Skip to main content

Retinal Vascular Disease

  • Chapter
  • First Online:
Lee's Ophthalmic Histopathology
  • 873 Accesses

Abstract

Ischaemic retinal vascular diseases ultimately lead to glaucoma and are found in the globes that are enucleated to relieve intractable pain in a blind eye. The clinical diagnosis is usually “neovascular glaucoma” with the addition of “central retinal vein occlusion” or “diabetes,” but occasionally, rarer entities such as retinopathy of prematurity or Coats’ disease will be seen at this end stage. Angiogenic factors released by the ischaemic retina are important in the pathogenesis of these retinal vascular diseases. Central retinal artery occlusion, posterior ciliary artery occlusion, ophthalmic artery occlusion, hypertension and disseminated intravascular coagulation are rarely associated with neovascular glaucoma. Choroidal neovascularisation (disciform degeneration) and age related macular degeneration are included in this chapter although they do not per se lead to anterior segment neovascularisation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bek T. Capillary closure secondary to retinal vein occlusion. A morphological, histopathological, and immunohistochemical study. Acta Ophthalmol Scand. 1998;76:643–8.

    Article  CAS  PubMed  Google Scholar 

  2. Schultz GS, Grant MB. Neovascular growth factors. Eye. 1991;5:170–80.

    Article  PubMed  Google Scholar 

  3. Pierce EA, Avery RL, Foley ED, Aiello LP, Smith LE. Vascular endothelial growth factor/vascular permeability factor expression in a mouse model of retinal neovascularization. Proc Natl Acad Sci U S A. 1995;92(3):905–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Aiello LP, Northrup JM, Keyt BA, Tagaki H, Iwamoto MA. Hypoxic regulation of vascular endothelial growth factor in retinal cells. Arch Ophthalmol. 1995;13:1538–44.

    Article  Google Scholar 

  5. Casey R, Li WW. Factors controlling ocular angiogenesis. Am J Ophthalmol. 1997;124:521–9.

    Article  CAS  PubMed  Google Scholar 

  6. Lopez PF, Sippy BD, Lambert HM, Thach AB, Hinton DR. Transdifferentiated retinal pigment epithelial cells are immunoreactive for vascular endothelial growth factor in surgically excised age-related macular degeneration-related choroidal neovascular membranes. Invest Ophthalmol Vis Sci. 1996;37(5):855–68.

    CAS  PubMed  Google Scholar 

  7. Kliffen M, Sharma HS, Mooy CM, Kerkvliet S, de Jong PT. Increased expression of angiogenic growth factors in age-related maculopathy. Br J Ophthalmol. 1997;81(2):154–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Aiello LP, Avery RL, Arrigg PG, Keyt BA, Jampel HD, Shah ST, et al. Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N Engl J Med. 1994;331(22):1480–7.

    Article  CAS  PubMed  Google Scholar 

  9. Adamis AP, Miller JW, Bernal MT, D’Amico DJ, Folkman J, Yeo TK, et al. Increased vascular endothelial growth factor levels in the vitreous of eyes with proliferative diabetic retinopathy. Am J Ophthalmol. 1994;118(4):445–50.

    Article  CAS  PubMed  Google Scholar 

  10. Boyd SR, Zachary I, Chakravarthy U, Allen GJ, Wisdom GB, Cree IA, et al. Correlation of increased vascular endothelial growth factor with neovascularization and permeability in ischemic central vein occlusion. Arch Ophthalmol. 2002;120(12):1644–50.

    Article  CAS  PubMed  Google Scholar 

  11. Noma H, Minamoto A, Funatsu H, Tsukamoto H, Nakano K, Yamashita H, et al. Intravitreal levels of vascular endothelial growth factor and interleukin-6 are correlated with macular edema in branch retinal vein occlusion. Graefes Arch Clin Exp Ophthalmol. 2006;244(3):309–15.

    Article  CAS  PubMed  Google Scholar 

  12. Mathews MK, Merges C, McLeod DS, Lutty GA. Vascular endothelial growth factor and vascular permeability changes in human diabetic retinopathy. Invest Ophthalmol Vis Sci. 1997;38(13):2729–41.

    CAS  PubMed  Google Scholar 

  13. Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med. 2003;9:669–76.

    Article  CAS  PubMed  Google Scholar 

  14. Patel A, Nguyen C, Lu S. Central retinal vein occlusion: a review of current evidence-based treatment options. Middle East Afr J Ophthalmol. 2016;23(1):44–8.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Rosenfeld PJ, Brown DM, Heier JS, Boyer DS, Kaiser PK, Chung CY, Kim RY. MARINA Study Group: Ranibizumab for neovascular age-related macular degeneration. N Engl J Med. 2006;355:1419–31.

    Article  CAS  PubMed  Google Scholar 

  16. Brown DM, Michels M, Kaiser PK, Heier JS, Sy JP, Ianchulev T. ANCHOR Study Group: Ranibizumab versus verteporfin photodynamic therapy for neovascular age-related macular degeneration: two-year results of the ANCHOR study. Ophthalmology. 2009;116:57–65.

    Article  PubMed  Google Scholar 

  17. Bashshur ZF, Haddad ZA, Schakal AR, Jaafar RF, Saad A, Noureddin BN. Intravitreal bevacizumab for treatment of neovascular age-related macular degeneration: the second year of a prospective study. Am J Ophthalmol. 2009;148(1):59–65.e1.

    Article  CAS  PubMed  Google Scholar 

  18. Heier JS, Brown DM, Chong V, et al. Intravitreal aflibercept (VEGF trap-eye) in wet age-related macular degeneration. Ophthalmology. 2012;119:2537–48.

    Article  PubMed  Google Scholar 

  19. Martin DF, Maguire MG, Fine SL, et al. Ranibizumab and bevacizumab for treatment of neovascular age-related macular degeneration: two-year results. Ophthalmology. 2012;119:1388–98.

    Article  PubMed  Google Scholar 

  20. Elman MJ, Aiello LP, Beck RW, Bressler NM, Bressler SB, Edwards AR, et al. Randomized trial evaluating ranibizumab plus prompt or deferred laser or triamcinolone plus prompt laser for diabetic macular edema. Ophthalmology. 2010;117:1064–77.

    Article  PubMed  Google Scholar 

  21. Ip MS, Domalpally A, Sun JK, Ehrlich JS. Long-term effects of therapy with ranibizumab on diabetic retinopathy severity and baseline risk factors for worsening retinopathy. Ophthalmology. 2015;122(2):367–74.

    Article  PubMed  Google Scholar 

  22. Mitchell P, McAllister I, Larsen M, Staurenghi G, Korobelnik JF, Boyer DS, et al. Evaluating the impact of intravitreal aflibercept on diabetic retinopathy progression in the VIVID-DME and VISTA-DME studies. Ophthalmol Retina. 2018;2(10):988–96.

    Article  PubMed  Google Scholar 

  23. Wykoff CC, Eichenbaum DA, Roth DB, Hill L, Fung AE, Haskova Z. Ranibizumab induces regression of diabetic retinopathy in most patients at high risk of progression to proliferative diabetic retinopathy. Ophthalmol Retina. 2018;2(10):997–1009.

    Article  PubMed  Google Scholar 

  24. Van Bergen T, Etienne I, Cunningham F, et al. The role of placental growth factor (PlGF) and its receptor system in retinal vascular diseases. Prog Retin Eye Res. 2019;69:116–36.

    Article  PubMed  CAS  Google Scholar 

  25. Nguyen QD, De Falco S, Behar-Cohen F, et al. Placental growth factor and its potential role in diabetic retinopathy and other ocular neovascular diseases. Acta Ophthalmol. 2018;96(1):e1–9. https://doi.org/10.1111/aos.13325.

    Article  PubMed  Google Scholar 

  26. Stitt AW, Curtis TM, Chen M, Medina RJ, McKay GJ, Jenkins A, et al. The progress in understanding and treatment of diabetic retinopathy. Prog Retin Eye Res. 2016;51:156–86.

    Article  PubMed  Google Scholar 

  27. Honasoge A, Nudleman E, Smith M, Rajagopal R. Emerging insights and interventions for diabetic retinopathy. Curr Diab Rep. 2019;19(10):100.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Lechner J, O’Leary OE, Stitt AW. The pathology associated with diabetic retinopathy. Vis Res. 2017;139:7–14.

    Article  PubMed  Google Scholar 

  29. Wang H, Chhablani J, Freeman WR, Chan CK, Kozak I, Bartsch DU, Cheng L. Characterization of diabetic microaneurysms by simultaneous fluorescein angiography and spectral-domain optical coherence tomography. Am J Ophthalmol. 2012;153(5):861–7.e1.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kur J, Newman EA, Chan-Ling T. (2012). Cellular and physiological mechanisms underlying blood flow regulation in the retina and choroid in health and disease. Prog Retin Eye Res. 2012;31(5):377–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Klaassen I, Van Noorden CJ, Schlingemann RO. Molecular basis of the inner blood-retinal barrier and its breakdown in diabetic macular edema and other pathological conditions. Prog Retin Eye Res. 2013;34:19–48.

    Article  CAS  PubMed  Google Scholar 

  32. Park UC, Park KH, Kim DM, Yu HG. Ahmed glaucoma valve implantation for neovascular glaucoma after vitrectomy for proliferative diabetic retinopathy. J Glaucoma. 2011;20(7):433–8.

    Article  PubMed  Google Scholar 

  33. Nassiri N, Kamali G, Rahnavardi M, Mohammadi B, Nassiri S, Rahmani L, Nassiri N. Ahmed glaucoma valve and single-plate Molteno implants in treatment of refractory glaucoma: a comparative study. Am J Ophthalmol. 2010;149(6):893–902.

    Article  PubMed  Google Scholar 

  34. Ehlers JP, Spirn MJ, Lam A, Sivalingam A, Samuel MA, Tasman W. Combination intravitreal bevacizumab/panretinal photocoagulation versus panretinal photocoagulation alone in the treatment of neovascular glaucoma. Retina. 2008;28(5):696–702.

    Article  PubMed  Google Scholar 

  35. Ciftci S, Sakalar YB, Unlu K, Keklikci U, Caca I, Dogan E. Intravitreal bevacizumab combined with panretinal photocoagulation in the treatment of open angle neovascular glaucoma. Eur J Ophthalmol. 2009;19(6):1028–33.

    Article  PubMed  Google Scholar 

  36. Yazdani S, Hendi K, Pakravan M, Mahdavi M, Yaseri M. Intravitreal bevacizumab for neovascular glaucoma: a randomized controlled trial. J Glaucoma. 2009;18(8):632–7.

    Article  PubMed  Google Scholar 

  37. Saito Y, Higashide T, Takeda H, Ohkubo S, Sugiyama K. Beneficial effects of preoperative intravitreal bevacizumab on trabeculectomy outcomes in neovascular glaucoma. Acta Ophthalmol. 2010;88(1):96–102.

    Article  CAS  PubMed  Google Scholar 

  38. Takihara Y, Inatani M, Kawaji T, Fukushima M, Iwao K, Iwao M, et al. Combined intravitreal bevacizumab and trabeculectomy with mitomycin C versus trabeculectomy with mitomycin C alone for neovascular glaucoma. J Glaucoma. 2011;20(3):196–201.

    Article  PubMed  Google Scholar 

  39. Manschot WA, Lee WR. Retinal neovascularisation arising from hyalinised blood vessels. Graefes Arch Clin Exp Ophthalmol. 1984;222:63–70.

    Article  CAS  PubMed  Google Scholar 

  40. Hiscott P, Cooling RJ, Rosen P, Garner A. The pathology of abortive neovascular outgrowths from the retina. Graefes Arch Clin Exp Ophthalmol. 1992;230:531–6.

    Article  CAS  PubMed  Google Scholar 

  41. Marshall GE, Konstas AG, Lee WR. Ultrastructural distribution of collagens types I–VI in ageing human retinal vessels. Br J Ophthalmol. 1990;74:228–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cugati S, Wang JJ, Rochtchina E, Mitchell P. Ten-year incidence of retinal vein occlusion in an older population: the Blue Mountains Eye Study. Arch Ophthalmol. 2006;124:726–32.

    Article  PubMed  Google Scholar 

  43. Bunce C, Xing W, Wormald R. Causes of blind and partial sight certifications in England and Wales: April 2007–March 2008. Eye (Lond). 2010;24(11):1692–9.

    Article  CAS  Google Scholar 

  44. Green WR, Chan CC, Hutchins GM, Terry JM. Central retinal vein occlusion, a prospective study of 29 eyes of 28 cases. Retina. 1981;1:27–55.

    CAS  PubMed  Google Scholar 

  45. Taylor AW, Sehu KW, Lee WR, Williamson TW. Morphometric assessment of the central retinal artery and vein in the optic nerve head. Can J Ophthalmol. 1993;28:320–4.

    CAS  PubMed  Google Scholar 

  46. Williamson TH. Central retinal vein occlusion: what’s the story? Br J Ophthalmol. 1997;81:691–7.

    Article  Google Scholar 

  47. Bowers DK, Finklelstein D, Wolff SM, Green WR. Branch retinal vein occlusion. A clinicopathologic case report. Retina. 1987;7:252–9.

    Article  CAS  PubMed  Google Scholar 

  48. Feist RM, Ticho BH, Shapiro MJ, Farber M. Branch retinal vein occlusion and quadratic variation in arteriovenous crossings. Am J Ophthalmol. 1992;113:664–8.

    Article  CAS  PubMed  Google Scholar 

  49. Weinberg D, Dodwell DG, Fern SA. Anatomy of arteriovenous crossings in branch retinal vein occlusion. Am J Ophthalmol. 1990;109:298–302.

    Article  CAS  PubMed  Google Scholar 

  50. Sekimoto M, Hayasaka S, Setogawa T. Type of arteriovenous crossing at site of branch retinal vein occlusion. Jpn J Ophthalmol. 1992;36:192–6.

    CAS  PubMed  Google Scholar 

  51. Zhao J, Sastry SM, Sperduto RD, Chew EY, Remaley NA. Arteriovenous crossing patterns in branch retinal vein occlusion. The Eye Disease Case-Control Study Group. Ophthalmology. 1993;100:423–8.

    Article  CAS  PubMed  Google Scholar 

  52. Muraoka Y, Tsujikawa A, Murakami T, Ogino K, Kumagai K, Miyamoto K, et al. Morphologic and functional changes in retinal vessels associated with branch retinal vein occlusion. Ophthalmology. 2013;120:91–9.

    Article  PubMed  Google Scholar 

  53. Iida Y, Muraoka Y, Ooto S, Suzuma K, Murakami T, Iida-Miwa Y, et al. Morphologic and functional retinal vessel changes in branch retinal vein occlusion: an optical coherence tomography angiography study. Am J Ophthalmol. 2017;182:168–79.

    Article  PubMed  Google Scholar 

  54. Muraoka Y, Tsujikawa A. Arteriovenous crossing associated with branch retinal vein occlusion. Jpn J Ophthalmol. 2019;63(5):353–64.

    Article  CAS  PubMed  Google Scholar 

  55. Zheng Y, He M, Congdon N. The worldwide epidemic of diabetic retinopathy. Indian J Ophthalmol. 2012;60(5):428–31.

    Article  PubMed  PubMed Central  Google Scholar 

  56. The Royal College of Ophthalmologists. Preferred practice guidelines. Diabetic retinopathy screening (DRS) and the ophthalmology clinic set up in England. 2010. http://www.rcophth.ac.uk/page.asp?section.451&sectionTitle.Clinical.Guidelines. Accessed 9 Oct 2012.

  57. Archer DB. Diabetic retinopathy: some cellular, molecular and therapeutic considerations. Eye. 1999;13:497–523.

    Article  PubMed  Google Scholar 

  58. Antonetti DA, Lieth E, Barber AJ, Gardner TW. Molecular mechanisms of vascular permeability in diabetic retinopathy. Semin Ophthalmol. 1999;14(4):240–8. Review.

    Article  CAS  PubMed  Google Scholar 

  59. Davis MD. Proliferative diabetic retinopathy. In: Ryan SJ, editor. Retina. St. Louis, MO: CV Mosby; 1989. p. 367–402.

    Google Scholar 

  60. Michael JC, de Veneccia G, Bresnick GH. Macular heterotopia in proliferative diabetic retinopathy. Arch Ophthalmol. 1994;112:1455–9.

    Article  CAS  PubMed  Google Scholar 

  61. Faulborn J, Ardjomand N. Tractional retinoschisis in proliferative diabetic retinopathy: a histopathological study. Graefes Arch Clin Exp Ophthalmol. 2000;238:40–4.

    Article  CAS  PubMed  Google Scholar 

  62. Ishibashi T, Murata T, Kohno T, Ohnishi Y, Inomata H. Peripheral choriovitreal neovascularization in proliferative diabetic retinopathy: histopathologic and ultrastructural study. Ophthalmologica. 1999;213:154–8.

    Article  CAS  PubMed  Google Scholar 

  63. Anderson HR, Stitt AW, Gardiner TA, Archer DB. Diabetic retinopathy: morphometric analysis of basement membrane thickening of capillaries in different retinal layers within arterial and venous environments. Br J Ophthalmol. 1995;79:1120–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Attawia MA, Nayak RC. Circulating antipericyte autoantibodies in diabetic retinopathy. Retina. 1999;19:390–400.

    Article  CAS  PubMed  Google Scholar 

  65. Chistiakov DA. Diabetic retinopathy: pathogenic mechanisms and current treatments. Diab Metab Syndr. 2011;5(3):165–72.

    Article  Google Scholar 

  66. Tremolada G, Del Turco C, Lattanzio R, Maestroni S, Maestroni A, Bandello F, Zerbini G. The role of angiogenesis in the development of proliferative diabetic retinopathy: impact of intravitreal anti-VEGF treatment. Exp Diabetes Res. 2012;2012:728325.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Wallow IHL, Davis MD. Clinicopathological correlation of xenon arc and argon laser photocoagulation. Arch Ophthalmol. 1979;97:2308–15.

    Article  CAS  PubMed  Google Scholar 

  68. Wallow IH, Sponsel WE, Stevens TS. Clinicopathologic correlation of diode laser burns in monkeys. Arch Ophthalmol. 1991;109:648–53.

    Article  CAS  PubMed  Google Scholar 

  69. Mirshahi A, Roohipoor R, Lashay A, Mohammadi SF, Abdoallahi A, Faghihi H. Bevacizumab-augmented retinal laser photocoagulation in proliferative diabetic retinopathy: a randomized double-masked clinical trial. Eur J Ophthalmol. 2008;2:263–9.

    Article  Google Scholar 

  70. Tonello M, Costa RA, Almeida FP, Barbosa JC, Scott IU, Jorge R. Panretinal photocoagulation versus PRP plus intravitreal bevacizumab for high-risk proliferative diabetic retinopathy (IBeHi study). Acta Ophthalmol. 2008;86:385–9.

    Article  CAS  PubMed  Google Scholar 

  71. Moradian S, Ahmadieh H, Malihi M, Soheilian M, Dehghan MH, Azarmina M. Intravitreal bevacizumab in active progressive proliferative diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol. 2008;246(12):1699–705.

    Article  CAS  PubMed  Google Scholar 

  72. Yeh PT, Yang CM, Lin YC, Chen MS, Yang CH. Bevacizumab pretreatment in vitrectomy with silicone oil for severe diabetic retinopathy. Retina. 2009;29(6):768–74.

    Article  PubMed  Google Scholar 

  73. Ahmadieh H, Shoeibi N, Entezari M, Monshizadeh R. Intravitreal bevacizumab for prevention of early postvitrectomy hemorrhage in diabetic patients: a randomized clinical trial. Ophthalmology. 2009;116:1943–8.

    Article  PubMed  Google Scholar 

  74. Erdol H, Turk A, Akyol N, Imamoglu HI. The results of intravitreal bevacizumab injections for persistent neovascularizations in proliferative diabetic retinopathy after photocoagulation therapy. Retina. 2010;30:570–7.

    Article  PubMed  Google Scholar 

  75. De Juan E, Machemer R. Ultrastructural characteristics of new vessels in proliferative diabetic retinopathy. Am J Ophthalmol. 1988;105:491–9.

    Article  PubMed  Google Scholar 

  76. Nork TM, Wallow IHL, Sramek SJ, Anderson G. Müller’s cell involvement in proliferative diabetic retinopathy. Arch Ophthalmol. 1987;105:1424–9.

    Article  CAS  PubMed  Google Scholar 

  77. de Carlo TE, Chin AT, Bonini Filho MA, Adhi M, Branchini L, Salz DA, et al. Detection of microvascular changes in eyes of patients with diabetes but not clinical diabetic retinopathy using optical coherence tomography angiography. Retina. 2015;35(11):2364–70.

    Article  PubMed  Google Scholar 

  78. Dimitrova G, Chihara E, Takahashi H, Amano H, Okazaki K. Quantitative retinal optical coherence tomography angiography in patients with diabetes without diabetic retinopathy. Invest Ophthalmol Vis Sci. 2017;58(1):190–6.

    Article  PubMed  Google Scholar 

  79. Baxter SL, Ashir A, Nguyen BJ, Nudleman E. Quantification of retinal nonperfusion associated with posterior segment neovascularization in diabetic retinopathy using ultra-widefield fluorescein angiography. Ophthalmic Surg Lasers Imaging Retina. 2019;50(2):86–92.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Jones JH, Kroll AJ, Lou PL, Ryan EA. Coats’ disease. Int Ophthalmol Clin. 2001;41:189–98.

    Article  CAS  PubMed  Google Scholar 

  81. Shields JA, Shields CL, Honavar SG, Demirci H, Cater J. Classification and management of Coats disease: the 2000 Proctor lecture. Am J Ophthalmol. 2001;131:572–83.

    Article  CAS  PubMed  Google Scholar 

  82. Shienbaum G, Tasman WS. Coats disease: a lifetime disease. Retina. 2006;26:422–4.

    PubMed  Google Scholar 

  83. Andonegui J, Aranguren M, Berástegui L. Coats disease of adult onset. Arch Soc Esp Oftalmol. 2008;83(117):120.

    Google Scholar 

  84. Wang KY, Cheng CK. A combination of intravitreal bevacizumab injection with tunable argon yellow laser photocoagulation as a treatment for adult-onset Coats’ disease. J Ocul Pharmacol Ther. 2011;27:525–30.

    Article  PubMed  CAS  Google Scholar 

  85. Sen M, Shields CL, Honavar SG, Shields JA. Coats disease: an overview of classification, management and outcomes. Indian J Ophthalmol. 2019;67(6):763–71.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Shields JA, Shields CL, Honavar SG, Demirci H. Clinical variations and complications of Coats disease in 150 cases: the 2000 Sanford Gifford Memorial Lecture. Am J Ophthalmol. 2001;131:561–71.

    Article  CAS  PubMed  Google Scholar 

  87. Shields CL, Udyaver S, Dalvin LA, Lim LAS, Atalay HT, Khoo CTL, et al. Coats disease in 351 eyes: analysis of features and outcomes over 45 years (by decade) at a single center. Indian J Ophthalmol. 2019;67:772. PMCID: PMC6552575, PubMed: 31124485.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Daruich AL, Moulin AP, Tran HV, Matet A, Munier FL. Subfoveal nodule in Coats disease: toward an updated classification predicting visual prognosis. Retina (Philadelphia, Pa). 2017;37:1591.

    Article  Google Scholar 

  89. Morris B, Foot B, Mulvihill A. A population-based study of Coats disease in the United Kingdom I: epidemiology and clinical features at diagnosis. Eye. 2010;24:1797–801.

    Article  CAS  PubMed  Google Scholar 

  90. Couvillion SS, Margolis R, Mavrofjides E, Hess D, Murray TG. Laser treatment of Coats’ disease. J Pediatr Ophthalmol Strabismus. 2005;42:367–8.

    Article  PubMed  Google Scholar 

  91. Mulvihill A, Morris B. A population-based study of Coats disease in the United Kingdom. II. Investigation, treatment, and outcomes. Eye. 2010;24:1802–7.

    Article  CAS  PubMed  Google Scholar 

  92. Ozdamar Y, Berker N, Batman C, Zilelioglu O. Vitreoretinal surgery in advanced Coats disease. Retin Cases Brief Rep. 2009;3:57–9.

    Article  PubMed  Google Scholar 

  93. Yamashita T, Kawamura H, Kojo N, Ohji M. A case of Coats’ disease with visual recovery from no light perception vision after vitrectomy. Jpn J Ophthalmol. 2011;55:78–80.

    Article  CAS  PubMed  Google Scholar 

  94. Othman IS, Moussa M, Bouhaimed M. Management of lipid exudates in Coats disease by adjuvant intravitreal triamcinolone: effects and complications. Br J Ophthalmol. 2010;94:606–10.

    Article  PubMed  Google Scholar 

  95. Kumar K, Raj P, Chandnani N, Agarwal A. Intravitreal dexamethasone implant with retinal photocoagulation for adult-onset Coats’ disease. Int Ophthalmol. 2019;39(2):465–70.

    Article  PubMed  Google Scholar 

  96. Lin CJ, Hwang JF, Chen YT, Chen SN. The effect of intravitreal bevacizumab in the treatment of Coats disease in children. Retina. 2010;30:617–22.

    Article  PubMed  Google Scholar 

  97. Wells JR, Hubbard GB III. The effect of intravitreal bevacizumab in the treatment of Coats disease in children. Retina. 2011;31:427–8.

    Article  PubMed  Google Scholar 

  98. Goel N, Kumar V, Seth A, Raina UK, Ghosh B. Role of intravitreal bevacizumab in adult onset Coats’ disease. Int Ophthalmol. 2011;31:183–90.

    Article  PubMed  Google Scholar 

  99. Zhao T, Wang K, Ma Y, Jiang YR. Resolution of total retinal detachment in Coats’ disease with intravitreal injection of bevacizumab. Graefes Arch Clin Exp Ophthalmol. 2011;249:1745–6.

    Article  PubMed  Google Scholar 

  100. Steidl SM, Hirose T, Sang D, Hartnett ME. Difficulties in excluding the diagnosis of retinoblastoma in cases of advanced Coats’ disease: a clinicopathologic report. Ophthalmologica. 1996;210:336–40.

    Article  CAS  PubMed  Google Scholar 

  101. Fernandes BF, Odashiro AN, Maloney S, Zajdenweber ME, Lopes AG, Burnier MN Jr. Clinical-histopathological correlation in a case of Coats’ disease. Diagn Pathol. 2006;1:24.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Zhao Q, Peng XY, Chen FH, Zhang YP, Wang L, You QS, et al. Vascular endothelial growth factor in Coats’ disease. Acta Ophthalmol. 2014;92:e225–8. https://doi.org/10.1111/aos.12158.

    Article  PubMed  Google Scholar 

  103. Zhang H, Liu ZL. Increased nitric oxide and vascular endothelial growth factor levels in the aqueous humor of patients with coats’ disease. J Ocul Pharmacol Ther. 2012;28(4):397–401.

    Article  PubMed  CAS  Google Scholar 

  104. Yang Q, Lu H, Song X, Li S, Wei W. iTRAQ-based proteomics investigation of aqueous humor from patients with Coats’ disease. PLoS One. 2016;11(7):e0158611.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Black GCM, Perveen R, Bonshek R, Cahill M, Clayton-Smith J, Christopher Lloyd I, et al. Coats’ disease of the retina (unilateral retinal telangiectasis) caused by somatic mutation in the NDP gene: a role for norrin in retinal angiogenesis. Hum Mol Genet. 1999;8:2031–5.

    Article  CAS  PubMed  Google Scholar 

  106. Saatci AO, Ayhan Z, Yaman A, Bora E, Ulgenalp A, Kavukcu S. A 12-year-old girl with bilateral coats disease and ABCA4 gene mutation. Case Rep Ophthalmol. 2018;9:375–80.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Robitaille JM, Zheng B, Wallace K, Beis MJ, Tatlidil C, Yang J, et al. The role of Frizzled-4 mutations in familial exudative vitreoretinopathy and Coats disease. Br J Ophthalmol. 2011;95:574.

    Article  PubMed  Google Scholar 

  108. Den Hollander AI, Davis J, Van DVV, Saskia D, Zonneveld MN, Pierrottet CO, Koenekoop RK, et al. CRB1 mutation spectrum in inherited retinal dystrophies. Hum Mutat. 2010;24:355.

    Article  CAS  Google Scholar 

  109. Sohn EH, Michaelides M, Bird AC, Roberts CJ, Moore AT, Smyth D, et al. Novel mutation in PANK2 associated with retinal telangiectasis. Br J Ophthalmol. 2011;95:149–50.

    Article  PubMed  Google Scholar 

  110. Wu J-H, Liu J-H, Ko Y-C, Wang C-T, Chung Y-C, Chu K-C, et al. Haploinsufficiency of RCBTB1 is associated with Coats disease and familial exudative vitreoretinopathy. Hum Mol Genet. 2016;25:1637–47.

    Article  CAS  PubMed  Google Scholar 

  111. Senft SH, Hidayat AA, Cavender JC. Atypical presentation of Coats disease. Retina. 1994;14:36–8.

    Article  CAS  PubMed  Google Scholar 

  112. Campbell FP. Coats disease and congenital vascular retinopathy. Trans Am Ophthalmol Soc. 1977;74:365–424.

    Google Scholar 

  113. Luckie AP, Hamilton AM. Adult Coats disease in branch retinal vein occlusion. Aust N Z J Ophthalmol. 1994;22:203–6.

    Article  CAS  PubMed  Google Scholar 

  114. Kim RY, Kearney JJ. Coats-type retinitis pigmentosa in a 4-year-old child. Am J Ophthalmol. 1997;124:846–8.

    Article  CAS  PubMed  Google Scholar 

  115. Frezzotti R, Berengo A, Guerra R, Cavalllini F. Toxoplasmic Coats retinitis. Am J Ophthalmol. 1965;59:1099–102.

    Article  CAS  PubMed  Google Scholar 

  116. Grossniklaus HE, Thomas JW, Vigneswaran N, Jarrett WH II. Retinal hemangioblastoma. A histologic, immunohistochemical, and ultrastructural evaluation. Ophthalmology. 1992;99:140–5.

    Article  CAS  PubMed  Google Scholar 

  117. Nowilaty SR, Al-Shamsi HN, Al-Khars W. Idiopathic juxtafoveolar retinal telangiectasis: a current review. Middle East Afr J Ophthalmol. 2010;17(3):224–41.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Gass JD, Blodi BA. Idiopathic juxtafoveolar retinal telangiectasis. Update of classification and follow-up study. Ophthalmology. 1993;100:1536–46.

    Article  CAS  PubMed  Google Scholar 

  119. Gamulescu MA, Walter A, Sachs H, Helbig H. Bevacizumab in the treatment of idiopathic macular telangiectasia. Graefes Arch Clin Exp Ophthalmol. 2008;246:1189–93.

    Article  CAS  PubMed  Google Scholar 

  120. García-Ben A, Gómez-Ulla F, Rodriguez-Cid MJ. Bevacizumab intravítreo como tratamiento de las telangiectasias yuxtafoveales idiopáticas tipo i [Intravitreal bevacizumab in the treatment of idiopathic juxtafoveal telangiectasis type I]. Arch Soc Esp Oftalmol. 2014;89(7):269–71.

    Google Scholar 

  121. Yannuzzi LA, Bardal AM, Freund KB, Chen KJ, Eandi CM, Blodi B. Idiopathic macular telangiectasia. Arch Ophthalmol. 2006;124:450–60.

    Article  PubMed  Google Scholar 

  122. Eliassi-Rad B, Green WR. Histopathologic study of presumed parafoveal telangiectasis. Retina. 1999;19:332–5.

    Article  CAS  PubMed  Google Scholar 

  123. Mandal S, Venkatesh P, Abbas Z, Vohra R, Garg S. Intravitreal bevacizumab (Avastin) for subretinal neovascularization secondary to type 2A idiopathic juxtafoveal telangiectasia. Graefes Arch Clin Exp Ophthalmol. 2007;245:1825–9.

    Article  CAS  PubMed  Google Scholar 

  124. Ruys J, De Laey JJ, Vanderhaeghen Y, Van Aken EH. Intravitreal bevacizumab (Avastin) for the treatment of bilateral acquired juxtafoveal retinal telangiectasis associated with choroidal neovascular membrane. Eye (Lond). 2007;21:1433–4.

    Article  CAS  Google Scholar 

  125. Mavrakanas N, Mendrinos E, Pournaras CJ, Salzmann J. Intravitreal ranibizumab and bevacizumab for bilateral subretinal neovascularization secondary to idiopathic juxtafoveal telangiectasia type 2A. Acta Ophthalmol. 2009;87:930–2.

    Article  PubMed  Google Scholar 

  126. Tasman W, Patz A, McNamara JA, Kaiser RS, Trese MT, Smith BT. Retinopathy of prematurity: the life of a lifetime disease. Am J Ophthalmol. 2006;141:167–74.

    Article  PubMed  Google Scholar 

  127. Jin J, Feng J, Gu MH, Shi CP, Zheng XY, Zhu HH, et al. Analysis on the result of retinopathy of prematurity screening in 1225 premature infants. Zhonghua Er Ke Za Zhi. 2010;48(11):829–33. Chinese.

    PubMed  Google Scholar 

  128. Hartnett ME. Advances in understanding and management of retinopathy of prematurity. Surv Ophthalmol. 2017;62(3):257–76.

    Article  PubMed  Google Scholar 

  129. Sun Y, Smith LEH. Retinal vasculature in development and diseases. Annu Rev Vis Sci. 2018;4:101–22.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Alon T, Hemo I, Itin A, et al. Vascular endothelial growth factor acts as a survival factor for newly formed retinal vessels and has implications for retinopathy of prematurity. Nat Med. 1995;1(10):1024–8.

    Article  CAS  PubMed  Google Scholar 

  131. Shih SC, Ju M, Liu N, Smith LEH. Selective stimulation of VEGFR-1 prevents oxygen-induced retinal vascular degeneration in retinopathy of prematurity. J Clin Investig. 2003;112(1):50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Hellström A, Carlsson B, Niklasson A, Segnestam K, Boguszewski M, de Lacerda L, et al. IGF-I is critical for normal vascularisation of the human retina. J Clin Endocrinol Metab. 2002;87:3413–6.

    Article  PubMed  Google Scholar 

  133. Chen J, Smith LEH. Retinopathy of prematurity. Angiogenesis. 2007;10(2):133–40.

    Article  PubMed  Google Scholar 

  134. Chen J, Connor KM, Aderman CM, Smith LE. Erythropoietin deficiency decreases vascular stability in mice. J Clin Invest. 2008;118(2):526–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Jiang Y, Wang H, Culp D, et al. Targeting Muller cell-derived VEGF164 to reduce intravitreal neovascularization in the rat model of retinopathy of prematurity. Invest Ophthalmol Vis Sci. 2014;55(2):824–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Wang H, Smith GW, Yang Z, et al. Short hairpin RNA-mediated knockdown of VEGFA in Muller cells reduces intravitreal neovascularization in a rat model of retinopathy of prematurity. Am J Pathol. 2013;183(3):964–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Zeng G, Taylor SM, McColm JR, et al. Orientation of endothelial cell division is regulated by VEGF signaling during blood vessel formation. Blood. 2007;109(4):1345–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. CCRPG. Multicentre trial of cryotherapy for ROP. Arch Ophthalmol. 1988;106:471–9.

    Google Scholar 

  139. International Committee for the Classification of Retinopathy of Prematurity. The international classification of retinopathy of prematurity revisited. Arch Ophthalmol. 2005;123:991–9.

    Article  Google Scholar 

  140. Fijalkowski N, Zheng LL, Henderson MT, et al. Stanford University Network for Diagnosis of Retinopathy of Prematurity (SUNDROP): five years of screening with telemedicine. Ophthalmic Surg Lasers Imaging Retina. 2014;45(2):106–13.

    Article  PubMed  Google Scholar 

  141. Balasubramanian M, Capone A Jr, Hartnett ME, et al. The Photographic Screening for Retinopathy of Prematurity Study (Photo-ROP): study design and baseline characteristics of enrolled patients. Retina. 2006;26(7 Suppl):S4–10.

    PubMed  Google Scholar 

  142. Photographic Screening for Retinopathy of Prematurity (Photo-ROP) Cooperative Group. The photographic screening for retinopathy of prematurity study (photo-ROP). Primary outcomes. Retina. 2009;29(1):127.

    Google Scholar 

  143. Vajzovic L, Hendrickson AE, O’Connell RV, et al. Maturation of the human fovea: correlation of spectral-domain optical coherence tomography findings with histology. Am J Ophthalmol. 2012;154(5):779–89.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Vinekar A, Jayadev C, Mangalesh S, et al. Role of tele-medicine in retinopathy of prematurity screening in rural outreach centers in India - a report of 20,214 imaging sessions in the KIDROP program. Semin Fetal Neonatal Med. 2015;20(5):335–45.

    Article  PubMed  Google Scholar 

  145. Hammer DX, Iftimia NV, Ferguson RD, et al. Foveal fine structure in retinopathy of prematurity: an adaptive optics Fourier domain optical coherence tomography study. Invest Ophthalmol Vis Sci. 2008;49(5):2061–70.

    Article  PubMed  Google Scholar 

  146. Vajzovic L, Rothman AL, Tran-Viet D, et al. Delay in retinal photoreceptor development in very preterm compared to term infants. Invest Ophthalmol Vis Sci. 2015;56(2):908–13.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Vinekar A, Avadhani K, Sivakumar M, et al. Understanding clinically undetected macular changes in early retinopathy of prematurity on spectral domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2011;52(8):5183–8.

    Article  PubMed  Google Scholar 

  148. Simpson JL, Melia M, Yang MB, et al. Current role of cryotherapy in retinopathy of prematurity: a report by the American Academy of Ophthalmology. Ophthalmology. 2012;119(4):873–7.

    Article  PubMed  Google Scholar 

  149. Mintz-Hittner HA, Geloneck MM, Chuang AZ. Clinical management of recurrent retinopathy of prematurity after intravitreal bevacizumab monotherapy. Ophthalmology. 2016;123(9):1845–55.

    Article  PubMed  Google Scholar 

  150. Mintz-Hittner HA, Kennedy KA, Chuang AZ. Efficacy of intravitreal bevacizumab for stage 3+ retinopathy of prematurity. N Engl J Med. 2011;364(7):603–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Altinsoy HI, Mutlu FM, Gungor R, Sarici SU. Combination of laser photocoagulation and intravitreal bevacizumab in aggressive posterior retinopathy of prematurity. Ophthalmic Surg Lasers Imaging. 2010;9:1–5.

    Article  Google Scholar 

  152. Law JC, Recchia FM, Morrison DG, Donahue SP, Estes RL. Intravitreal bevacizumab as adjunctive treatment for retinopathy of prematurity. J AAPOS. 2010;14:6–10.

    Article  PubMed  Google Scholar 

  153. McLeod DS, Merges C, Fukushima A, Goldberg MF, Lutty GA. Histopathologic features of neovascularization in sickle cell retinopathy. Am J Ophthalmol. 1997;124:455–72.

    Article  CAS  PubMed  Google Scholar 

  154. Nagpal KC, Patrianakos D, Asdourian GK, Goldberg MF, Rabb M, Jampol L. Spontaneous regression (autoinfarction) of proliferative sickle retinopathy. Am J Ophthalmol. 1975;80:885–92.

    Article  CAS  PubMed  Google Scholar 

  155. Condon PI, Serjeant GR. Behaviour of untreated proliferative sickle retinopathy. Br J Ophthalmol. 1980;64:404–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Fox PD, Vessey SJ, Forshaw ML, Serjeant GR. Influence of genotype on the natural history of untreated proliferative sickle retinopathy—an angiographic study. Br J Ophthalmol. 1991;75:229–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Siqueira RC, Costa RA, Scott IU, Cintra LP, Jorge R. Intravitreal bevacizumab (Avastin) injection associated with regression of retinal neovascularization caused by sickle cell retinopathy. Acta Ophthalmol Scand. 2006;84:834–5.

    Article  PubMed  Google Scholar 

  158. Shaikh S. Intravitreal bevacizumab (Avastin) for the treatment of proliferative sickle retinopathy. Indian J Ophthalmol. 2008;256:259.

    Article  Google Scholar 

  159. Cai CX, Linz MO, Scott AW. Intravitreal bevacizumab for proliferative sickle retinopathy: a case series. J Vitreo Retinal Dis. 2018;2:32–8.

    Article  Google Scholar 

  160. Jee K, Rodrigues M, Kashiwabuchi F, et al. Expression of the angiogenic mediator, angiopoietin-like 4, in the eyes of patients with proliferative sickle retinopathy. PLoS One. 2017;12:e0183320.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Gupta A, Dhawahir-Scala F, Smith A, Young L, Charles S. Radiation retinopathy: case report and review. BMC Ophthalmol. 2007;7:6.

    Article  PubMed  PubMed Central  Google Scholar 

  162. Gupta A, Muecke JS. Treatment of radiation maculopathy with intravitreal injection of bevacizumab (Avastin). Retina. 2008;28:964–8.

    Article  PubMed  Google Scholar 

  163. Finger PT, Mukkamala SK. Intravitreal anti-VEGF bevacizumab (Avastin) for external beam related radiation retinopathy. Eur J Ophthalmol. 2011;21(4):446–51.

    Article  PubMed  Google Scholar 

  164. Seibel I, Vollhardt D, Riechardt AI, et al. Influence of Ranibizumab versus laser photocoagulation on radiation retinopathy (RadiRet) - a prospective randomized controlled trial. Graefes Arch Clin Exp Ophthalmol. 2020;258(4):869–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Berger W. Molecular dissection of Norrie disease. Acta Anat (Basel). 1998;162:95–100.

    Article  CAS  Google Scholar 

  166. Berger W, van de Pol D, Warburg M, Gal A, Bleeker-Wagemakers L, de Silva H, et al. Mutations in the candidate gene for Norrie disease. Hum Mol Genet. 1992;1:461–5.

    Article  CAS  PubMed  Google Scholar 

  167. Meindl A, Berger W, Meitinger T, van de Pol D, Achatz H, Dörner C, et al. Norrie disease is caused by mutations in an extracellular protein resembling C-terminal globular domain of mucins. Nat Genet. 1992;2:139–43.

    Article  CAS  PubMed  Google Scholar 

  168. Ye X, Wang Y, Cahill H, Yu M, Badea TC, Smallwood PM, et al. Norrin, frizzled-4, and Lrp5 signaling in endothelial cells controls a genetic program for retinal vascularization. Cell. 2009;139:285–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Ohlmann A, Seitz R, Braunger B, Seitz D, Bösl MR, Tamm ER. Norrin promotes vascular regrowth after oxygen induced retinal vessel loss and suppresses retinopathy in mice. J Neurosci. 2010;30:183–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Ohlmann A, Scholz M, Goldwich A, Chauhan BK, Hudl K, Ohlmann AV, et al. Ectopic norrin induces growth of ocular capillaries and restores normal retinal angiogenesis in Norrie disease mutant mice. J Neurosci. 2005;25:1701–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Seitz R, Hackl S, Seibuchner T, Tamm ER, Ohlmann A. Norrin mediates neuroprotective effects on retinal ganglion cells via activation of the Wnt/beta-Catenin signaling pathway and the induction of neuroprotective growth factors in Müller cells. J Neurosci. 2010;30:5998–6010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Blodi FC, Hunter WS. Norrie’s disease in North America. Doc Ophthalmol. 1969;26:434–50.

    Article  CAS  PubMed  Google Scholar 

  173. Nadol JB, Eavey RD, Liberfarb RM, Merlchant SN, Williams R, Climenhager D, Albert DM. Histopathology of the ears, eyes and brain in Norrie’s disease (oculoacousticocerebral degeneration). Am J Otolaryngol. 1990;11:112–24.

    Article  PubMed  Google Scholar 

  174. Enyedi LB, de Juan E, Gaitan A. Ultrastructural study of Norrie’s disease. Am J Ophthalmol. 1991;111:439–45.

    Article  CAS  PubMed  Google Scholar 

  175. Chow CC, Kiernan DF, Chau FY, Blair MP, Ticho BH, Galasso JM, Shapiro MJ. Laser photocoagulation at birth prevents blindness in Norrie’s disease diagnosed using amniocentesis. Ophthalmology. 2010;117(12):2402–6.

    Article  PubMed  Google Scholar 

  176. Kiernan DF, Blair MP, Shapiro MJ. In utero diagnosis of Norrie disease and early laser preserves visual acuity. Arch Ophthalmol. 2010;128(10):1382.

    Article  PubMed  Google Scholar 

  177. Ko MK, Kim DS. Posterior segment neovascularization associated with acute ophthalmic artery obstruction. Retina. 2000;20:384–8.

    Article  CAS  PubMed  Google Scholar 

  178. Triplett DA, Asherson RA. Pathophysiology of the catastrophic antiphospholipid syndrome. Am J Haematol. 2000;65:154–9.

    Article  CAS  Google Scholar 

  179. Delaney WV, Torrisi PF, Hampton GR. Haemorrhagic peripheral pigment epithelial disease. Arch Ophthalmol. 1988;106:646–50.

    Article  PubMed  Google Scholar 

  180. Fritsche LG, Igl W, Bailey JN, et al. A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants. Nat Genet. 2016;48:134–43.

    Article  CAS  PubMed  Google Scholar 

  181. Edwards AO, Ritter RIII, Abel KJ, Manning A, Panhuysen C, Farrer LA. Complement factor H polymorphism and age-related macular degeneration. Science. 2005;308:421–4.

    Article  CAS  PubMed  Google Scholar 

  182. Issa PC, Change NV, Scholl HPN. The significance of the complement system for the pathogenesis of age-related macular degeneration—current evidence and translation into clinical application. Graefes Arch Clin Exp Ophthalmol. 2011;249:163–74.

    Article  CAS  Google Scholar 

  183. Whitmore SS, Sohn EH, Chirco KR, et al. Complement activation and choriocapillaris loss in early AMD: implications for pathophysiology and therapy. Prog Retin Eye Res. 2015;45:1–29.

    Article  CAS  PubMed  Google Scholar 

  184. SanGiovanni JP, Chew EY. Clinical applications of age-related macular degeneration genetics. Cold Spring Harb Perspect Med. 2014;4:a017228.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  185. Gemenetzi M, Lotery AJ. Epigenetics in age-related macular degeneration: new discoveries and future perspectives. Cell Mol Life Sci. 2020;77(5):807–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Nowak JZ. Age-related macular degeneration (AMD): pathogenesis and therapy. Pharmacol Rep. 2006;58:353–63.

    CAS  PubMed  Google Scholar 

  187. Grisanti S, Tatar O. The role of vascular endothelial growth factor and other endogenous interplayers in age-related macular degeneration. Prog Retin Eye Res. 2008;27:372–90.

    Article  CAS  PubMed  Google Scholar 

  188. Shweiki D, Itin A, Soffer D, Keshet E. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature. 1992;359:843–5.

    Article  CAS  PubMed  Google Scholar 

  189. Nozaki M, Raisler BJ, Sakurai E, Sarma JV, Barnum SR, Lambris JD, Chen Y, Zhang K, Ambati BK, Baffi JZ, Ambati J. Drusen complement components C3a and C5a promote choroidal neovascularization. Proc Natl Acad Sci U S A. 2006;103:2328–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Rohrer B, Long Q, Coughlin B, Wilson RB, Huang Y, Qiao F, Tang PH, Kunchithapautham K, Gilkeson GS, Tomlinson S. A targeted inhibitor of the alternative complement pathway reduces angiogenesis in a mouse model of age-related macular degeneration. Invest Ophthalmol Vis Sci. 2009;50:3056–64.

    Article  PubMed  Google Scholar 

  191. Pons M, Marin-Castano ME. Cigarette smoke-related hydroquinone dysregulates MCP-1, VEGF and PEDF expression in retinal pigment epithelium in vitro and in vivo. PLoS One. 2011;6(2):e16722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Beatty S, Koh H-H, Henson D, Boulton M. The role of oxidative stress in the pathogenesis of age related macular degeneration. Surv Ophthalmol. 2000;45:115–34.

    Article  CAS  PubMed  Google Scholar 

  193. Age-Related Eye Disease Study Research Group. A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E, beta carotene, and zinc for age-related macular degeneration and vision loss: AREDS report no. 8. Arch Ophthalmol. 2001;119:1417–36.

    Article  PubMed Central  Google Scholar 

  194. Wong WL, Su X, Li X, et al. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Glob Health. 2014;2:e106–16.

    Article  PubMed  Google Scholar 

  195. Lambert NG, ElShelmani H, Singh MK, et al. Risk factors and biomarkers of age-related macular degeneration. Prog Retin Eye Res. 2016;54:64–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Mitchell P, Wang JJ, Smith W, Leeder SR. Smoking and the 5-year incidence of age-related maculopathy: the Blue Mountains Eye Study. Arch Ophthalmol. 2002;120:1357–63.

    Article  PubMed  Google Scholar 

  197. Green WR, Macdonnel PY, Yeo JH. Pathologic features of senile macular degeneration. Ophthalmology. 1985;92:615–27.

    Article  CAS  PubMed  Google Scholar 

  198. Bressler SH, Silva JC, Bressler NM. Clinicopathological correlation of occult choroidal neovascularisation in age-related macular degeneration. Arch Ophthalmol. 1992;110:827–32.

    Article  CAS  PubMed  Google Scholar 

  199. Feeney Burns L, Burns RP, Gao C-L. Age related macular changes in humans over 90 years old. Am J Ophthalmol. 1990;109:265–78.

    Article  CAS  PubMed  Google Scholar 

  200. Klein R, Meuer SM, Knudtson MD, Iyengar SK, Klein BE. The epidemiology of retinal reticular drusen. Am J Ophthalmol. 2008;145:317–26.

    Article  PubMed  Google Scholar 

  201. Zweifel SA, Imamura Y, Spaide TC, Fujiwara T, Spaide RF. Prevalence and significance of subretinal drusenoid deposits (reticular pseudodrusen) in age-related macular degeneration. Ophthalmology. 2010;117:1775–81.

    Article  PubMed  Google Scholar 

  202. McLeod DS, Grebe R, Bhutto I, Merges C, Baba T, Lutty GA. Relationship between RPE and choriocapillaris in age-related macular degeneration. Invest Ophthalmol Vis Sci. 2009;50:4982–91.

    Article  PubMed  Google Scholar 

  203. Abdelsalam A, Del Priore L, Zarbin MA. Drusen in age related macular degeneration: pathogenesis, natural course and laser photocoagulation-induced regression. Surv Ophthalmol. 1999;44:1–29.

    Article  CAS  PubMed  Google Scholar 

  204. Spraul CW, Lang GE, Grossniklaus HE, Lang GK. Histologic and morphometric analysis of the choroid, Bruch’s membrane, and retinal pigment epithelium in post-mortem eyes with age related macular degeneration and histologic examination of surgically excised choroidal neovascular membranes. Surv Ophthalmol. 1999;44(Suppl 1):S10–32.

    Article  PubMed  Google Scholar 

  205. Sarks JP, Sarks SH, Killingsworth MC. Evolution of soft drusen in age-related macular degeneration. Eye. 1994;8:269–83.

    Article  PubMed  Google Scholar 

  206. Green WR, Enger C. Age-related macular degeneration histopathologic study. Ophthalmology. 1993;100:1519–35.

    Article  CAS  PubMed  Google Scholar 

  207. Li CM, Clark ME, Rudolf M, Curcio CA. Distribution and composition of esterified and unesterified cholesterol in extra-macular drusen. Exp Eye Res. 2007;85:192–201.

    Article  CAS  PubMed  Google Scholar 

  208. Rudolf M, Clark ME, Chimento MF, Li CM, Medeiros NE, Curcio CA. Prevalence and morphology of druse types in the macula and periphery of eyes with age-related maculopathy. Invest Ophthalmol Vis Sci. 2008;49:1200–9.

    Article  PubMed  Google Scholar 

  209. Curcio CA, Johnson M, Huang JD, Rudolf M. Aging, age-related macular degeneration, and the response-to-retention of apolipoprotein B-containing lipoproteins. Prog Retin Eye Res. 2009;28:393–422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Loeffler KU, Lee WR. Basal linear deposit in the human macula. Graefes Arch Clin Exp Ophthalmol. 1986;224:493–501.

    Article  Google Scholar 

  211. Killingsworth MC. Age related components of Bruch’s membrane in the human eye. Graefes Arch Clin Exp Ophthalmol. 1987;225:406–12.

    Article  CAS  PubMed  Google Scholar 

  212. Killingsworth MC, Sarks P, Sarks SH. Macrophages related to Bruch’s membrane in age related macular degeneration. Eye. 1990;4:613–21.

    Article  PubMed  Google Scholar 

  213. Sarks JP, Sarks SH, Killingsworth MC. Morphology of early choroidal neovascularisation in age-related macular degeneration: correlation with activity. Eye. 1997;11:515–22.

    Article  PubMed  Google Scholar 

  214. Loeffler KU, Lee WR. Terminology of sub-RPE deposits: do we all speak the same language? Br J Ophthalmol. 1998;82:1104–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Holz FG, Sheraidah G, Pauleikhoff D, Bird AC. Analysis of lipid deposits extracted from human macular and peripheral Bruch’s membrane. Arch Ophthalmol. 1994;112:402–6.

    Article  CAS  PubMed  Google Scholar 

  216. Mitchell P, Liew G, Gopinath B, Wong TY. Age-related macular degeneration. Lancet. 2018;392(10153):1147–59.

    Article  PubMed  Google Scholar 

  217. Bressler NM. Treatment of age-related macular degeneration with photodynamic therapy: photodynamic therapy of subfoveal choroidal neovascularization in age-related macular degeneration with verteporfin: two year results of 2 randomized clinical trials-tap report 2. Arch Ophthalmol. 2001;119:198–207.

    CAS  PubMed  Google Scholar 

  218. Gragoudas ES, Adamis AP, Cunningham ET Jr, Feinsod M, Guyer DR. VEGF inhibition study in ocular neovascularisation clinical trial group: pegaptanib for neovascular age-related macular degeneration. N Engl J Med. 2004;351:2805–16.

    Article  CAS  PubMed  Google Scholar 

  219. CATT Research Group, Martin DF, Maguire MG, Ying GS, Grunwald JE, Fine SL, Jaffe GJ. Ranibizumab and bevacizumab for neovascular age-related macular degeneration. N Engl J Med. 2011;364:1897–908.

    Article  Google Scholar 

  220. Solomon SD, Lindsley KB, Krzystolik MG, Vedula SS, Hawkins BS. Intravitreal bevacizumab versus ranibizumab for treatment of neovascular age-related macular degeneration: findings from a Cochrane systematic review. Ophthalmology. 2016;123:70–7.

    Article  PubMed  Google Scholar 

  221. Waldstein SM, Simader C, Staurenghi G, et al. Morphology and visual acuity in aflibercept and ranibizumab therapy for neovascular age-related macular degeneration in the VIEW trials. Ophthalmology. 2016;123:1521–9.

    Article  PubMed  Google Scholar 

  222. MacLaren RE, Bennett J, Schwartz SD. Gene therapy and stem cell transplantation in retinal disease: the new frontier. Ophthalmology. 2016;123:S98–106.

    Article  PubMed  Google Scholar 

  223. Boyer DS, Schmidt-Erfurth U, van Lookeren CM, Henry EC, Brittain C. The pathophysiology of geographic atrophy secondary to age-related macular degeneration and the complement pathway as a therapeutic target. Retina. 2017;37:819–35.

    Article  PubMed  PubMed Central  Google Scholar 

  224. Yaspan BL, Williams DF, Holz FG, et al. Targeting factor D of the alternative complement pathway reduces geographic atrophy progression secondary to age-related macular degeneration. Sci Transl Med. 2017;9:eaaf1443.

    Article  PubMed  CAS  Google Scholar 

  225. Yehoshua Z, de Amorim Garcia Filho CA, Nunes RP, et al. Systemic complement inhibition with eculizumab for geographic atrophy in age-related macular degeneration: the COMPLETE study. Ophthalmology. 2014;121:693–701.

    Article  PubMed  Google Scholar 

  226. Nazari H, Zhang L, Zhu D, et al. Stem cell based therapies for age-related macular degeneration: the promises and the challenges. Prog Retin Eye Res. 2015;48:1–39.

    Article  CAS  PubMed  Google Scholar 

  227. Ratnapriya R, Chew EY. Age-related macular degeneration—clinical review and genetics update. Clin Genet. 2013;84:160–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Grossniklaus HE, Gass JDM. Clinicopathologic correlations of surgically excised Type 1 and Type 2 submacular choroidal neovascular membranes. Am J Ophthalmol. 1998;126:56–9.

    Article  Google Scholar 

  229. Lafaut BA, Bartz-Schmidt KU, Vanden Broecke C, Aisenbrey S, De Laey JJ, Heimann K. Clinicopathologic correlation in exudative age related macular degeneration: histological differentiation between classic and occult choroidal neovascularisation. Br J Ophthalmol. 2000;84(3):239–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Thomas MA, Grand MG, Williams DF, Lee CM, Pesin SR, Lowe MA. Surgical management of subfoveal choroidal neovascularisation. Ophthalmology. 1992;99:952–68.

    Article  CAS  PubMed  Google Scholar 

  231. Gass JDM. Biomicroscopic and histopathologic considerations regarding the feasibility of surgical excision of subfoveal neovascular membranes. Am J Ophthalmol. 1994;118:L285–98.

    Article  Google Scholar 

  232. Nasir MA, Sugino I, Zarbin MA. Decreased choriocapillaris perfusion following surgical excision of choroidal neovascular membranes in age-related macular degeneration. Br J Ophthalmol. 1997;81:481–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Castellarin AO, Nasir MA, Sugino IK, Zarbin MA. Clinicopathological correlation of primary and recurrent choroidal neovascularisation following surgical excision in age related macular degeneration. Br J Ophthalmol. 1998;82:480–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Thomas MA, Kaplan HJ. Surgical removal of subfoveal neovascularisation in the presumed ocular histoplasmosis syndrome. Am J Ophthalmol. 1991;111:1–7.

    Article  CAS  PubMed  Google Scholar 

  235. Reddy VM, Zamora RL, Kaplan HJ. Distribution of growth factors in subfoveal neovascular membranes in age-related macular degeneration and presumed ocular histoplasmosis syndrome. Am J Ophthalmol. 1995;120(3):291–301.

    Article  CAS  PubMed  Google Scholar 

  236. Sehu KW, Lee WR, editors. Ophthalmic pathology: an illustrated guide for clinicians. Malden: Blackwell; 2008. ISBN 9780727917799.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fiona Roberts .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Roberts, F., Thum, C.K. (2021). Retinal Vascular Disease. In: Lee's Ophthalmic Histopathology. Springer, Cham. https://doi.org/10.1007/978-3-030-76525-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-76525-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-76524-8

  • Online ISBN: 978-3-030-76525-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics