inhibitor induces a decrease of collagen fluorescence in diabetic rats. J Clin Invest 82:624–627

    PubMed  CAS  Google Scholar 

  • Swamy MS, Abraham EC (1987) Lens protein composition, glycation and high molecular weight aggregation in aging rats. Invest Ophthalmol Vis Sci 28:1693–1701

    PubMed  CAS  Google Scholar 

  • Swamy-Mruthinti S, Green K, Abraham EC (1996) Inhibition of cataracts in moderately diabetic rats by aminoguanidine. Exp Eye Res 62:505–510

    PubMed  CAS  Google Scholar 

  • Swamy-Mruthinti S, Shaw SM, Zhao HR et al (1999) Evidence of a glycemic threshold for the development of cataracts in diabetic rats. Curr Eye Res 18:423–429

    PubMed  CAS  Google Scholar 

  • Szwergold BS, Howell S, Beisswenger PJ (2001) Human fructosamine-3-kinase: purification, sequencing, substrate specificity, and evidence of activity in vivo. Diabetes 50:2139–2147

    PubMed  CAS  Google Scholar 

  • Takemoto L, Boyle D (1998) The possible role of alpha-crystallins in human senile cataractogenesis. Int J Biol Macromol 22:331–337

    PubMed  CAS  Google Scholar 

  • Takeuchi M, Yamagishi S (2008) Possible involvement of advanced glycation end-products (AGEs) in the pathogenesis of Alzheimer’s disease. Curr Pharm Des 14:973–978

    PubMed  CAS  Google Scholar 

  • Taylor A, Zuiliani AM, Hopkin RE (1989) Moderate caloric restriction delays cataract formation in the Emory mouse. FASEB J 3:1741–1776

    PubMed  CAS  Google Scholar 

  • Tessier F, Moreaux V, Birlouez-Aragon I et al (1998) Decrease in vitamin C concentration in human lenses during cataract progression. Int J Vitam Nutr Res 68:309–315

    PubMed  CAS  Google Scholar 

  • Tessier F, Obrenovich M, Monnier VM (1999) Structure and mechanism of formation of human lens fluorophore LM-1. Relationship to vesperlysine A and the advanced Maillard reaction in aging, diabetes, and cataractogenesis. J Biol Chem 274:20796–20804

    PubMed  CAS  Google Scholar 

  • Tezel G, Luo C, Yang X (2007) Accelerated aging in glaucoma: immunohistochemical assessment of advanced glycation end products in the human retina and optic nerve head. Invest Ophthalmol Vis Sci 48:1201–1211

    PubMed  Google Scholar 

  • Thampi P, Hassan A, Smith JB et al (2002) Enhanced C-terminal truncation of alphaA- and alphaB-crystallins in diabetic lenses. Invest Ophthalmol Vis Sci 43:3265–3272

    PubMed  Google Scholar 

  • Thornalley PJ (1993) The glyoxalase system in health and disease. Mol Aspects Med 14:287–371

    PubMed  CAS  Google Scholar 

  • Thornalley PJ (1998) Glutathione-dependent detoxification of alpha-oxoaldehydes by the glyoxalase system: involvement in disease mechanisms and antiproliferative activity of glyoxalase I inhibitors. Chem Biol Interact 111–112:137–151

    PubMed  Google Scholar 

  • Thornalley PJ (2005) Dicarbonyl intermediates in the Maillard reaction. Ann N Y Acad Sci 1043:111–117

    PubMed  CAS  Google Scholar 

  • Thornalley PJ, Minhas HS (1999) Rapid hydrolysis and slow alpha, beta-dicarbonyl cleavage of an agent proposed to cleave glucose-derived protein cross-links. Biochem Pharmacol 57:303–307

    PubMed  CAS  Google Scholar 

  • Tomana M, Prchal JT, Garner LC et al (1984) Gas chromatographic analysis of lens monosaccharides. J Lab Clin Med 103:137–142

    PubMed  CAS  Google Scholar 

  • Vasan S, Zhang X, Kapurniotu A et al (1996) An agent cleaving glucose-derived protein crosslinks in vitro and in vivo. Nature 382:275–278

    PubMed  CAS  Google Scholar 

  • Vasan S, Foiles P, Founds H (2003) Therapeutic potential of breakers of advanced glycation end product-protein crosslinks. Arch Biochem Biophys 419:89–96

    PubMed  CAS  Google Scholar 

  • Wilker SC, Chellan P, Arnold BM et al (2001) Chromatographic quantification of argpyrimidine, a methylglyoxal-derived product in tissue proteins: comparison with pentosidine. Anal Biochem 290:353–358

    PubMed  CAS  Google Scholar 

  • Yamada Y, Ishibashi K, Bhutto IA et al (2006) The expression of advanced glycation endproduct receptors in RPE cells associated with basal deposits in human maculas. Exp Eye Res 82:840–848

    PubMed  CAS  Google Scholar 

  • Yamagishi S, Takeuchi M, Inagaki Y et al (2003) Role of advanced glycation end products (AGEs) and their receptor (RAGE) in the pathogenesis of diabetic microangiopathy. Int J Clin Pharmacol Res 23:129–134

    PubMed  CAS  Google Scholar 

  • Yano M, Matsuda S, Bando Y et al (1989) Lens protein glycation and the subsequent degree of opacity in streptozotocin-diabetic rats. Diabetes Res Clin Pract 7:259–262

    PubMed  CAS  Google Scholar 

  • Yao D, Taguchi T, Matsumura T et al (2007) High glucose increases angiopoietin-2 transcription in microvascular endothelial cells through methylglyoxal modification of mSin3A. J Biol Chem 282:31038–31045

    PubMed  CAS  Google Scholar 

  • Zhang X, Lai Y, McCance DR et al (2008) Evaluation of N(epsilon)-(3-formyl-3,4-dehydropiperidino) lysine as a novel biomarker for severe diabetic retinopathy. Diabetologia 51:1723–1730

    Google Scholar 

  • Zhou J, Cai B, Jang YP et al (2005) Mechanisms for the induction of HNE- MDA- and AGE-adducts, RAGE and VEGF in retinal pigment epithelial cells. Exp Eye Res 80:567–580

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Studies in Dr. Nagaraj’s laboratory were supported by grants from the National Institutes of Health, Research to Prevent Blindness, New York, and Ohio Lions Eye Research Foundation. Dr. Stitt’s laboratory was supported by Action Medical Research, Juvenile Diabetes Research Foundation (New York), Fight for Sight (UK) and the Medical Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram H. Nagaraj.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagaraj, R.H., Linetsky, M. & Stitt, A.W. The pathogenic role of Maillard reaction in the aging eye. Amino Acids 42, 1205–1220 (2012). https://doi.org/10.1007/s00726-010-0778-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-010-0778-x

Keywords

Navigation