Skip to main content

Use of Modern Molecular Biology and Biotechnology Tools to Improve the Quality Value of Oilseed Brassicas

  • Chapter
  • First Online:
Quality Breeding in Field Crops

Abstract

Technological advancement has changed the future of plants, if we are talking about the use and applications of molecular marker systems. Different types of methods and use of molecular markers have been developed, which have geared advancements in sequencing technologies for crop improvement. These methods are now being applied to a range of crops and have good potential particularly for oilseed crops in terms of both overall food and non-food yield and the nutritional and technical quality of the oils. In this context, the targets include increasing overall oil yield and its quality, which covers a range of parameters. This chapter introduces some recent techniques in molecular markers and their recent applications in plant breeding, with special reference to oilseed brassicas. The progress made in molecular plant breeding, genomic selection and genome editing—such as marker-assisted selection, next-generation sequencing and transgenesis—has contributed to a more comprehensive understanding of molecular breeding techniques and provided deeper insights into the diversity of techniques available and, most importantly, their efficient utilization in oleiferous crops. Genotyping by sequencing and association mapping based on next-generation sequencing technologies have facilitated the identification of novel genetic markers. Use of informational RNA technology and Targeting Induced Local Lesions in Genomes (TILLING) techniques have opened the gateway for deciphering complex and unstructured populations. Remarkable progress in producing such oils in commercial crops by utilizing novel techniques has been made in recent years, with several varieties being released or at advanced stages of development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal M, Shrivastava N, Padh H (2008) Advances in molecular marker techniques and their applications in plant sciences. Plant Cell Rep 27:617–631

    Article  CAS  PubMed  Google Scholar 

  • Araus JL, Slafer GA, Royo C, Serret MD (2008) Breeding for yield potential and stress adaptation in cereals. Crit Rev Plant Sci 27(6):377–412

    Article  Google Scholar 

  • Barret P, Delourme R, Renard M, Domergue F, Lessire L, Delseny M, Roscoe TJ (1998) A rapeseed FAE1 gene is linked to the E1 locus associated with variation in the content of erucic acid. Theory Appl Genet 96:177–186

    Article  CAS  Google Scholar 

  • Bernardo R (2008) Molecular markers and selection for complex traits in plants: learning from the past 20 years. Crop Sci 48:1649–1664

    Article  Google Scholar 

  • Burns MJ, Barnes SR, Bowman JG, Clarke MHE, Werner CP, Kearsey MJ (2003) QTL analysis of an intervarietal set of substitution lines in Brassica napus: (i) seed oil content and fatty acid composition. Heredity 90(1):39

    Article  CAS  PubMed  Google Scholar 

  • Cao Z, Tian F, Wang N, Jiang C, Lin B, Xia W, Shi J, Long Y, Zhang C, Meng J (2010) Analysis of QTLs for erucic acid and oil content in seeds on A8 chromosome and the linkage drag between the alleles for the two traits in Brassica napus. J Genet Genomics 37(4):231–240

    Article  CAS  PubMed  Google Scholar 

  • Cheng J, Zhu LH, Salentijn EM (2013) Functional analysis of the omega-6 fatty acid desaturase (CaFAD2) gene family of the oil seed crop Crambe abyssinica. BMC Plant Biol 13:146

    Article  PubMed  PubMed Central  Google Scholar 

  • Cobb JN, DeClerck G, Greenberg A, Clark R, McCouch S (2013) Next-generation phenotyping: requirements and strategies for enhancing our understanding of genotype–phenotype relationships and its relevance to crop improvement. Theor Appl Genet 126(4):867–887

    Article  PubMed  PubMed Central  Google Scholar 

  • Collins NC, Tardieu F, Tuberosa R (2008) Quantitative trait loci and crop performance under abiotic stress: where do we stand? Plant Physiol 147(2):469–486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darvasi A (1998) Experimental strategies for the genetic dissection of complex traits in animal models. Nat Genet 18(1):19

    Article  CAS  PubMed  Google Scholar 

  • Donlin MJ (2007) Using the generic genome browser (GBrowse). Curr Protoc Bioinformatics 17(1):9

    Google Scholar 

  • Edmeades GO, McMaster GS, White JW, Campos H (2004) Genomics and the physiologist: bridging the gap between genes and crop response. Field Crop Res 90(1):5–18

    Article  Google Scholar 

  • Fourmann M, Barret P, Renard M, Pelletier G, Delourme R, Brunel D (1998) The two genes homologous to Arabidopsis FAE1 co-segregate with the two loci governing erucic acid content in Brassica napus. Theor Appl Genet 96:852–858

    Article  CAS  Google Scholar 

  • Fu Y, Zhang D, Gleeson M, Zhang Y, Lin B, Hua S, Ding H, Frauen M, Li J, Qian W, Yu H (2017) Analysis of QTL for seed oil content in Brassica napus by association mapping and QTL mapping. Euphytica 213(1):17

    Article  Google Scholar 

  • Gayen D, Ali N, Ganguly M, Paul S, Datta K, Datta KS (2014) RNAi mediated silencing of lipoxygenase gene to maintain rice grain quality and viability during storage. Plant Cell Tissue Organ Cult 118:229–243

    Article  CAS  Google Scholar 

  • Gilchrist EJ, Sidebottom CH, Koh CS, MacInnes T, Sharpe AG, Haughn GW (2013) A mutant Brassica napus (Canola) population for the identification of new genetic diversity via TILLING and next generation sequencing. PLoS One 8(12):e84303

    Article  PubMed  PubMed Central  Google Scholar 

  • Guimarães EP, Ruane J, Scherf B, Sonnino A, Dargie J (eds) (2007) Marker-assisted selection: current status and future perspectives in crops, livestock, forestry and fish. Food & Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Gupta V, Mukhopadhyay A, Arumugam N, Sodhi YS, Pental D, Pradhan AK (2004) Molecular tagging of erucic acid trait in oilseed mustard (Brassica juncea) by QTL mapping and single nucleotide polymorphisms in FAE1 gene. Theor Appl Genet 108:743–749

    Article  PubMed  Google Scholar 

  • Harvey BL, Downey RK (1964) The inheritance of erucic acid content in rapeseed (Brassica napus). Can J Plant Sci 44(1):104–111

    Article  CAS  Google Scholar 

  • Hasan M, Friedt W, Kühnemann Pons J, Freitag NM, Link K, Snowdon RJ (2008) Association of gene-linked SSR markers to seed glucosinolate content in oilseed rape (Brassica napus ssp. napus). Theor Appl Genet 116(8):1035–1049

    Article  CAS  PubMed  Google Scholar 

  • Hu TT, Pattyn P, Bakker EG, Cao J, Cheng JF, Clark RM, Fahlgren N, Fawcett JA, Grimwood J, Gundlach H, Haberer G (2011) The Arabidopsis lyrata genome sequence and the basis of rapid genome size change. Nat Genet 43(5):476

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu S, Fan CC, Li JN, Cai GQ, Yang QY, Wu J, et al (2016) A genome-wide association study reveals novel elite allelic variations in seed oil content of Brassica napus. Theor Appl Genet 129:1203–1215. https://doi.org/10.1007/s00122-016-2697

  • Montoya C, Lopes R, Flori A, Cros D, Cuellar T, Summo M, Espeout S, Rivallan R, Risterucci AM, Bittencourt D, Zambrano JR (2013) Quantitative trait loci (QTLs) analysis of palm oil fatty acid composition in an interspecific pseudo-backcross from Elaeis oleifera (HBK) Cortés and oil palm (Elaeis guineensis Jacq.). Tree Genet Genomes 9(5):1207–1225

    Article  Google Scholar 

  • Passioura JB (2010) Scaling up: the essence of effective agricultural research. Funct Plant Biol 37(7):585–591

    Article  Google Scholar 

  • Peng Q, Hu Y, Wei R, Zhang Y, Guan C, Ruan Y, Liu C (2010) Simultaneous silencing of FAD2 and FAE1 genes affects both oleic acid and erucic acid contents in Brassica napus seeds. Plant Cell Rep 29(4):317–325

    Article  CAS  PubMed  Google Scholar 

  • Pratap A, Gupta SK (2009) Biology and ecology of crucifers. In: Gupta SK (ed) Biology and breeding of crucifers. CRC, Boca Raton, FL

    Google Scholar 

  • Qiu D, Morgan C, Shi J, Long Y, Liu J, Li R, Weihmann T (2006) A comparative linkage map of oilseed rape and its use for QTL analysis of seed oil and erucic acid content. Theor Appl Genet 114(1):67–80

    Article  CAS  PubMed  Google Scholar 

  • Qu C, Jia L, Fu F, Zhao H, Lu K, Wei L, Xu X, Liang Y, Li S, Wang R, Li J (2017) Genome-wide association mapping and identification of candidate genes for fatty acid composition in Brassica napus L. using SNP markers. BMC Genomics 18(1):232

    Article  PubMed  PubMed Central  Google Scholar 

  • Schranz ME, Lysak MA, Mitchell-Olds T (2006) The ABC’s of comparative genomics in the Brassicaceae: building blocks of crucifer genomes. Trends Plant Sci 11(11):535–542

    Article  CAS  PubMed  Google Scholar 

  • Sharma R, Mohapatra T, Mukherjee AK, Sharma RP (1999) Molecular markers for seed oil content in Indian mustard. J Plant Biochem Biotechnol 8(2):99–102

    Article  CAS  Google Scholar 

  • Shi J, Lang C, Wu X, Liu R, Zheng T, Zhang D, Chen J, Wu G (2015) RNAi knockdown of fatty acid elongase1 alters fatty acid composition in Brassica napus. Biochem Biophys Res Commun 466(3):518–522

    Article  CAS  PubMed  Google Scholar 

  • Shukla VK, Doyon Y, Miller JC (2009) Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature 459:437–441

    Article  CAS  PubMed  Google Scholar 

  • Smooker AM, Wells R, Morgan C, Beaudoin F, Cho K, Fraser F, Bancroft I (2011) The identification and mapping of candidate genes and QTL involved in the fatty acid desaturation pathway in Brassica napus. Theor Appl Genet 122(6):1075–1090

    Article  CAS  PubMed  Google Scholar 

  • Song QX, Li QT, Liu YF, Zhang FX, Ma B, Zhang WK, Man WQ, Du WG, Wang GD, Chen SY, Zhang JS (2013) Soybean GmbZIP123 gene enhances lipid content in the seeds of transgenic Arabidopsis plants. J Exp Bot 64(14):4329–4341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stephenson P, Baker D, Girin T, Perez A, Amoah S, King GJ, Østergaard L (2010) A rich TILLING resource for studying gene function in Brassica rapa. BMC Plant Biol 10(1):62

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun F, Liu J, Hua W, Sun X, Wang X, Wang H (2016) Identification of stable QTLs for seed oil content by combined linkage and association mapping in Brassica napus. Plant Sci 252:388–399

    Article  CAS  PubMed  Google Scholar 

  • Tsai H, Missirian V, Ngo K, Tran RK, Chan S, Sundaresan V, Comai L (2013) Production of a high efficiency TILLING population through polyploidization. Plant Physiol 161(4):1604–1614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang N, Shi L, Tian F, Ning H, Wu X, Long Y, Meng J (2010) Assessment of FAE1 polymorphisms in three Brassica species using EcoTilling and their association with differences in seed erucic acid contents. BMC Plant Biol 10:137–148

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang X (2015, pii) Brassica database (BRAD) version 2.0: integrating and mining Brassicaceae species genomic resources. Database (Oxford):bav093. https://doi.org/10.1093/database/bav093

    Article  PubMed  PubMed Central  Google Scholar 

  • Wendlinger C, Hammann S, Vetter W (2014) Various concentrations of erucic acid in mustard oil and mustard. J Food Chem 153:393–397

    Article  CAS  Google Scholar 

  • Xiong M, Guo SW (1997) Fine-scale genetic mapping based on linkage disequilibrium: theory and applications. Am J Hum Genet 60(6):1513–1531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Crouch JH (2008) Marker-assisted selection in plant breeding: from publications to practice. Crop Sci 48:391–407

    Article  Google Scholar 

  • Xu JF, Long Y, Wu JG, Xu HM, Zhao ZG, Wen J, Meng JL, Shi CH (2015) QTL identification on two genetic systems for rapeseed glucosinolate and erucic acid contents over two seasons. Euphytica 205(3):647–657

    Article  CAS  Google Scholar 

  • Yadava DK, Vasudev S, Naveen S, Mohapatra T, Prabhu KV (2012) Breeding major oil crops: present status and future research needs. In: Gupta SK (ed) Technological innovations in major world oil crops, volume 1: breeding, vol 1. Springer, New York, NY, pp 17–51

    Chapter  Google Scholar 

  • Yu J (2013) Bolbase: a comprehensive genomics database for Brassica oleracea. BMC Genomics 14:664. https://doi.org/10.1186/1471-2164-14-664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou J, Zhao Y, Liu P, Shi L, Wang X, Wang M, Meng J, Reif JC (2016) Seed quality traits can be predicted with high accuracy in Brassica napus using genomic data. PLoS One 11(11):e0166624

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rai, S.K., Bawa, V., Dar, Z.A., Sofi, N.R., Mahdi, S.S., Qureshi, A.M.I. (2019). Use of Modern Molecular Biology and Biotechnology Tools to Improve the Quality Value of Oilseed Brassicas. In: Qureshi, A., Dar, Z., Wani, S. (eds) Quality Breeding in Field Crops. Springer, Cham. https://doi.org/10.1007/978-3-030-04609-5_13

Download citation

Publish with us

Policies and ethics