Skip to main content
Log in

The gametocidal chromosome as a tool for chromosome manipulation in wheat

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Many alien chromosomes have been introduced into common wheat (the genus Triticum) from related wild species (the genus Aegilops). Some alien chromosomes have unique genes that secure their existence in the host by causing chromosome breakage in the gametes lacking them. Such chromosomes or genes, called gametocidal (Gc) chromosomes or Gc genes, are derived from different genomes (C, S, Sl and Mg) and belong to three different homoeologous groups 2, 3 and 4. The Gc genes of the C and Mg genomes induce mild, or semi-lethal, chromosome mutations in euploid and alien addition lines of common wheat. Thus, induced chromosomal rearrangements have been identified and established in wheat stocks carrying deletions of wheat and alien (rye and barley) chromosomes or wheat–alien translocations. The gametocidal chromosomes isolated in wheat to date are reviewed here, focusing on their feature as a tool for chromosome manipulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Delaney DE, Nasuda S, Endo TR, Gill BS, Hulbert SH (1995a) Cytologically based physical maps of the group-2 chromosomes of wheat. Theor Appl Genet 91: 568–573.

    CAS  Google Scholar 

  • Delaney DE, Nasuda S, Endo TR, Gill BS, Hulbert SH (1995b) Cytologically based physical maps of the group-3 chromosomes of wheat. Theor Appl Genet 91: 780–782.

    CAS  Google Scholar 

  • Dilbirligi M, Erayman M, Campbell BT et al. (2006) High-density mapping and comparative analysis of agronomically important traits on wheat chromosome 3A. Genomics 88: 74–87.

    Article  PubMed  CAS  Google Scholar 

  • Endo TR (1978) On the Aegilops chromosomes having Gc action on common wheat. Proc 5th Int Wheat Genet Symp, New Delhi, pp. 306–314.

  • Endo TR (1988) Induction of chromosomal structural changes by a chromosome Aegilops cylindrica L. in common wheat. J Hered 79: 366–370.

    Google Scholar 

  • Endo TR (1990) Gc chromosomes and their induction of chromosome mutations in wheat. Jpn J Genet 65: 135–152.

    Article  Google Scholar 

  • Endo TR (1996) Allocation of a Gc chromosome of Aegilops cylindrica to wheat homoeologous group 2. Genes Genet Syst 71: 243–246.

    Article  Google Scholar 

  • Endo TR (2003) Wheat stocks carrying alien chromosomal segments induced by the Gc system. Proc 10th Int Wheat Genet Symp, Paestum, pp. 69–72.

  • Endo TR, Gill BS (1996) The deletion stocks of common wheat. J Hered 87: 295–307.

    CAS  Google Scholar 

  • Endo TR, Mukai Y (1988) Chromosome mapping of speltoid suppression gene of Triticum aestivum L. based on partial deletion in the long arm of chromosome 5A. Jpn J Genet 63: 501–505.

    Google Scholar 

  • Endo TR, Tsunewaki K (1975) Sterility of common wheat with Aegilops triuncialis cytoplasm. J Hered 66: 13–18.

    Google Scholar 

  • Endo TR, Mukai Y, Yamamoto M, Gill BS (1991) Physical mapping of a male–fertility gene of common wheat. Jpn J Genet 66: 291–295.

    Article  Google Scholar 

  • Endo TR, Yamamoto M, Mukai Y (1994) Structural changes of rye chromosome 1R induced by a Gc chromosome. Jpn J Genet 69: 13–19.

    Article  Google Scholar 

  • Faris JD, Gill BS (2001) Genome targeting and high-resolution mapping of the domestication gene Q in wheat. Genome 45: 706–718.

    Article  Google Scholar 

  • Faris JD, Simons KJ, Zhang Z, Gill BS (2005) The wheat super domestication gene Q. In K Tsunewaki, ed., Frontiers of Wheat Bioscience. Memorial issue, Wheat Information Service No. 100. Kihara Memorial Yokohama Foundation, pp. 129–148.

  • Finch RA, Miller TE, Bennett MD (1984) ‘Cuckoo’ Aegilops addition chromosome in wheat ensures its transmission by causing chromosome breaks in meiospores lacking it. Chromosoma 90: 84–88.

    Article  Google Scholar 

  • Friebe B, Kynast RG, Gill BS (2000) Gametocidal factor-induced structural rearrangements in rye chromosomes added to common wheat. Chromosome Res 8: 501–511.

    Article  PubMed  CAS  Google Scholar 

  • Friebe B, Tuleen NA, Gill BS (1999) Development and identification of a complete set of Triticum aestivum–Aegilops geniculata chromosome addition lines. Genome 42: 374–380.

    Article  Google Scholar 

  • Friebe B, Zhang P, Nasuda S, Gill BS (2003) Characterization of a knock-out mutation at the Gc2 locus in wheat. Chromosoma 111: 509–517.

    PubMed  Google Scholar 

  • Gill BS, Friebe B, Endo TR (1991) Standard karyotype and nomenclature system for description of chromosome bands and structural aberrations in wheat (Triticum aestivum). Genome 34: 830–839.

    Google Scholar 

  • Gill KS, Gill BS, Endo TR, Mukai Y (1993a) Fine physical mapping of Ph1, a chromosome pairing regulator gene in polyploid wheat. Genetics 134: 1231–1236.

    PubMed  CAS  Google Scholar 

  • Gill KS, Gill BS, Endo TR (1993b) A chromosome region-specific mapping strategy reveals gene-rich telomeric ends in wheat. Chromosoma 102: 374–381.

    Article  CAS  Google Scholar 

  • Gill KS, Gill BS, Endo TR, Boyko EV (1996a) Identification and high-density mapping of gene-rich regions in chromosome group 5 of wheat. Genetics 143: 1001–1012.

    PubMed  CAS  Google Scholar 

  • Gill KS, Gill BS, Endo TR, Taylor T (1996b) Identification and high-density mapping of gene-rich regions in chromosome group 1 of wheat. Genetics 144: 1883–1891.

    PubMed  CAS  Google Scholar 

  • Goyal A, Bandopadhyay R, Sourdille P, Endo TR, Balyan HS, Gupta PK (2005) Physical molecular maps of wheat chromosomes. Funct Integr Genomics 5: 260–263.

    Article  PubMed  CAS  Google Scholar 

  • Hohmann U, Endo TR, Gill KS, Gill BS (1994) Comparison of genetic and physical maps of group 7 chromosomes from Triticum aestivum L. Mol Gen Genet 245: 644–653.

    Article  PubMed  CAS  Google Scholar 

  • Hohmann U, Endo TR, Herrmann RG, Gill BS (1995a) Characterization of deletions in common wheat induced by an Aegilops cylindrica chromosome: detection of multiple chromosome rearrangements. Theor AppI Genet 91: 611–617.

    CAS  Google Scholar 

  • Hohmann H, Graner A, Endo TR, Gill BS, Herrmann RG (1995b) Comparison of wheat physical maps with barley linkage maps for group 7 chromosomes. Theor Appl Genet 91: 618–626.

    CAS  Google Scholar 

  • Islam AKMR, Shepherd KW, Sparrow DHB (1981) Isolation and characterization of euplasmic wheat–barley chromosome addition lines. Heredity 46: 161–174.

    Google Scholar 

  • Jones RN (1995) Tansley Review No. 85. B chromosome in plants. New Phytol 131: 411–434.

    Article  Google Scholar 

  • Kota RS, Gill KS, Gill BS, Endo TR (1993) A cytogenetically based physical map of chromosome 1B in common wheat. Genome 36: 548–554.

    CAS  PubMed  Google Scholar 

  • Kynast RG, Friebe B, Gill S (2000) Fate of multicentric and ring chromosomes induced by a new Gc factor located on chromosome 4Mg of Aegilops geniculata. Chromosome Res 8: 133–139.

    Article  PubMed  CAS  Google Scholar 

  • Maan, SS (1975) Exclusive preferential transmission of an alien chromosome in common wheat. Crop Sci 15: 287–292.

    Article  Google Scholar 

  • Masoudi-Nejad A, Nasuda S, Kawabe A, Endo TR (2002a) Molecular cloning, sequencing, and chromosome mapping of a 1A-encoded ω-type prolamin sequence from wheat. Genome 45: 661–669.

    Article  PubMed  CAS  Google Scholar 

  • Masoudi-Nejad A, Nasuda S, McIntosh RA, Endo TR (2002b) Transfer of rye chromosome segments to wheat by a Gc system. Chromosome Res 10: 349–357.

    Article  PubMed  CAS  Google Scholar 

  • Masoudi-Nejad A, Nasuda S, Bihoreau M-T, Waugh R, Endo TR (2005) An alternative to radiation hybrid mapping for large-scale genome analysis in barley. Mol Gen Genom 274: 589–594.

    Article  CAS  Google Scholar 

  • Mickelson-Young L, Endo TR, Gill BS (1995) A cytogenetic ladder-map of the wheat homoeologous group-4 chromosomes. Theor Appl Genet 90: 1007–1011.

    Article  CAS  Google Scholar 

  • Miller TE, Hutchinson J, Chapman V (1982) Investigation of a preferentially transmitted Aegilops sharonesis chromosome in wheat. Theor Appl Genet 61: 27–33.

    Article  Google Scholar 

  • Morishima H, Sano Y, Oka HI (1992) Evolutionary studies in cultivated rice and its wild relatives. Oxford Surv Evol Biol 8: 135–184.

    Google Scholar 

  • Mukai Y, Endo TR (1992) Physical mapping of a fertility-restoring gene against Aegilops kotschyi cytoplasm in wheat. Jpn J Genet 67: 199–207.

    Article  CAS  Google Scholar 

  • Nagy ED, Lelley T (2003) Genetic and physical mapping of sequence-specific amplified polymorphic (SSAP) markers on the 1RS chromosome arm of rye in a wheat background. Theor Appl Genet 107: 1271–1277.

    Article  PubMed  CAS  Google Scholar 

  • Nasuda S, Friebe B, Gill BS (1998) Gc genes induce chromosome breakage in the interphase prior to the first mitotic cell division of the male gametophyte in wheat. Genetics 149: 1115–1124.

    PubMed  CAS  Google Scholar 

  • Nasuda S, Kikkawa Y, Ashida T, Islam AKMR, Sato K, Endo TR (2005a) Chromosomal assignment and deletion mapping of barley EST markers. Genes Genet Syst 80: 357–366.

    Article  PubMed  CAS  Google Scholar 

  • Nasuda S, Hudakova S, Schubert I, Houben A, Endo TR (2005b) Stable barley chromosomes without centromeric repeats. Proc Natl Acad Sci USA 102: 9842–9847.

    Article  PubMed  CAS  Google Scholar 

  • Nomura T, Ishihara A, Imaishi H, Ohkawa H, Endo TR, Iwamura H (2003) Rearrangement of the genes for the biosynthesis of benzoxazinones in the evolution of Triticeae species. Planta 217: 776–782.

    Article  PubMed  CAS  Google Scholar 

  • Ogihara Y, Hasegawa K, Tsujimoto H (1994) High-resolution cytological mapping of the long arm of chromosome 5A in common wheat using a series of deletion lines induced by gametocidal (Gc) genes of Aegilops speltoides. Mol Gen Genet 244: 253–259.

    Article  PubMed  CAS  Google Scholar 

  • Qi LL, Echalier B, Chao S et al. (2004) A chromosome bin map of 16,000 expressed sequence tag loci and distribution of genes among the three genomes of polyploid wheat. Genetics 168: 701–712.

    Article  PubMed  CAS  Google Scholar 

  • Serizawa N, Nasuda S, Shi F et al. (2001) Deletion-based physical mapping of barley chromosome 7H. Theor Appl Genet 103: 827–834.

    Article  CAS  Google Scholar 

  • Shi F, Endo TR (1997) Production of wheat–barley disomic addition lines possessing an Aegilops cylindrica Gc chromosome. Genes Genet Syst 72: 243–248.

    Article  Google Scholar 

  • Shi F, Endo TR (1999) Genetic induction of structural changes in barley chromosomes added to common wheat by a Gc chromosome derived from Aegilops cylindrica. Genes Genet Syst 74: 49–54.

    Article  Google Scholar 

  • Shi F, Endo TR (2000) Genetic induction of chromosomal rearrangements in barley chromosome 7H added to common wheat. Chromosoma 109: 358–363.

    PubMed  CAS  Google Scholar 

  • Tsujimoto H (1995) Gc genes in wheat and its relatives. IV. Functional relationships between six Gc genes. Genome 38: 283–289.

    CAS  PubMed  Google Scholar 

  • Tsujimoto H (2005) Gc genes in wheat as the inducer of chromosome breakage. In K Tsunewaki, ed., Frontiers of Wheat Bioscience. Memorial issue, Wheat Information Service No. 100. Kihara Memorial Yokohama Foundation, pp. 33–48.

  • Tsujimoto H, Noda K (1990) Deletion mapping by Gc genes in common wheat: position of speltoid suppression (Q) and β-amylase (β-Amy-A2) genes on chromosome 5A. Genome 33: 850–853.

    CAS  Google Scholar 

  • Tsujimoto H, Tsunewaki K (1984) Gc genes in wheat and its relatives. I. Genetic analyses in common wheat of a Gc gene derived from Aegilops speltoides. Can J Genet 26: 78–84.

    Google Scholar 

  • Tsujimoto H, Tsunewaki K (1985a) Gametocidal genes in wheat and its relatives. II. Suppressor of the chromosome 3C gametocidal gene of Aegilops triuncialis. Can J Genet Cytol 27: 178–185.

    Google Scholar 

  • Tsujimoto H, Tsunewaki K (1985b) Hybrid dysgenesis in common wheat caused by Gc genes. Jpn J Genet 60: 565–578.

    Google Scholar 

  • Tsujimoto H, Tsunewaki K (1988) Gc genes in wheat and its relatives. III. Chromosome location and effects of two Aegilops speltoides-derived Gc genes in common wheat. Genome 30: 239–244.

    Article  Google Scholar 

  • Tsujimoto H, Yamada T, Sasakuma T (1997) Molecular structure of a wheat chromosome end healed after Gc gene-induced breakage. Proc Natl Acad Sci USA 94: 3140–3144.

    Article  PubMed  CAS  Google Scholar 

  • Tsujimoto H, Yamada T, Hasegawa K et al. (2001) Large-scale selection of lines with deletions in chromosome 1B in wheat and application for fine deletion mapping. Genome 44: 501–508.

    Article  PubMed  CAS  Google Scholar 

  • Weng Y, Tuleen NA, Hart·GE (2000) Extended physical maps and a consensus of the homoeologous group-6 chromosomes (Triticum aestivum L. em Thell.). Theor Appl Genet 100: 519–527.

    CAS  Google Scholar 

  • Werner JE, Endo TR, Gill BS (1992) Toward a cytogenetically based physical map of the wheat genome. Proc Natl Acad Sci USA 89: 11307–11311.

    Article  PubMed  CAS  Google Scholar 

  • Yamamori M, Endo TR (1996) Variation of starch granule proteins and chromosome mapping of their coding genes in common wheat. Theor Appl Genet 93: 275–281.

    Article  CAS  Google Scholar 

  • Yamamori M, Nakamura T, Endo TR, Nagamine T (1994) Waxy protein deficiency and chromosomal location of coding genes in common wheat. Theor Appl Genet 89: 179–184.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. R. Endo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Endo, T.R. The gametocidal chromosome as a tool for chromosome manipulation in wheat. Chromosome Res 15, 67–75 (2007). https://doi.org/10.1007/s10577-006-1100-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-006-1100-3

Key words

Navigation