Skip to main content
Log in

Salt stress response of wheat–barley addition lines carrying chromosomes from the winter barley “Manas”

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

The salt stress responses of wheat–barley addition lines (2H, 3H, 3HS, 4H, 6H, 7H and 7HL) were compared to those of the parental genotypes wheat cv. Asakaze and barley cv. Manas and two other wheat genotypes [Chinese Spring (CS) and Mv9kr1] during germination and in young plants grown in hydroponic culture with or without salt treatment. Among the wheat genotypes frequently used for interspecific hybridization, Asakaze possesses relatively high salt tolerance, as indicated by the less pronounced reduction in germination % and in root and shoot growth and the retention of high leaf water content and photosynthetic activity, as compared to CS and Mv9kr1. The barley cv. Manas showed better salt tolerance than wheat cv. Asakaze, although Manas accumulated more Na in the root, but its transport to the shoots is restricted. Among the addition lines tested, the disomic addition line 7H and ditelosomic line 7HL exhibited higher salt tolerance both during germination and in the early developmental stages than the wheat parent, which may be related to the elevated osmotic adjustment capacity of these addition lines, similar to that found for barley cv. Manas. The paper also discusses the effects of other chromosomes on the salt stress response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anton A, Rékási M, Uzinger N, Széplábi G, Makó A (2012) Modelling the potential effects of the Hungarian red mud disaster on soil properties. Water Air Soil Pollut 223:5175–5188. doi:10.1007/s11270-012-1269-3

    Article  CAS  Google Scholar 

  • Bajji M, Lutts S, Kinet J (2001) Water deficit effects on solute contribution to osmotic adjustment as a function of leaf ageing in three durum wheat (Triticum durum Desf.) cultivars performing differently in arid conditions. Plant Sci 160:669–681. doi:10.1016/S0168-9452(00)00443-X

    Article  CAS  PubMed  Google Scholar 

  • Bates BL, Waldren RP, Teare ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207. doi:10.1007/BF00018060

    Article  CAS  Google Scholar 

  • Boussadia O, Bchir A, Steppe K, Van Labeke MC, Lemeur R, Braham M (2013) Active and passive osmotic adjustment in olive tree leaves during drought stress. Eur Sci J 9:1423–1439 [ISSN: 1857–7881 (Print), ISSN: 1857–7431 (Online)]

  • Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103:551–560. doi:10.1093/aob/mcn125

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen W, Liu T, Gao L (2013) Suppression of stripe rust and leaf rust resistances in interspecific crosses of wheat. Euphytica 192:339–346. doi:10.1007/s10681-012-0854-2

    Article  CAS  Google Scholar 

  • Colmer TD, Flowers TJ, Munns R (2006) Use of wild relatives to improve salt tolerance in wheat. J Exp Bot 57:1059–1078. doi:10.1093/jxb/erj124

    Article  CAS  PubMed  Google Scholar 

  • Dulai S, Molnár I, Haló B, Molnár-Láng M (2010) Photosynthesis in the 7H Asakaze Komugi/Manas wheat/barley addition line during salt stress. Acta Agron Hung 58:367–376. doi:10.1556/AAgr.58.2010.4.5

    Article  Google Scholar 

  • Forster BP, Phillips MS, Miller TE, Baird E, Powell W (1990) Chromosome location of genes controlling tolerance of salt (NaCl) and vigour in Hordeum vulgare and Hordeum chilense. Heredity 65:99–107. doi:10.1038/hdy.1990.75

    Article  Google Scholar 

  • Girma FS, Krieg DR (1992) Osmotic adjustment in Sorghum I. Mechanisms of diurnal osmotic potential changes. Plant Physiol 99:577–582. doi:10.1104/pp.99.2.577

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gorham J (1990) Salt tolerance in the Triticeae: K/Na discrimination in synthetic hexaploid wheats. J Exp Bot 41:623–627. doi:10.1093/jxb/41.5.623

    Article  CAS  Google Scholar 

  • Hajjar R, Hodgkin T (2007) The use of wild relatives in crop improvement: a survey of developments over the last 20 years. Euphytica 156:1–13. doi:10.1007/s10681-007-9363-0

    Article  Google Scholar 

  • Handley LL, Nevo E, Raven JA, Martínez-Carrasco R, Scrimgeour CM, Paniyat H, Forster BP (1994) Chromosome 4 controls potential water use efficiency (δ13C) in barley. J Exp Bot 45:1661–1663. doi:10.1093/jxb/45.11.1661

    Article  CAS  Google Scholar 

  • Horton P, Ruban AV (2005) Regulation of photosynthesis under stress: molecular design of the photosystem II light-harvesting antenna: photosynthesis and photoprotection. J Exp Bot 56:365–373. doi:10.1093/jxb/eri023

    Article  CAS  PubMed  Google Scholar 

  • Islam AKMR, Shepherd KW (1990) Incorporation of barley chromosomes into wheat. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 13. Springer, Berlin, pp 128–151

    Google Scholar 

  • Islam AKMR, Shepherd KW, Sparrow DHB (1978) Production and characterization of wheat–barley addition lines. In: Ramanujam S (ed) Proceedings of the 5th international wheat genetics symposium. Indian Society of Genetics and Plant Breeding, New Delhi, pp 356–371

    Google Scholar 

  • Islam S, Malik AI, Islam AKMR, Colmer TD (2007) Salt tolerance in a Hordeum marinum–Triticum aestivum amphiploid and its parents. J Exp Bot 58:1219–1229. doi:10.1093/jxb/erl293

    Article  CAS  PubMed  Google Scholar 

  • Koba T, Takumi S, Shimada T (1997) Isolation, identification and characterization of disomic and translocated barley chromosome addition lines of wheat. Euphytica 96:289–296. doi:10.1023/A:1003081619338

    Article  Google Scholar 

  • Lawlor DW, Cornic G (2002) Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant Cell Environ 25:275–294. doi:10.1046/j.0016-8025.2001.00814.x

    Article  CAS  PubMed  Google Scholar 

  • Long NV, Dolstra O, Malosetti M, Kilian B, Graner A, Visser RGF, van der Linden CG (2013) Association mapping of salt tolerance in barley (Hordeum vulgare L.). Theor Appl Genet 126:2335–2351. doi:10.1007/s00122-013-2139-0

    Article  CAS  PubMed  Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158. doi:10.1016/j.abb.2005.10.018

    Article  CAS  PubMed  Google Scholar 

  • Molnár I, Linc G, Dulai S, Nagy ED, Molnár-Láng M (2007) Ability of chromosome 4H to compensate for 4D in response to drought stress in a newly developed and identified wheat–barley 4H(4D) disomic substitution. Plant Breed 126:369–374. doi:10.1111/j.1439-0523.2007.01300

    Article  Google Scholar 

  • Molnár-Láng M, Linc G, Sutka J (1996) Transfer of the recessive crossability allele kr1 from Chinese Spring into the winter wheat variety Martonvásári 9. Euphytica 90:301–305. doi:10.1007/BF00027480

    Article  Google Scholar 

  • Molnár-Láng M, Linc G, Logojan A, Sutka J (2000) Production and meiotic pairing behaviour of new hybrids of winter wheat (Triticum aestivum) × winter barley (Hordeum vulgare). Genome 43:1045–1054. doi:10.1139/g2012-013

    Article  PubMed  Google Scholar 

  • Molnár-Láng M, Kruppa K, Cseh A, Bucsi J, Linc G (2012) Identification and phenotypic description of new wheat: six-rowed winter barley disomic additions. Genome 55:302–311. doi:10.1139/g2012-013

    Article  PubMed  Google Scholar 

  • Molnár-Láng M, Linc G, Szakács É (2014) Wheat–barley hybridization: the last 40 years. Euphytica 195:315–329. doi:10.1007/s10681-013-1009-9

    Article  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250. doi:10.1046/j.0016-8025.2001.00808.x

    Article  CAS  PubMed  Google Scholar 

  • Munns R, James RA, Lauchli A (2006) Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot 57:1025–1043. doi:10.1093/jxb/erj100

    Article  CAS  PubMed  Google Scholar 

  • Munns R, James RA, Islam S, Colmer TD (2011) Hordeum marinum–wheat amphiploids maintain higher leaf K+:Na+ and suffer less leaf injury than wheat parents in saline conditions. Plant Soil 348:365–377. doi:10.1007/s11104-011-0934-4

    Article  CAS  Google Scholar 

  • Munns R, James RA, Xu B, Athman A, Conn SJ, Jordans C, Byrt CS, Hare RA, Tyerman SD, Tester M, Plett D, Gilliham M (2012) Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene. Nat Biotech 30:360–364. doi:10.1038/nbt.2120

    Article  CAS  Google Scholar 

  • Nelson JC, Singh RP, Autrique JE, Sorrells ME (1997) Mapping genes conferring and suppressing leaf rust resistance in wheat. Crop Sci 37:1928–1935. doi:10.2135/cropsci1997.0011183X003700060043x

    Article  CAS  Google Scholar 

  • Pál M, Horváth E, Janda T, Páldi E, Szalai G (2005) Cadmium stimulates the accumulation of salicylic acid and its putative precursors in maize (Zea mays) plants. Physiol Plant 125:356–364. doi:10.1111/j.1399-3054.2005.00545.x

    Article  Google Scholar 

  • Raffi SA, Colmer TD, Islam AKMR (2010) Chromosomes responsible for salt tolerance in Hordeum marinum as expressed in a wheat background. In: Harper J, Glyde S (eds) Proceedings: student papers, future farm industries post graduate conference. Charles Sturt University, Wagga Wagga, NSW, Australia pp 56–57

  • Shavrukov Y, Gupta NK, Miyazaki J, Baho MN, Chalmers KJ, Tester M, Langridge P, Collins NC (2010) HvNax3—a locus controlling shoot sodium exclusion derived from wild barley (Hordeum vulgare ssp. spontaneum). Funct Integr Genom 10:277–291. doi:10.1007/s10142-009-0153-8

    Article  CAS  Google Scholar 

  • Szabados L, Savouré A (2009) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97. doi:10.1016/j.tplants.2009.11.009

    Article  PubMed  Google Scholar 

  • Teulat B, This D, Khairallah M, Borries C, Ragot C, Sourdille P, Leroy P, Monneveux P, Charrier A (1998) Several QTLs involved in osmotic-adjustment trait variation in barley (Hordeum vulgare L.). Theor Appl Genet 96:688–698. doi:10.1007/s001220050790

    Article  CAS  Google Scholar 

  • van Kooten O, Snell JFH (1990) The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynth Res 25:147–150. doi:10.1007/BF00033156

    Article  PubMed  Google Scholar 

  • Zeller FJ, Hsam SLK (1996) Chromosomal location of a gene suppressing powdery mildew resistance genes Pm8 and Pm17 in common wheat (Triticum aestivum L. em Thell). Theor Appl Genet 93:38–40. doi:10.1007/BF00225724

    Article  CAS  PubMed  Google Scholar 

  • Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–71. doi:10.1016/S1360-1385(00)01838-0

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by the EU FP7 KBEE WHEALBI Project: Wheat and Barley Legacy for Breeding Improvement and by OTKA Grant No. K112226.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tibor Janda.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 17383 kb)

Chlorophyll-a fluorescence parameters: F v/F m (a), indicating the maximal quantum efficiency of PS II, \(\varDelta\) F/F m′ (b), representing the actual quantum efficiency of PS II at 200 μmol m−2 s−1 light intensity, qP (c), photochemical quenching related to the fraction of open reaction centres in PS II, and NPQ (d), non-photochemical quenching reflecting the heat dissipation of excess excitation energy, in the leaves of salt-treated and non-treated plants. Values are mean ± standard deviation of eight measurements in each treatment. Different letters indicate statistically significant differences between the genotypes in control (uppercase) and salt-treated plants (lowercase) at P < 0.05, using Tukey’s post hoc test. (AK: Asakaze)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Darko, E., Janda, T., Majláth, I. et al. Salt stress response of wheat–barley addition lines carrying chromosomes from the winter barley “Manas”. Euphytica 203, 491–504 (2015). https://doi.org/10.1007/s10681-014-1245-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-014-1245-7

Keywords

Navigation