Skip to main content

Advertisement

Log in

AGEs, RAGE, and Diabetic Retinopathy

  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Diabetic retinopathy is a major diabetic complication with a highly complex etiology. Although there are many pathways involved, it has become established that chronic exposure of the retina to hyperglycemia gives rise to accumulation of advanced glycation end products (AGEs) that play an important role in retinopathy. In addition, the receptor for AGEs (RAGE) is ubiquitously expressed in various retinal cells and is upregulated in the retinas of diabetic patients, resulting in activation of pro-oxidant and proinflammatory signaling pathways. This AGE-RAGE axis appears to play a central role in the sustained inflammation, neurodegeneration, and retinal microvascular dysfunction occurring during diabetic retinopathy. The nature of AGE formation and RAGE signaling bring forward possibilities for therapeutic intervention. The multiple components of the AGE-RAGE axis, including signal transduction, formation of ligands, and the end-point effectors, may be promising targets for strategies to treat diabetic retinopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Stitt AW. AGEs and diabetic retinopathy. Invest Ophthalmol Vis Sci. 2010;51:4867–74.

    Article  PubMed  Google Scholar 

  2. Zhang X, Saaddine JB, Chou CF, et al. Prevalence of diabetic retinopathy in the United States, 2005–2008. JAMA. 2010;304:649–56.

    Article  PubMed  CAS  Google Scholar 

  3. Mohamed Q, Gillies MC, Wong TY. Management of diabetic retinopathy: a systematic review. JAMA. 2007;298:902–16.

    Article  PubMed  CAS  Google Scholar 

  4. Mannervik B. Molecular enzymology of the glyoxalase system. Drug Metabol Drug Interact. 2008;23:13–27.

    Article  PubMed  CAS  Google Scholar 

  5. Goldberg T, Cai W, Peppa M, et al. Advanced glycoxidation end products in commonly consumed foods. J Am Diet Assoc. 2004;104:1287–91.

    Article  PubMed  CAS  Google Scholar 

  6. Chao PC, Huang CN, Hsu CC, Yin MC, Guo YR. Association of dietary AGEs with circulating AGEs, glycated LDL, IL-1alpha and MCP-1 levels in type 2 diabetic patients. Eur J Nutr. 2010;49:429–34.

    Article  PubMed  CAS  Google Scholar 

  7. Cai W, Gao QD, Zhu L, Peppa M, He C, Vlassara H. Oxidative stress-inducing carbonyl compounds from common foods: novel mediators of cellular dysfunction. Mol Med. 2002;8:337–46.

    PubMed  CAS  Google Scholar 

  8. Uribarri J, Cai W, Sandu O, Peppa M, Goldberg T, Vlassara H. Diet-derived advanced glycation end products are major contributors to the body’s AGE pool and induce inflammation in healthy subjects. Ann NY Acad Sci. 2005;1043:461–6.

    Article  PubMed  CAS  Google Scholar 

  9. Goh SY, Cooper ME. Clinical review: the role of advanced glycation end products in progression and complications of diabetes. J Clin Endocrinol Metab. 2008;93:1143–52.

    Article  PubMed  CAS  Google Scholar 

  10. Vlassara H. The AGE-receptor in the pathogenesis of diabetic complications. Diab Metab Res Rev. 2001;17:436–43.

    Article  CAS  Google Scholar 

  11. Schmidt AM, Vianna M, Gerlach M, et al. Isolation and characterization of two binding proteins for advanced glycosylation end products from bovine lung which are present on the endothelial cell surface. J Biol Chem. 1992;267:14987–97.

    PubMed  CAS  Google Scholar 

  12. • Kalea AZ, Schmidt AM, Hudson BI. RAGE: a novel biological and genetic marker for vascular disease. Clin Sci (Lond) 2009, 116:621–637. This study has had an important impact because it reviewed the role of RAGE in the pathogenesis of vascular disease and contains all the seminal research in this field.

  13. Osawa M, Yamamoto Y, Munesue S, et al. De-N-glycosylation or G82S mutation of RAGE sensitizes its interaction with advanced glycation endproducts. Biochim Biophys Acta. 2007;1770:1468–74.

    PubMed  CAS  Google Scholar 

  14. Leclerc E, Fritz G, Weibel M, Heizmann CW, Galichet A. S100B and S100A6 differentially modulate cell survival by interacting with distinct RAGE (receptor for advanced glycation end products) immunoglobulin domains. J Biol Chem. 2007;282:31317–31.

    Article  PubMed  CAS  Google Scholar 

  15. Hofmann MA, Drury S, Fu C, et al. RAGE mediates a novel proinflammatory axis: a central cell surface receptor for S100/calgranulin polypeptides. Cell. 1999;97:889–901.

    Article  PubMed  CAS  Google Scholar 

  16. Hudson BI, Carter AM, Harja E, et al. Identification, classification, and expression of RAGE gene splice variants. FASEB J. 2008;22:1572–80.

    Article  PubMed  CAS  Google Scholar 

  17. Falcone C, Emanuele E, D’Angelo A, et al. Plasma levels of soluble receptor for advanced glycation end products and coronary artery disease in nondiabetic men. Arterioscler Thromb Vasc Biol. 2005;25:1032–7.

    Article  PubMed  CAS  Google Scholar 

  18. Zong H, Madden A, Ward M, Mooney MH, Elliott CT, Stitt AW. Homodimerization is essential for the receptor for advanced glycation end products (RAGE)-mediated signal transduction. J Biol Chem. 2010;285:23137–46.

    Article  PubMed  CAS  Google Scholar 

  19. Yan SF, Ramasamy R, Bucciarelli LG, et al. RAGE and its ligands: a lasting memory in diabetic complications? Diab Vasc Dis Res. 2004;1:10–20.

    Article  PubMed  Google Scholar 

  20. Hudson BI, Kalea AZ, Del Mar Arriero M, et al. Interaction of the RAGE cytoplasmic domain with diaphanous-1 is required for ligand-stimulated cellular migration through activation of Rac1 and Cdc42. J Biol Chem. 2008;283:34457–68.

    Article  PubMed  CAS  Google Scholar 

  21. Xu Y, Toure F, Qu W, et al. Advanced glycation end product (AGE)-receptor for AGE (RAGE) signaling and up-regulation of Egr-1 in hypoxic macrophages. J Biol Chem. 2010;285:23233–40.

    Article  PubMed  CAS  Google Scholar 

  22. Takuma K, Fang F, Zhang W, et al. RAGE-mediated signaling contributes to intraneuronal transport of amyloid-beta and neuronal dysfunction. Proc Natl Acad Sci USA. 2009;106:20021–6.

    PubMed  CAS  Google Scholar 

  23. Huttunen HJ, Fages C, Rauvala H. Receptor for advanced glycation end products (RAGE)-mediated neurite outgrowth and activation of NF-kappaB require the cytoplasmic domain of the receptor but different downstream signaling pathways. J Biol Chem. 1999;274:19919–24.

    Article  PubMed  CAS  Google Scholar 

  24. Bianchi R, Kastrisianaki E, Giambanco I, Donato R. S100B protein stimulates microglia migration via RAGE-dependent upregulation of chemokine expression and release. J Biol Chem 2011

  25. Fosmark DS, Bragadottir R, Stene-Johansen I, et al. Increased vitreous levels of hydroimidazolone in type 2 diabetes patients are associated with retinopathy: a case-control study. Acta Ophthalmol Scand. 2007;85:618–22.

    Article  PubMed  CAS  Google Scholar 

  26. Murata T, Nagai R, Ishibashi T, Inomuta H, Ikeda K, Horiuchi S. The relationship between accumulation of advanced glycation end products and expression of vascular endothelial growth factor in human diabetic retinas. Diabetologia. 1997;40:764–9.

    Article  PubMed  CAS  Google Scholar 

  27. Stitt AW, Bhaduri T, McMullen CB, Gardiner TA, Archer DB. Advanced glycation end products induce blood-retinal barrier dysfunction in normoglycemic rats. Mol Cell Biol Res Commun. 2000;3:380–8.

    Article  PubMed  CAS  Google Scholar 

  28. Stitt AW, Curtis TM. Advanced glycation and retinal pathology during diabetes. Pharmacol Rep. 2005;57(Suppl):156–68.

    PubMed  Google Scholar 

  29. Barile GR, Pachydaki SI, Tari SR, et al. The RAGE axis in early diabetic retinopathy. Invest Ophthalmol Vis Sci. 2005;46:2916–24.

    Article  PubMed  Google Scholar 

  30. •• Zong H, Ward M, Madden A, et al.. Hyperglycaemia-induced pro-inflammatory responses by retinal Muller glia are regulated by the receptor for advanced glycation end-products (RAGE). Diabetologia 2010, 53:2656–2666. This paper demonstrated that RAGE interaction with its ligands plays an important role in retinal glial dysfunction during diabetic retinopathy. RAGE and its ligand S100B were induced by hyperglycemia in Müller glia, in vitro and in vivo. The early induction of S100B/RAGE expression by hyperglycemia in Muller glia results in the elevated levels of proinflammatory cytokines including VEGF and MCP-1, which are key mediators for diabetic retinopathy. This response can be attenuated by sRAGE or RAGE small interfering RNA, implicating the critical role of RAGE in the initiation of diabetic retinopathy.

  31. • Yao D, Brownlee M. Hyperglycemia-induced reactive oxygen species increase expression of the receptor for advanced glycation end products (RAGE) and RAGE ligands. Diabetes 2010, 59:249–255. This paper is important because it evaluated the induction of RAGE and its ligands, S100A8, S100A12, and HMGB1, in human aortic endothelial cells and indicated modulation by ROS. This suggests that ROS cannot only be induced as the end point of RAGE activation, but also act as a positive feedback of RAGE-mediated proinflammatory signaling.

  32. Fletcher EL, Phipps JA, Ward MM, Puthussery T, Wilkinson-Berka JL. Neuronal and glial cell abnormality as predictors of progression of diabetic retinopathy. Curr Pharm Des. 2007;13:2699–712.

    Article  PubMed  CAS  Google Scholar 

  33. Hirata C, Nakano K, Nakamura N, et al. Advanced glycation end products induce expression of vascular endothelial growth factor by retinal Muller cells. Biochem Biophys Res Commun. 1997;236:712–15.

    Article  PubMed  CAS  Google Scholar 

  34. Lieth E, Barber AJ, Xu B, et al. Glial reactivity and impaired glutamate metabolism in short-term experimental diabetic retinopathy. Penn State Retina Research Group. Diabetes. 1998;47:815–20.

    Article  PubMed  CAS  Google Scholar 

  35. Curtis TM, Hamilton R, Yong PH, et al. Muller glial dysfunction during diabetic retinopathy in rats is linked to accumulation of advanced glycation end-products and advanced lipoxidation end-products. Diabetologia. 2011;54:690–8.

    Article  PubMed  CAS  Google Scholar 

  36. Donato R. S100: a multigenic family of calcium-modulated proteins of the EF-hand type with intracellular and extracellular functional roles. Int J Biochem Cell Biol. 2001;33:637–68.

    Article  PubMed  CAS  Google Scholar 

  37. Mills CD, Kincaid K, Alt JM, Heilman MJ, Hill AM. M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol. 2000;164:6166–73.

    PubMed  CAS  Google Scholar 

  38. Schalkwijk CG, Ligtvoet N, Twaalfhoven H, et al. Amadori albumin in type 1 diabetic patients: correlation with markers of endothelial function, association with diabetic nephropathy, and localization in retinal capillaries. Diabetes. 1999;48:2446–53.

    Article  PubMed  CAS  Google Scholar 

  39. Moore TC, Moore JE, Kaji Y, et al. The role of advanced glycation end products in retinal microvascular leukostasis. Invest Ophthalmol Vis Sci. 2003;44:4457–64.

    Article  PubMed  Google Scholar 

  40. Chen BH, Jiang DY, Tang LS. Advanced glycation end-products induce apoptosis involving the signaling pathways of oxidative stress in bovine retinal pericytes. Life Sci. 2006;79:1040–8.

    Article  PubMed  CAS  Google Scholar 

  41. Foulds WS. The choroidal circulation and retinal metabolism–an overview. Eye (Lond). 1990;4(Pt 2):243–8.

    Google Scholar 

  42. Lu M, Kuroki M, Amano S, et al. Advanced glycation end products increase retinal vascular endothelial growth factor expression. J Clin Invest. 1998;101:1219–24.

    Article  PubMed  CAS  Google Scholar 

  43. Yamagishi S, Nakamura K, Matsui T, et al. Pigment epithelium-derived factor inhibits advanced glycation end product-induced retinal vascular hyperpermeability by blocking reactive oxygen species-mediated vascular endothelial growth factor expression. J Biol Chem. 2006;281:20213–20.

    Article  PubMed  CAS  Google Scholar 

  44. Sheikpranbabu S, Haribalaganesh R, Lee KJ, Gurunathan S. Pigment epithelium-derived factor inhibits advanced glycation end products-induced retinal vascular permeability. Biochimie. 2010;92:1040–51.

    Article  PubMed  CAS  Google Scholar 

  45. Nitti M, Furfaro AL, Traverso N, et al. PKC delta and NADPH oxidase in AGE-induced neuronal death. Neurosci Lett. 2007;416:261–5.

    Article  PubMed  CAS  Google Scholar 

  46. Wang Y, Vom Hagen F, Pfister F, et al. Receptor for advanced glycation end product expression in experimental diabetic retinopathy. Ann NY Acad Sci. 2008;1126:42–5.

    Article  PubMed  CAS  Google Scholar 

  47. Hammes HP, Martin S, Federlin K, Geisen K, Brownlee M. Aminoguanidine treatment inhibits the development of experimental diabetic retinopathy. Proc Natl Acad Sci USA. 1991;88:11555–8.

    Article  PubMed  CAS  Google Scholar 

  48. Canning P, Glenn JV, Hsu DK, Liu FT, Gardiner TA, Stitt AW. Inhibition of advanced glycation and absence of galectin-3 prevent blood-retinal barrier dysfunction during short-term diabetes. Exp Diabetes Res. 2007;2007:51837.

    PubMed  Google Scholar 

  49. Yatoh S, Mizutani M, Yokoo T, et al. Antioxidants and an inhibitor of advanced glycation ameliorate death of retinal microvascular cells in diabetic retinopathy. Diabetes Metab Res Rev. 2006;22:38–45.

    Article  PubMed  CAS  Google Scholar 

  50. Bhatwadekar A, Glenn JV, Figarola JL, et al. A new advanced glycation inhibitor, LR-90, prevents experimental diabetic retinopathy in rats. Br J Ophthalmol. 2008;92:545–7.

    Article  PubMed  CAS  Google Scholar 

  51. Kaji Y, Usui T, Ishida S, et al. Inhibition of diabetic leukostasis and blood-retinal barrier breakdown with a soluble form of a receptor for advanced glycation end products. Invest Ophthalmol Vis Sci. 2007;48:858–65.

    Article  PubMed  Google Scholar 

  52. Chen Y, Akirav EM, Chen W, et al. RAGE ligation affects T cell activation and controls T cell differentiation. J Immunol. 2008;181:4272–8.

    PubMed  CAS  Google Scholar 

  53. Sabbagh MN, Agro A, Bell J, Aisen PS, Schweizer E, Galasko D. PF-04494700, an Oral Inhibitor of Receptor for Advanced Glycation End Products (RAGE), in Alzheimer Disease. Alzheimer Dis Assoc Disord 2010

  54. Yamamoto K, Kitayama W, Denda A, Sasahira T, Kuniyasu H, Kirita T. Expression of receptor for advanced glycation end products during rat tongue carcinogenesis by 4-nitroquinoline 1-oxide and effect of a selective cyclooxygenase-2 inhibitor, etodolac. Pathobiology. 2006;73:317–24.

    Article  PubMed  CAS  Google Scholar 

  55. Yamagishi S, Matsui T, Nakamura K, et al. Olmesartan blocks inflammatory reactions in endothelial cells evoked by advanced glycation end products by suppressing generation of reactive oxygen species. Ophthalmic Res. 2008;40:10–5.

    Article  PubMed  CAS  Google Scholar 

  56. Marx N, Walcher D, Ivanova N, et al. Thiazolidinediones reduce endothelial expression of receptors for advanced glycation end products. Diabetes. 2004;53:2662–8.

    Article  PubMed  CAS  Google Scholar 

  57. Yamagishi S, Takeuchi M. Nifedipine inhibits gene expression of receptor for advanced glycation end products (RAGE) in endothelial cells by suppressing reactive oxygen species generation. Drugs Exp Clin Res. 2004;30:169–75.

    PubMed  CAS  Google Scholar 

  58. Praidou A, Androudi S, Brazitikos P, Karakiulakis G, Papakonstantinou E, Dimitrakos S. Angiogenic growth factors and their inhibitors in diabetic retinopathy. Curr Diabetes Rev. 2010;6:304–12.

    Article  PubMed  CAS  Google Scholar 

  59. Abdallah W, Fawzi AA. Anti-VEGF therapy in proliferative diabetic retinopathy. Int Ophthalmol Clin. 2009;49:95–107.

    Article  PubMed  Google Scholar 

  60. Gaudreault J, Fei D, Rusit J, Suboc P, Shiu V. Preclinical pharmacokinetics of Ranibizumab (rhuFabV2) after a single intravitreal administration. Invest Ophthalmol Vis Sci. 2005;46:726–33.

    Article  PubMed  Google Scholar 

  61. Ferrara N, Hillan KJ, Gerber HP, Novotny W. Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov. 2004;3:391–400.

    Article  PubMed  CAS  Google Scholar 

  62. Arevalo JF, Maia M, Flynn Jr HW, et al. Tractional retinal detachment following intravitreal bevacizumab (Avastin) in patients with severe proliferative diabetic retinopathy. Br J Ophthalmol. 2008;92:213–16.

    Article  PubMed  CAS  Google Scholar 

  63. Zhao LQ, Zhu H, Zhao PQ, Hu YQ. A systematic review and meta-analysis of clinical outcomes of vitrectomy with or without intravitreal bevacizumab pretreatment for severe diabetic retinopathy. Br J Ophthalmol 2011.

  64. Kim OS, Kim J, Kim CS, Kim NH, Kim JS. KIOM-79 prevents methyglyoxal-induced retinal pericyte apoptosis in vitro and in vivo. J Ethnopharmacol. 2010;129:285–92.

    Article  PubMed  Google Scholar 

  65. Wang Q, Pfister F, Dorn-Beineke A, et al. Low-dose erythropoietin inhibits oxidative stress and early vascular changes in the experimental diabetic retina. Diabetologia. 2010;53:1227–38.

    Article  PubMed  CAS  Google Scholar 

  66. Yamagishi S, Nakamura K, Matsui T, Takeuchi M. Minodronate, a nitrogen-containing bisphosphonate, is a promising remedy for treating patients with diabetic retinopathy. Med Hypotheses. 2006;66:273–5.

    Article  PubMed  CAS  Google Scholar 

  67. Kowluru RA, Kanwar M, Chan PS, Zhang JP. Inhibition of retinopathy and retinal metabolic abnormalities in diabetic rats with AREDS-based micronutrients. Arch Ophthalmol. 2008;126:1266–72.

    Article  PubMed  Google Scholar 

Download references

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan W. Stitt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zong, H., Ward, M. & Stitt, A.W. AGEs, RAGE, and Diabetic Retinopathy. Curr Diab Rep 11, 244–252 (2011). https://doi.org/10.1007/s11892-011-0198-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11892-011-0198-7

Keywords

Navigation