Skip to main content

Wheat–Barley Hybrids and Introgression Lines

  • Chapter
Alien Introgression in Wheat

Abstract

Bread wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) are two of the most important cultivated cereals worldwide. Barley has several agronomic characters (e.g. earliness, tolerance to drought or soil salinity, various quality parameters) which it would be desirable to transfer into wheat. The first step in alien gene transfer via chromosome manipulation is the production of interspecific or intergeneric hybrids. One of the major limitations for successful gene transfer from barley into wheat is the low crossability between these species. Successful hybridizations and the production of barley introgressions have taken place over the last few decades, making it possible to overcome some of the difficulties. An overview is given here of wheat × barley hybridizations using Hordeum vulgare L. and other Hordeum species, including the development of hybrids and introgressions with various barley cultivars. The meiotic pairing behaviour of hybrids is presented, with special emphasis on the monitoring of wheat–barley homoeologous pairing by means of molecular cytogenetic methods. The effect of in vitro multiplication on the genome composition of intergeneric hybrids is discussed, and the agronomical traits (β-glucan content, earliness, salt tolerance, etc.) of the newly developed introgression lines are presented. The exploitation and possible use of wheat/barley introgression lines in the most up-to-date molecular genetic studies (transcriptome analysis, sequencing of flow-sorted chromosomes) are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allendorf DJ, Yan J, Ross GD, Hansen RD, Baran JT, Subbarao K, Wang L, Haribabu B (2005) C5a-mediated leukotriene B4-amplified neutrophil chemotaxis is essential in tumor immunotherapy facilitated by anti-tumor monoclonal antibody and beta-glucan. J Immunol 174:7050–7056

    Article  CAS  PubMed  Google Scholar 

  • Aranyi NR, Molnár-Láng M, Hoffmann S, Hoffmann B (2014a) Phenotypic characterization of wheat-barley ‘Mv9 kr1’/‘Igri’ introgression lines in the field. Plant Breeding 133(6):718–721. doi:10.1111/pbr.12213

    Article  Google Scholar 

  • Aranyi NR, Varga I, Poczai P, Cernák I, Vida G, Molnár-Láng M, Hoffmann B (2014b) What types of powdery mildew can infect wheat-barley introgression lines? Eur J Plant Pathol 139:19–25. doi:10.1007/s10658-014-0382-0

    Article  CAS  Google Scholar 

  • Armstrong KC, Nakamura C, Keller WA (1983) Karyotype instability in tissue culture regenerants of Triticale (× Triticosecale Wittmack) cv. ‘Welsh’ from 6-month-old callus cultures. Z Pflanzenzüch 91:233–245

    Google Scholar 

  • Ashida T, Nasuda S, Sato K, Endo TR (2007) Dissection of barley chromosome 5H in common wheat. Genes Genet Syst 82:123–133. doi:10.1266/ggs.82.123

    Article  CAS  PubMed  Google Scholar 

  • Bai D, Knott DR (1993) The effects of level of 2,4-D and time in culture on regeneration rate and chromosome numbers of regenerants from calli of the hybrid Triticum aestivum cv. Chinese Spring ph1b × Thinopyrum ponticum (2n = 10x = 70). Genome 36:166–172. doi:10.1139/g93-022

    Article  CAS  PubMed  Google Scholar 

  • Barcelo P, Hagel C, Becker D, Martín A, Lörz H (1994) Transgenic cereal (tritordeum) plants obtained at high efficiency by microprojectile bombardment of inflorescence tissue. Plant J 5:583–592. doi:10.1007/s11627-997-0003-0

    Article  CAS  PubMed  Google Scholar 

  • Barclay IR (1975) High frequencies of haploid production in wheat (Triticum aestivum) by chromosome elimination. Nature (London) 256:410–411. doi:10.1038/256410a0

    Article  Google Scholar 

  • Bilgic H, Cho S, Garvin DF, Muehlbauer GJ (2007) Mapping barley genes to chromosome arms by transcript profiling of wheat-barley ditelosomic chromosome addition lines. Genome 50:898–906. doi:10.1139/G07-059

    Article  CAS  PubMed  Google Scholar 

  • Blanco A, Fracchiolla GV, Greco B (1986) Intergeneric wheat × barley hybrid. J Hered 77:98–100

    Google Scholar 

  • Bothmer R, von Flink J, Landström T (1986) Meiosis in interspecific Hordeum hybrids. I. Diploid combinations. Can J Genet Cytol 28:525–535. doi:10.1139/g86-077

    Article  Google Scholar 

  • Bothmer R, von Flink J, Landström T (1987) Meiosis in interspecific Hordeum hybrids. II. Triploid hybrids. Evol Trends Plants 1:41–50

    Google Scholar 

  • Burton RA, Jobling SA, Harvey AJ, Shirley NJ, Mather DE, Bacic A, Fincher GB (2008) The genetics and transcriptional profiles of the cellulose synthase-like HvCSLF gene family in barley. Plant Physiol 146:1821–1833. doi:10.1104/pp. 107.114694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cabrera A, Friebe B, Jiang J, Gill BS (1995) Characterization of Hordeum chilense chromosomes by C-banding and in situ hybridization using highly repeated DNA probes. Genome 38:435–442. doi:10.1139/g95-057

    Article  CAS  PubMed  Google Scholar 

  • Chang SB, de Jong H (2005) Production of alien chromosome additions and their utility in plant genetics. Cytogenet Genome Res 109:335–343. doi:10.1159/000082417

    Article  CAS  PubMed  Google Scholar 

  • Chapman V, Miller TE (1978) The amphiploid of Hordeum chilense × Triticum aestivum. Cereal Res Commun 6:351–352

    Google Scholar 

  • Cho S, Garvin DF, Muehlbauer GJ (2006) Transcriptome analysis and physical mappping of barley genes in wheat-barley addition lines. Genetics 172:1277–1285. doi:10.1534/genetics.105.049908

    Article  PubMed  PubMed Central  Google Scholar 

  • Chu CC, Sun CS, Chen X, Zhang WX, Du ZH (1984) Somatic embryogenesis and plant regeneration in callus from inflorescences of Hordeum vulgare × Triticum aestivum hybrids. Theor Appl Genet 68:375–379. doi:10.1007/BF00267892

    Article  CAS  PubMed  Google Scholar 

  • Clauss E (1980) Trigeneric hybrids between barley, wheat and rye. Cereal Res Commun 2:341–347

    Google Scholar 

  • Clauss E (1983) Bastarde aus Hordeum geniculatum all Und Triticum aestivum L. Arch Züchtungf 13:413–418

    Google Scholar 

  • Colmer TD, Flowers TJ, Munns R (2006) Use of wild relatives to improve salt tolerance in wheat. J Exp Bot 57:1059–1078

    Article  CAS  PubMed  Google Scholar 

  • Cseh A, Kruppa K, Molnár I, Rakszegi M, Doležel J, Molnár-Láng M (2011) Characterization of a new 4BS.7HL wheat-barley translocation line using GISH, FISH, and SSR markers and its effect on the β-glucan content of wheat. Genome 54:795–804. doi:10.1139/g11-044

    Article  CAS  PubMed  Google Scholar 

  • Cseh A, Soós V, Rakszegi M, Türkösi E, Balázs E, Molnár-Láng M (2013) Expression of HvCslF9 and HvCslF6 barley genes in the genetic background of wheat and their influence on the wheat β-glucan content. Ann Appl Biol 163:142–150

    Article  CAS  Google Scholar 

  • Cubero JI, Martín A, Millan T, Gomez-Cabrera A, De Haro A (1986) Tritordeum: a new alloploid of potential importance as a protein source crop. Crop Sci 26:1186–1190

    Article  CAS  Google Scholar 

  • Dahleen LS (1999) Tissue culture increases meiotic pairing of regenerants from barley × Canada wild rye hybrids. J Hered 90:265–269. doi:10.1093/jhered/90.2.265

    Article  Google Scholar 

  • Darkó É, Barnabás B, Molnár-Láng M (2012) Characterization of newly developed wheat/barley introgression lines in respect of aluminium tolerance. Am J Plant Sci 3:1462–1469. doi:10.4236/ajps.2012.310176

    Article  CAS  Google Scholar 

  • Darkó É, Janda T, Majláth I, Szopkó D, Dulai S, Molnár I, Türkösi E, Molnár-Láng M (2015) Salt stress response of wheat-barley addition lines carrying chromosomes from the winter barley "Manas”. Euphytica 203:491–504 doi:10.1007/s10681-014-1245-7

    Article  Google Scholar 

  • Dewey DR (1984) The genomic system of classification as a guide to intergeneric hybridization with the perennial Triticeae. In: Gustafson JP (ed) Gene manipulation in plant improvement. Plenum, New York, NY, pp 209–279

    Chapter  Google Scholar 

  • Doležel J, Kubaláková M, Bartoš J, Macas J (2005) Chromosome flow sorting and physical mapping. In: Khalid M, Günter K (eds) The handbook of plant genome mapping: genetic and physical mapping. Wiley-VCH, Berlin, pp 151–171. doi:10.1002/3527603514.ch7

    Chapter  Google Scholar 

  • Doré C, Cauderon Y, Chueca MC (1988) Inflorescence culture of Triticum aestivum × Secale cereale hybrids: production, characterization and cytogenetic analysis of regenerated plants. Genome 30:511–518. doi:10.1139/g88-086

    Google Scholar 

  • Endo TR (2007) The gametocidal chromosome as a tool for chromosome manipulation in wheat. Chromosome Res 15:67–75. doi:10.1007/s10577-006-1100-3

    Article  CAS  PubMed  Google Scholar 

  • Endo TR (2009) Cytological dissection of barley genome by the gametocidal system. Breed Sci 59:481–486. doi:10.1270/jsbbs.59.481

    Article  Google Scholar 

  • Farkas A, Molnár I, Kiss T, Karsai I, Molnár-Láng M (2014) Effect of added barley chromosomes on the flowering time of new wheat/winter barley addition lines in various environments. Euphytica 195:45–55. doi:10.1007/s10681-013-0970-7

    Article  Google Scholar 

  • Fedak G (1977) Increased homoeologous chromosome pairing in Hordeum vulgare × Triticum aestivum hybrids. Nature 266:529–530. doi:10.1038/266529a0

    Article  Google Scholar 

  • Fedak G (1980) Production, morphology and meiosis of reciprocal barley-wheat hybrids. Can J Genet Cytol 22:117–123. doi:10.1139/g80-014

    Article  Google Scholar 

  • Fedak G (1983) Hybrids between Hordeum pubiflorum and Triticum aestivum. Barley Genet Newsl 13:59

    Google Scholar 

  • Fedak G (1985) Propagation of intergeneric hybrids of Triticeae through callus culture of immature inflorescence. Z Pflanzenzüch 94:1–7

    Google Scholar 

  • Fedak G, Grainger J (1986) Chromosome instability in somaclones of a Triticum aestivum × Hordeum vulgare hybrid. Can J Genet Cytol 28:618–623. doi:10.1139/g86-090

    Article  Google Scholar 

  • Fedak G, Jui PY (1982) Chromosomes of Chinese Spring wheat carrying genes for crossability with Betzes barley. Can J Genet Cytol 24:227–233

    Article  Google Scholar 

  • Fedak G, Armstrong KC, Handyside RJ (1987) Chromosome instability in wheat plants regenerated from suspension culture. Genome 29:627–629. doi:10.1139/g87-104

    Article  Google Scholar 

  • Fernandez JA, Gonzalez JM, Jouve N (1985) Meiotic pairing of the amphiploid Hordeum chilense × Triticum turgidum conv. durum studied by means of Giemsa C-banding technique. Theor Appl Genet 70:85–91. doi:10.1007/BF00264487

    CAS  PubMed  Google Scholar 

  • Fernandez-Escobar J, Martín A (1985) Morphology, cytology and fertility of a trigeneric hybrid from Triticale × Tritordeum. Z Pflanzenzüch 95:311–318

    Google Scholar 

  • Finch RA, Bennett MD (1980) Meiotic and mitotic chromosome behaviour in new hybrids of Hordeum with Triticum and Secale. Heredity 44:201–209. doi:10.1038/hdy.1980.17

    Article  Google Scholar 

  • Gale MD, Miller TE (1987) The introduction of alien genetic variation into wheat. In: Lupton FGH (ed) Wheat breeding: its scientific basis. Chapman and Hall, London, pp 173–210

    Chapter  Google Scholar 

  • Galiba G, Molnár-Láng M, Sutka J (1986) In vitro multiplication of a barley (Hordeum vulgare L.) × wheat (Triticum aestivum L.) hybrid. Növénytermelés 35:481–485

    Google Scholar 

  • Griffiths S, Sharp R, Foote TN, Bertin I, Wanous M, Reader S, Colas I, Moore G (2006) Molecular characterization of Ph1 as a major chromosome pairing locus in polyploid wheat. Nature 439:749–752. doi:10.1038/nature04434

    Article  CAS  PubMed  Google Scholar 

  • Gupta PK, Fedak G (1985) Intergeneric hybrids between Hordeum californicum and Triticum aestivum. J Hered 76:365–368

    Google Scholar 

  • Hart GE, Islam AKMR, Shepherd KW (1980) Use of isozymes as chromosome markers in the isolation and characterization of wheat-barley chromosome addition lines. Genet Res Camb 36:311–325

    Article  CAS  Google Scholar 

  • Henry RJ, Battershell VG, Brennan PS, Onon K (1992) Control of wheat α-amylase using inhibitors from cereals. J Sci Food Agric 58:281–284. doi:10.1002/jsfa.2740580218

    Article  CAS  Google Scholar 

  • Hernandez P, Barcelo P, Lazzeri PA, Lörz H, Martín A, Bohanec B (2001) Agronomic performance of transgenic Tritordeum. Biotechnological approaches for utilisation of gametic cells. COST 824 final meeting, Bled, Slovenia, 1–5 July 2000, pp 199–204

    Google Scholar 

  • Hoffmann B, Aranyi NR, Hoffmann S, Molnár-Láng M (2009) Possibilities to increase stress tolerance of wheat. Cereal Res Commun 37(Suppl):93–96

    Google Scholar 

  • Hoffmann B, Aranyi NR, Molnár-Láng M (2010) Characterization of wheat/barley introgression lines for drought tolerance. Acta Agron Hung 58:211–218

    Article  Google Scholar 

  • Ishihara A, Mizuno N, Islam AKMR, Doležel J, Endo TR, Nasuda S (2014) Dissection of barley chromosomes 1H and 6H by the gametocidal system. Genes Genet Syst 89:203–214

    Article  CAS  PubMed  Google Scholar 

  • Islam AKMR (1983) Ditelosomic additions of barley chromosomes to wheat. In: Sakamoto S (ed) Proceedings of the 6th International Wheat Genet Symposium, Kyoto, Japan, pp 233–238

    Google Scholar 

  • Islam AKMR, Colmer TD (2008) Attempts to transfer salt- and waterlogging tolerances from sea barleygrass (Hordeum marinum Huds.) to wheat. In: Appels R, Eastwood R, Lagudah E, Langridge P, Mackay M, McIntyre L, Sharp P (eds) Proceedings of the 11th international wheat genetics symposium, Brisbane, Australia. Sydney University Press, Brisbane, QLD, pp 336–338

    Google Scholar 

  • Islam AKMR, Shepherd KW (1980) Meiotic restitution in wheat-barley hybrids. Chromosoma 79:363–372. doi:10.1007/BF00327326

    Article  Google Scholar 

  • Islam AKMR, Shepherd KW (1988) Induced pairing between wheat and barley chromosomes. In: Miller TE, Koebner RMD (eds) Proceedings of the 7th International Wheat Genetics Symposium, Cambridge, England, pp 309–314

    Google Scholar 

  • Islam AKMR, Shepherd KW (1990) Incorporation of barley chromosomes into wheat. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry. Volume 13, wheat, vol 13. Springer, Berlin, pp 128–151

    Google Scholar 

  • Islam AKMR, Shepherd KW (1992a) Production of wheat-barley recombinant chromosomes through induced homoeologous pairing. 1. Isolation of recombinants involving barley arms 3HL and 6HL. Theor Appl Genet 83:489–494. doi:10.1007/BF00226538

    Article  CAS  PubMed  Google Scholar 

  • Islam AKMR, Shepherd KW (1992b) Substituting ability of individual barley chromosomes for wheat chromosomes. 1. Substitutions involving barley chromosomes 1, 3 and 6. Plant Breeding 109:141–150. doi:10.1111/j.1439-0523.1992.tb00164.x

    Article  Google Scholar 

  • Islam AKMR, Shepherd KW (1995) Substitution of barley chromosome 4 for group 4 homoelogues of wheat. In: Li ZS, Xin ZY (eds) Proceedings of the 8th International Wheat Genetics Symposium, Beijing, China. China Agricultural Scientech Press, Beijing, pp 141–144, 20–25 July 1993

    Google Scholar 

  • Islam AKMR, Shepherd KW (2000) Isolation of a fertile wheat-barley addition line carrying the entire barley chromosome 1H. Euphytica 111:145–149. doi:10.1023/A:1003822719317

    Article  Google Scholar 

  • Islam AKMR, Shepherd KW, Sparrow DHB (1975) Addition of individual barley chromosomes to wheat. Proceedings of the 3rd International Barley Genetics Symposium, Garching, W. Germany, pp 260–270

    Google Scholar 

  • Islam AKMR, Shepherd KW, Sparrow DHB (1978) Production and characterization of wheat-barley addition lines. In: Ramanujam S (ed) Proceedings of the 11th International Wheat Genetics Symposium, New Delhi, India, pp 356–371

    Google Scholar 

  • Islam AKMR, Shepherd KW, Sparrow DHB (1981) Isolation and characterization of euplasmic wheat-barley chromosome addition lines. Heredity 46:160–174. doi:10.1038/hdy.1981.24

    Article  Google Scholar 

  • Islam S, Malik AI, Islam AKMR, Colmer TD (2007) Salt tolerance in a Hordeum marinum-Triticum aestivum amphiploid and its parents. J Exp Bot 58:1219–1229. doi:10.1093/jxb/erl293

    Article  CAS  PubMed  Google Scholar 

  • Jauhar PP (1995) Morphological and cytological characteristics of some wheat × barley hybrids. Theor Appl Genet 90:872–877. doi:10.1007/BF00222025

    CAS  PubMed  Google Scholar 

  • Jiang J, Dajun L (1987) New HordeumTriticum hybrids. Cereal Res Commun 15:95–99

    Google Scholar 

  • Junming L, Mei Z, Tishu C (1985) Somaclonal variation in intergeneric hybrids of Hordeum vulgare × Triticum aestivum. Acta Genet Sin 12:434–439

    Google Scholar 

  • Kerckhoffs DA, Hornstra G, Mensink RP (2003) Cholesterol-lowering effect of beta-glucan from oat bran in mildly hypercholesterolemic subjects may decrease when beta-glucan is incorporated into bread and cookies. Am J Clin Nutr 78:221–227

    CAS  PubMed  Google Scholar 

  • Kimber G, Sallee PJ (1976) A hybrid between Triticum timopheevii and Hordeum bogdanii. Cereal Res Commun 4:33–37

    Google Scholar 

  • Koba T, Shimada T, Otani M, Niizeki H (1988) Chromosomal and morphological variation in plants regenerated from calli of immature embryos and inflorescences of a barley-wheat hybrid. In: Miller TE, Koebner RMD (eds) Proceedings of the 7th International Wheat Genetics Symposium, Cambridge, UK, pp 757–762

    Google Scholar 

  • Koba T, Handa T, Shimada T (1991) Efficient production of wheat-barley hybrids and preferential elimination of barley chromosomes. Theor Appl Genet 81:285–292. doi:10.1007/BF00228665

    Article  CAS  PubMed  Google Scholar 

  • Koba T, Takumi S, Shimada T (1997) Isolation, identification and characterization of disomic and translocated barley chromosome addition lines of common wheat. Euphytica 96:289–296. doi:10.1023/A:1003081619338

    Article  Google Scholar 

  • Kruppa K, Sepsi A, Szakács É, Röder MS, Molnár-Láng M (2013) Characterization of a 5HS-7DS.7DL wheat-barley translocation line and physical mapping of the 7D chromosome using SSR markers. J Appl Genet. doi:10.1007/s13353-013-0152-2

    Google Scholar 

  • Kruse A (1973) Hordeum × Triticum hybrids. Hereditas 73:157–161. doi:10.1111/j.1601-5223.1973.tb01078.x

    Article  Google Scholar 

  • Larkin PJ, Scowcroft WR (1981) Somaclonal variation – a novel source of variability from cell cultures for plant improvement. Theor Appl Genet 60:197–204. doi:10.1007/BF02342540

    Article  CAS  PubMed  Google Scholar 

  • Lima-Brito J, Guedes Pinto H, Harrison GE, Heslop-Harrison JS (1996) Chromosome identification and nuclear architecture in triticale × tritordeum F1 hybrids. J Exp Bot 47:583–588. doi:10.1093/jxb/47.4.583

    Article  CAS  Google Scholar 

  • Linde-Laursen I, Heslop-Harrison JS, Shepherd KW, Taketa S (1997) The barley genome and its relationship with the wheat genomes. A survey with internationally agreed recommendation for barley chromosome nomenclature. Hereditas 126:1–16. doi:10.1111/j.1601-5223.1997.00001.x

    Article  CAS  Google Scholar 

  • Löve A (1982) Generic evolution of the wheatgrasses. Biol Zentralbl 101:199–212

    Google Scholar 

  • Löve A (1984) Conspectus of the Triticeae. Feddes Repert 95:425–521

    Google Scholar 

  • Malysheva L, Sjakste T, Matzk F, Röder M, Ganal M (2003) Molecular cytogenetic analysis of wheat-barley hybrids using genomic in situ hybridization and barley microsatellite markers. Genome 46:314–322. doi:10.1139/g02-117

    Article  CAS  PubMed  Google Scholar 

  • Martín A, Chapman V (1977) A hybrid between Hordeum chilense and Triticum aestivum. Cereal Res Commun 5–4:365–366

    Google Scholar 

  • Martín A, Cubero JI (1981) The use of Hordeum chilense in cereal breeding. Cereal Res Commun 9:317–323

    Google Scholar 

  • Martín A, Sanchez-Monge Laguna E (1980) A hybrid between Hordeum chilense and Triticum turgidum. Cereal Res Commun 8:349–353

    Google Scholar 

  • Martín A, Sanchez-Monge Laguna E (1982) Cytology and morphology of the amphiploid Hordeum chilense × Triticum turgidum conv. durum. Euphytica 31:261–267. doi:10.1007/BF00028329

    Article  Google Scholar 

  • Martin A, Padilla JA, Fernandez-Escobar J (1987) The amphiploid Hordeum chilense × Triticum aestivum ssp. sphaerococcum. Variability in Octoploid Tritordeum. Plant Breeding 99:336–339

    Article  Google Scholar 

  • Martín A, Rubiales D, Rubio JM, Cabrera A (1995) Hybrids between Hordeum vulgare and tetra- hexa-, and octoploid tritordeums (amphiploid H. chilense × Triticum ssp.). Hereditas (Lund) 123:175–182. doi:10.1111/j.1601-5223.1995.00175.x

    Article  Google Scholar 

  • Martín AC, Atienza SG, Ramirez MC, Barro F, Martín A (2009) Chromosome engineering in wheat to restore male fertility in the msH1 CMS system. Mol Breeding 24:397–408. doi:10.1007/s11032-009-9301-z

    Article  CAS  Google Scholar 

  • Mayer KFX, Taudien S, Martis M, Simková H, Suchánková P, Gundlach H, Wicker T, Petzold A, Felder M, Steuernagel B, Scholz U, Graner A, Platzer M, Doležel J, Stein N (2009) Gene content and virtual gene order of barley chromosome 1H. Plant Physiol 151:496–505. doi:10.1104/pp. 109.142612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayer KF, Martis M, Hedley PE, Simková H, Liu H, Morris JA, Steuernagel B, Taudien S, Roessner S, Gundlach H, Kubaláková M, Suchánková P, Murat F, Felder M, Nussbaumer T, Graner A, Salse J, Endo T, Sakai H, Tanaka T, Itoh T, Sato K, Platzer M, Matsumoto T, Scholz U, Doležel J, Waugh R, Stein N (2011) Unlocking the barley genome by chromosomal and comparative genomics. Plant Cell 23:1249–1263. doi:10.1105/tpc.110.082537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller TE, Reader SM, Chapman V (1981) The addition of Hordeum chilense chromosomes to wheat. Induced variability in plant breeding. International Symposium Eucarpia Pudoc, Wageningen, pp 79–81

    Google Scholar 

  • Molnár I, Linc G, Dulai S, Nagy ED, Molnár-Láng M (2007) Ability of chromosome 4H to compensate for 4D in response to drought stress in a newly developed and identified wheat–barley 4H(4D) disomic substitution line. Plant Breeding 126:369–374. doi:10.1111/j.1439-0523.2007.01300.x

    Article  CAS  Google Scholar 

  • Molnár-Láng M, Sutka J (1994) The effect of temperature on seed set and embryo development in reciprocal crosses of wheat and barley. Euphytica 78:53–58. doi:10.1007/BF00021397

    Google Scholar 

  • Molnár-Láng M, Sutka J, Barnabás B, Sági L, Belea A (1985) Production of barley (Hordeum vulgare L.) × wheat (Triticum aestivum L.) hybrids. Növénytermelés 34:257–262

    Google Scholar 

  • Molnár-Láng M, Galiba G, Kovács G, Sutka J (1991) Changes in the fertility and meiotic behaviour of barley (Hordeum vulgare) × wheat (Triticum aestivum) hybrids regenerated from tissue cultures. Genome 34:261–266. doi:10.1139/g91-041

    Article  Google Scholar 

  • Molnár-Láng M, Linc G, Friebe BR, Sutka J (2000a) Detection of wheat-barley translocations by genomic in situ hybridization in derivatives of hybrids multiplied in vitro. Euphytica 112:117–123. doi:10.1023/A:1003840200744

    Article  Google Scholar 

  • Molnár-Láng M, Linc G, Logojan A, Sutka J (2000b) Production and meiotic pairing behaviour of new hybrids of winter wheat (Triticum aestivum) x winter barley (Hordeum vulgare). Genome 43:1045–1054. doi:10.1139/g00-079

    Article  PubMed  Google Scholar 

  • Molnár-Láng M, Novotny C, Linc G, Nagy ED (2005) Changes in the meiotic pairing behaviour of a winter wheat-winter barley hybrid maintained for a long term in tissue culture, and tracing the barley chromatin in the progenies using GISH and SSR markers. Plant Breeding 124:247–252. doi:10.1111/j.1439-0523.2005.01097.x

    Article  Google Scholar 

  • Molnár-Láng M, Szakács É, Linc G, Nagy ED (2007) Development and molecular cytogenetic identification of new winter wheat/winter barley disomic addition lines. In: Buck HT, Nisi JE, Salomón N (eds) Wheat production in stressed environments, vol 12, Developments in plant breeding. Springer, Dordrecht, pp 707–713

    Chapter  Google Scholar 

  • Molnár-Láng M, Kruppa K, Cseh A, Bucsi J, Linc G (2012) Identification and phenotypic description of new wheat – six-rowed winter barley disomic additions. Genome 55:302–311. doi:10.1139/g2012-013

    Article  PubMed  CAS  Google Scholar 

  • Molnár-Láng M, Linc G, Szakács É (2014) Wheat-barley hybridization: the last 40 years. Euphytica 195:315–329. doi:10.1007/s10681-013-1009-9

    Article  CAS  Google Scholar 

  • Mujeeb-Kazi A (1981) Apomictic progeny derived from intergeneric Hordeum-Triticum hybrids. J Hered 72:284–285

    Google Scholar 

  • Mujeeb-Kazi A, Rodriguez R (1983) Meiotic instability in Hordeum vulgare × Triticum aestivum hybrids. J Hered 74:292–296

    Google Scholar 

  • Murai K, Koba T, Shimada T (1997) Effects of barley chromosome on heading characters in wheat-barley chromosome addition lines. Euphytica 96:281–287. doi:10.1023/A:1003025501591

    Article  Google Scholar 

  • Nagy ED, Molnár-Láng M, Linc G, Láng L (2002) Identification of wheat-barley translocations by sequential GISH and two-colour FISH in combination with the use of genetically mapped barley SSR markers. Genome 45:1238–1247. doi:10.1139/g02-068

    Article  CAS  PubMed  Google Scholar 

  • Nakamura C, Keller WA, Fedak G (1981) In vitro propagation and chromosome doubling of a Triticum crassum × Hordeum vulgare intergeneric hybrid. Theor Appl Genet 60:89–96. doi:10.1007/BF00282423

    Article  CAS  PubMed  Google Scholar 

  • Nasuda S, Kikkawa Y, Ashida T, Islam AKMR, Sato K, Endo TR (2005) Chromosomal assignment and deletion mapping of barley EST markers. Genes Genet Syst 80:357–366. doi:10.1266/ggs.80.357

    Article  CAS  PubMed  Google Scholar 

  • Park CH, Kumar PS, Walton PD (1990) Plant regeneration and chromosomal stability in tissue cultures of the hybrids of Elymus canadensis with Psathyrostachys juncea and Secale cereale. Plant Breeding 104:184–189. doi:10.1111/j.1439-0523.1990.tb00421.x

    Article  Google Scholar 

  • Pershina LA, Shumny VK (1981) A characterization of clonal propagation of barley × rye and barley × wheat hybrids by means of tissue cultures. Cereal Res Commun 9:273–279

    Google Scholar 

  • Pershina LA, Numerova OM, Belova LI, Devyatkina EP, Shumny VK (1988) Fertility in barley × wheat hybrids H. geniculatum All. × T. aestivum L., their regenerants and hybrid progeny of backcrosses to T. aestivum L. Cereal Res Commun 16:157–163

    Google Scholar 

  • Pershina LA, Deviatkina EP, Belova LI, Trubacheeva NV, Arbuzova VS, Kravtsova LA (2009) Features of alloplasmic wheat-barley substitution and addition lines (Hordeum marinum subsp. gussoneanumTriticum aestivum). Genetika 45:1386–1392. doi:10.1134/S102279540910010X

  • Polgári D, Cseh A, Szakács E, Jager K, Molnár-Láng M, Sági L (2014) High-frequency generation and characterization of intergeneric hybrids and haploids from new wheat-barley crosses. Plant Cell Rep 33(8):1323–1331

    Article  PubMed  CAS  Google Scholar 

  • Riley R, Chapman V (1958) Genetic control of cytologically diploid behaviour of hexaploid wheat. Nature 182:713–715. doi:10.1038/182713a0

    Article  Google Scholar 

  • Riley R, Law CN (1965) Genetic variation in chromosome pairing. Adv Genet 13:57–114. doi:10.1016/S0065-2660(08)60047-4

    Article  Google Scholar 

  • Sakai K, Nasuda S, Sato K, Endo TR (2009) Dissection of barley chromosome 3H in common wheat and a comparison of physical and genetic maps. Genes Genet Syst 84:25–34. doi:10.1266/ggs.84.25

    Article  CAS  PubMed  Google Scholar 

  • Sakata M, Nasuda S, Endo TR (2010) Dissection of barley chromosome 4H in common wheat by the gametocidal system and cytological mapping of chromosome 4H with EST markers. Genes Genet Syst 85:19–29

    Article  CAS  PubMed  Google Scholar 

  • Schubert I, Shi F, Fuchs J, Endo TR (1998) An efficient screening for terminal deletions and translocations of barley chromosomes added to common wheat. Plant J 14:489–495. doi:10.1046/j.1365-313X.1998.00125.x

    Article  CAS  Google Scholar 

  • Schwarzacher T, Anamthawat-Jónsson K, Harrison GE, Islam AKMR, Jia JZ, King IP, Leitch AR, Miller TE, Reader SM, Rogers WJ, Shi M, Heslop-Harrison JS (1992) Genomic in situ hybridization to identify alien chromosomes and chromosome segments in wheat. Theor Appl Genet 84:778–786. doi:10.1007/BF00227384

    CAS  PubMed  Google Scholar 

  • Sears ER (1956) The transfer of leaf rust resistance from Aegilops umbellulata to wheat. Brookhaven Symp Biol 9:1–22

    Google Scholar 

  • Sears ER (1972) Chromosome engineering in wheat. Stadler Symp 4:23–38

    Google Scholar 

  • Sears ER (1976) Genetic control of chromosome pairing in wheat. Ann Rev Genet 10:31–51. doi:10.1146/annurev.ge.10.120176.000335

    Article  CAS  PubMed  Google Scholar 

  • Sepsi A, Németh K, Molnár I, Szakács É, Molnár-Láng M (2006) Induction of chromosome rearrangements in a 4H(4D) wheat-barley substitution using a wheat line containing a ph suppressor gene. Cereal Res Commun 34:1215–1222. doi:10.1556/CRC.34.2006.4.261

    Article  CAS  Google Scholar 

  • Serizawa N, Nasuda S, Shi F, Endo TR, Prodanovic S, Schubert I, Künzel G (2001) Deletion-based physical mapping of barley chromosome 7H. Theor Appl Genet 103:827–834. doi:10.1007/s001220100703

    Article  CAS  Google Scholar 

  • Sethi GS, Finch RA, Miller TE (1986) A bread wheat (Triticum aestivum) × cultivated barley (Hordeum vulgare) hybrid with homoeologous chromosome pairing. Can J Genet Cytol 28:777–782. doi:10.1139/g86-109

    Article  Google Scholar 

  • Sharma HC, Gill BS, Sears RG (1984) Inflorescence culture of wheat-Agropyron hybrids: callus induction, plant regeneration, and potential in overcoming sterility barriers. Plant Cell Tissue Org 3:247–255. doi:10.1007/BF00040344

    Article  Google Scholar 

  • Sherman JD, Smith LY, Blake TK, Talbert LE (2001) Identification of barley genome segments introgressed into wheat using PCR markers. Genome 44:38–44. doi:10.1139/g00-092

    Article  CAS  PubMed  Google Scholar 

  • Shimada T, Koba T, Otani M, Niizeki H (1987) Morphology, meiosis and in vitro propagation of barley-wheat hybrids. Proceedings of the 5th International Barley Genetics Symposium, Okayama, pp 343–350

    Google Scholar 

  • Shumny VK, Pershina LA (1979) Production of barley-rye hybrids and their clonal propagation by the method of isolated tissue cultivation. Dokl Acad Nauk SSSR 249:218–220

    Google Scholar 

  • Shumny VK, Pershina LA, Belova LI (1981) Production of barley x rye and barley x wheat hybrids. Cereal Res Commun 4:265–272

    Google Scholar 

  • Suchánková P, Kubaláková M, Kovářová P, Bartoš J, Číhalíková J, Molnár-Láng M, Endo TR, Doležel J (2006) Dissection of the nuclear genome of barley by chromosome flow sorting. Theor Appl Genet 113:651–659. doi:10.1007/s00122-006-0329-8

    Article  PubMed  CAS  Google Scholar 

  • Surikov JM, Kissel NI (1988) Mikroklonirovanie yachmenno-pshenichnikh gibridov. Dokl Vaskhnil 1:2–4

    Google Scholar 

  • Svitashev S, Bryngelsson T, Vershinin A, Pedersen C, Säll T, von Bothmer R (1994) Phylogenetic analysis of the genus Hordeum using repetitive DNA sequences. Theor Appl Genet 89:801–810. doi:10.1007/BF00224500

    Article  CAS  PubMed  Google Scholar 

  • Szakács É, Molnár-Láng M (2007) Development and molecular cytogenetic identification of new winter wheat/winter barley (Martonvásári 9 kr1/Igri) disomic addition lines. Genome 50:43–50. doi:10.1139/g06-134

    Article  PubMed  Google Scholar 

  • Szakács É, Molnár-Láng M (2010) Identification of new winter wheat – winter barley addition lines (6HS and 7H) using fluorescence in situ hybridization and stability of the whole ‘Martonvásári 9 kr1’–‘Igri’ addition set. Genome 53:35–44. doi:10.1139/G09-085

    Article  PubMed  CAS  Google Scholar 

  • Szakács É, Kruppa K, Molnár I, Molnár-Láng M (2010) Induction of wheat/barley translocations by irradiation and their detection by in situ hybridization. Acta Agron Hung 58:203–209. doi:10.1556/AAgr.58.2010.3.2

    Article  Google Scholar 

  • Taketa S, Takeda K (2001) Production and characterization of a complete set of wheat-wild barley (Hordeum vulgare ssp. spontaneum) chromosome addition lines. Breed Sci 51:199–206. doi:10.1270/jsbbs.51.199

    Article  CAS  Google Scholar 

  • Taketa S, Kato J, Takeda K (1995) High crossability of wild barley (Hordeum spontaneum C. Koch) with bread wheat and the differential elimination of barley chromosomes in the hybrids. Theor Appl Genet 91:1203–1209. doi:10.1007/BF00220930

    Article  CAS  PubMed  Google Scholar 

  • Taketa S, Takahashi H, Takeda K (1998) Genetic variation in barley of crossability with wheat and its quantitative trait loci analysis. Euphytica 103:187–193. doi:10.1023/A:1018344119747

    Article  Google Scholar 

  • Taketa S, Choda M, Ohashi R, Ichii M, Takeda K (2002) Molecular and physical mapping of a barley gene on chromosome arm 1HL that causes sterility in hybrids with wheat. Genome 45:617–625. doi:10.1139/g02-024

    Article  CAS  PubMed  Google Scholar 

  • Ter Kuile N, Nabors M, Mujeeb-Kazi A (1988) Callus culture induced amphiploids of Triticum aestivum and T. turgidum × Aegilops variabilis F1 hybrids: production, cytogenetics and practical significance. In: 80th Annual Meetings of the American Society of Agron Abstract 98

    Google Scholar 

  • The International Barley Genome Sequencing Consortium (2012) A physical, genetic and functional sequence assembly of the barley genome. Nature 491:711–717

    Google Scholar 

  • Thomas JB, Mujeeb-Kazi A, Rodriguez R, Bates LS (1977) Barley × wheat hybrids. Cereal Res Commun 5:181–188

    Google Scholar 

  • Türkösi E, Farkas A, Aranyi NR, Hoffmann B, Tóth V, Molnár-Láng M (2014a) Improvement of the agronomic traits of a wheat/barley centric fusion by introgressing the 3HS.3BL translocation into a modern wheat cultivar. Genome 57:601–607. doi:10.1139/gen-2014-0187

    Article  PubMed  CAS  Google Scholar 

  • Türkösi E, Cseh A, Molnár-Láng M (2014b) Development and identification of new wheat-barley ditelosomic addition lines using fluorescence in situ hybridization and molecular markers. In Kőszegi I (ed) Advances in plant breeding & biotechnology techniques. Book of abstracts. Pannonian Plant Biotechnology Association, The Faculty of Agricultural and Food Science University of West Hungary, Mosonmagyaróvár, Hungary, 27–29 Apr 2014, pp 62–63

    Google Scholar 

  • Villegas D, Casadesús J, Atienza SG, Martos V, Maalouf F, Karam F, Aranjuelo I, Nogués S (2010) Tritordeum, wheat and triticale yield components under multi-local Mediterranean drought conditions. Field Crop Res 116:68–74. doi:10.1016/j.fcr.2009.11.012

    Article  Google Scholar 

  • Wojciechowska B (1985) Hybrids between Hordeum vulgare L. and Triticum aestivum L. Genet Pol 26:457–462

    Google Scholar 

  • Wojciechowska B, Pudelska H (1993) Hybrids from reciprocal barley-wheat crosses. Genet Pol 34:1–13

    Google Scholar 

  • Ya-Ping Y, Xiao C, Si-He X, Islam AKMR, Zhi-Yong X (2003) Identification of wheat-barley 2H alien substitution lines. Acta Bot Sin 45:1096–1102

    Google Scholar 

  • Zou H, Wu Y, Liu H, Lin Z, Ye X, Chen X, Yuan Y (2012) Development and identification of wheat–barley 2H chromosome translocation lines carrying the Isa gene. Plant Breeding 131:69–74. doi:10.1111/j.1439-0523.2011.01910.x

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Hungarian National Scientific Research Fund (OTKA K 104382 and K 108555) and by the “Wheat and Barley Legacy for Breeding Improvement”—WHEALBI EU FP7 project. Thanks are due to Barbara Hooper for revising the manuscript linguistically.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Márta Molnár-Láng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Molnár-Láng, M., Linc, G. (2015). Wheat–Barley Hybrids and Introgression Lines. In: Molnár-Láng, M., Ceoloni, C., Doležel, J. (eds) Alien Introgression in Wheat. Springer, Cham. https://doi.org/10.1007/978-3-319-23494-6_12

Download citation

Publish with us

Policies and ethics