Skip to main content

Molecular Ontology of Amino Acid Transport

  • Chapter
  • First Online:
Epithelial Transport Physiology

Abstract

This review focuses on the comparative physiology and phylogeny of plasma membrane transporters that absorb and redistribute amino acids in organisms. The first section briefly summarizes the life history of the environmental flux and metabolism of amino acids. It reveals a set of geological and biological events that may have shaped amino acid transport mechanisms, which evolved under everlasting antagonism of environmental availability, endogenous synthesis, and metabolic consumption of proteinogenic amino acids. The second section addresses the phylogenetic and physiological diversity of experimentally and theoretically defined amino acid transporters. It reveals a set of gene duplications, expansions, and extinctions in the phylogenetic tree of the amino acid transporters, which correlate with the rapid acquisitions of new transport phenotypes and assured remarkable adaptive plasticity of the amino acid transport network. Specific emphasis in this review is placed on the Excitatory Amino Acid Transporters and the Sodium Neurotransmitter symporter families (SLC1 and SLC6, respectively). The early evolution of these cation-coupled transporters compensating the anabolism of proteinogenic amino acids may have simultaneously driven the expansion of heterotrophy and the extinction of principal metabolic pathways (e.g. nitrogen fixation in prokaryotes and essential amino acid synthesis cascades in Metazoans). Furthermore, the extant physiological functions of these transporters – including the balance of dispensable and essential amino acids, cellular signaling, and neurochemical communication – are critical for the metabolic integrity and health of metazoan organisms. Molecular, genetic, and structural analyses of amino acid transporters have emphasized this point, and continue to provide us with an expanding knowledge base that will ultimately lead to new biomedical technologies for curing metabolic disorders and controlling pathogenic and pest organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Saier MH. Vectorial metabolism and the evolution of transport systems. J Bacteriol 2000;182:5029–35.

    Article  CAS  PubMed  Google Scholar 

  2. Kvenvolden KA, Lawless JG, Ponnamperuma C. Nonprotein Amino Acids in the Murchison Meteorite. Proc Natl Acad Sci USA 1971;68:486–90.

    Article  CAS  PubMed  Google Scholar 

  3. Bell EA. ‘Uncommon’ amino acids in plants. FEBS Lett 1976;64:29–35.

    Article  CAS  PubMed  Google Scholar 

  4. Sulser H, Sager F. Identification of uncommon amino acids in the lentil seed (Lens culinaris Med.). In: Experientia; 1976:422–3.

    Google Scholar 

  5. Cone JE, Del Rio RM, Davis JN, Stadtman TC. Chemical characterization of the selenoprotein component of clostridial glycine reductase: identification of selenocysteine as the organoselenium moiety. Proc Natl Acad Sci USA 1976;73:2659–63.

    Article  CAS  PubMed  Google Scholar 

  6. Atkins JF, Gesteland R. Biochemistry. The 22nd amino acid. Science 2002;296:1409–10.

    Article  CAS  PubMed  Google Scholar 

  7. Fujii N. D-amino acids in living higher organisms. Orig Life Evol Biosph 2002;32:103–27.

    Article  CAS  PubMed  Google Scholar 

  8. Torres AM, Tsampazi C, Geraghty DP, Bansal PS, Alewood PF, Kuchel PW. D-amino acid residue in a defensin-like peptide from platypus venom: effect on structure and chromatographic properties. Biochem J 2005;391:215–20.

    Article  CAS  PubMed  Google Scholar 

  9. Mitchell JB, Smith J. D-amino acid residues in peptides and proteins. Proteins 2003;50:563–71.

    Article  CAS  PubMed  Google Scholar 

  10. Patrick ML, Bradley TJ. The physiology of salinity tolerance in larvae of two species of Culex mosquitoes: the role of compatible solutes. J Exp Biol 2000;203:821–30.

    CAS  PubMed  Google Scholar 

  11. Balboni E. A proline shuttle in insect flight muscle. Biochem Biophys Res Commun 1978;85:1090–6.

    Article  CAS  PubMed  Google Scholar 

  12. Gade G, Auerswald L. Beetles’ choice––proline for energy output: control by AKHs. Comp Biochem Physiol B Biochem Mol Biol 2002;132:117–29.

    Article  PubMed  Google Scholar 

  13. Oparin AI. The Origin of Life. Moscow: Moscow Worker publisher; 1924.

    Google Scholar 

  14. Miller SL. A production of amino acids under possible primitive earth conditions. Science 1953;117:528–9.

    Article  CAS  PubMed  Google Scholar 

  15. Miyakawa S, Yamanashi H, Kobayashi K, Cleaves HJ, Miller SL. Prebiotic synthesis from CO atmospheres: implications for the origins of life. Proc Natl Acad Sci USA 2002;99:14628–31.

    Article  CAS  PubMed  Google Scholar 

  16. Nuevo M, Auger G, Blanot D, d’Hendecourt L. A Detailed Study of the Amino Acids Produced from the Vacuum UV Irradiation of Interstellar Ice Analogs. Orig Life Evol Biosph J Intl Soc Study Origin Life 2008;38:37–56.

    Article  CAS  Google Scholar 

  17. Rode BM. Peptides and the origin of life. Peptides 1999;20:773–86.

    Article  CAS  PubMed  Google Scholar 

  18. Thaxton CB, Bradley WL, Olsen RL. The Mystery of Life’s Origin: Reassessing Current Theories. New York: Philosophical Library, Inc.; 1984.

    Google Scholar 

  19. Schwarttz AW. From Big Bang to Primordial Planet. Setting the Stage for the Origin of Life. In: Schopf JW, ed. Life’s origin : the beginnings of biological evolution. Berkeley: University of California Press; 2002:208 p.

    Google Scholar 

  20. Oro J, Gibert J, Lichtenstein H, Wikstrom S, Flory DA. Amino-acids, aliphatic and aromatic hydrocarbons in the Murchison Meteorite. Nature 1971;230:105–6.

    Article  CAS  PubMed  Google Scholar 

  21. Oro J, Mills T. Chemical evolution of primitive solar system bodies. Adv Space Res 1989;9:105–20.

    Article  CAS  PubMed  Google Scholar 

  22. Lawless JG, Kvenvolden KA, Peterson E, Ponnamperuma C, Moore C. Amino acids indigenous to the Murray meteorite. Science 1971;173:626–7.

    Article  CAS  PubMed  Google Scholar 

  23. Encrenaz T. Search for organic molecules in the outer solar system. Adv Space Res 1986;6:237–46.

    Article  CAS  PubMed  Google Scholar 

  24. Bernstein MP, Dworkin JP, Sandford SA, Cooper GW, Allamandola LJ. Racemic amino acids from the ultraviolet photolysis of interstellar ice analogues. Nature 2002;416:401–3.

    Article  CAS  PubMed  Google Scholar 

  25. Munoz Caro GM, Meierhenrich UJ, Schutte WA, et al. Amino acids from ultraviolet irradiation of interstellar ice analogues. Nature 2002;416:403–6.

    Article  CAS  PubMed  Google Scholar 

  26. Kuan Y, Charnley S, Huang H, Tseng W, Kisiel Z. Interstellar glycine. Astrophys J 2003;593:848–67.

    Article  CAS  Google Scholar 

  27. Oro J, Berry JM. Comets and life. Adv Space Res 1987;7:23–32.

    Article  CAS  PubMed  Google Scholar 

  28. Kobayashi K, Kasamatsu T, Kaneko T, et al. Formation of amino acid precursors in cometary ice environments by cosmic radiation. Adv Space Res 1995;16:21–6.

    Article  CAS  PubMed  Google Scholar 

  29. Seckbach J. Life in the universe : from the Miller experiment to the search for life on other worlds. Dordrecht ; Boston: Kluwer Academic Publishers; 2004.

    Google Scholar 

  30. Kasting JF. Impacts and the origin of life. Earth Miner Sci 1990;59:37–42.

    CAS  PubMed  Google Scholar 

  31. Kasting JF. Earth’s early atmosphere. Science 1993;259:920–6.

    Article  CAS  PubMed  Google Scholar 

  32. Chyba C, Sagan C. Endogenous production, exogenous delivery and impact-shock synthesis of organic molecules: an inventory for the origins of life. Nature 1992;355:125–32.

    Article  CAS  PubMed  Google Scholar 

  33. Mukhin LM. Volcanic processes and synthesis of simple organic compounds on primitive earth. Orig Life 1976;7:355–68.

    Article  CAS  PubMed  Google Scholar 

  34. Markhinin EK, Podkletnov NE. The phenomenon of formation of prebiological compounds in volcanic processes. Orig Life 1977;8:225–35.

    Article  CAS  PubMed  Google Scholar 

  35. Podkletnov NE, Markhinin EK. New data on abiogenic synthesis of prebiological compounds in volcanic processes. Orig Life 1981;11:303–15.

    Article  CAS  PubMed  Google Scholar 

  36. Schwartz AW. Did minerals perform prebiotic combinatorial chemistry? Chem Biol 1996;3:515–8.

    Article  CAS  PubMed  Google Scholar 

  37. Holm NG, Cairns-Smith AG, Daniel RM, et al. Marine hydrothermal systems and the origin of life: future research. Orig Life Evol Biosph 1992;22:181–242.

    Article  CAS  PubMed  Google Scholar 

  38. Ferris JP. Chemical markers of prebiotic chemistry in hydrothermal systems. Orig Life Evol Biosph 1992;22:109–34, 91–242.

    Article  CAS  PubMed  Google Scholar 

  39. Amend JP, Shock EL. Energetics of amino acid synthesis in hydrothermal ecosystems. Science 1998;281:1659–62.

    Article  CAS  PubMed  Google Scholar 

  40. Wachtershauser G. Origin of life. Life as we don’t know it. Science 2000;289:1307–8.

    Article  CAS  PubMed  Google Scholar 

  41. Huber C, Wachtershauser G. alpha-Hydroxy and alpha-amino acids under possible Hadean, volcanic origin-of-life conditions. Science 2006;314:630–2.

    Article  CAS  PubMed  Google Scholar 

  42. Miller SL, Laszcano A. Formation of the building Blocks of Life. In: Schopf JW, ed. Life’s origin : the beginnings of biological evolution. Berkeley: University of California Press; 2002:78–108.

    Google Scholar 

  43. Wong JT. Coevolution theory of the genetic code at age thirty. Bioessays 2005;27:416–25.

    Article  CAS  PubMed  Google Scholar 

  44. Oparin AI. Origin and evolution of metabolism. Comp Biochem Physiol 1962;4:371–7.

    Article  CAS  PubMed  Google Scholar 

  45. Gilbert W. The RNA World. Nature 1986;319:618.

    Article  Google Scholar 

  46. Woese CR. The genetic code; the molecular basis for genetic expression. New York: Harper & Row; 1967.

    Google Scholar 

  47. Crick FH. The origin of the genetic code. J Mol Biol 1968;38:367–79.

    Article  CAS  PubMed  Google Scholar 

  48. Orgel LE. Evolution of the genetic apparatus. J Mol Biol 1968;38:381–93.

    Article  CAS  PubMed  Google Scholar 

  49. Ikehara K, Niihara Y. Origin and evolutionary process of the genetic code. Curr Med Chem 2007;14:3221–31.

    Article  CAS  PubMed  Google Scholar 

  50. Oba T, Fukushima J, Maruyama M, Iwamoto R, Ikehara K. Catalytic activities of [GADV]-peptides. Formation and establishment of [GADV]-protein world for the emergence of life. Orig Life Evol Biosph 2005;35:447–60.

    Article  CAS  PubMed  Google Scholar 

  51. Ikehara K. Possible steps to the emergence of life: the [GADV]-protein world hypothesis. Chem Rec 2005;5:107–18.

    Article  CAS  PubMed  Google Scholar 

  52. Ikehara K. Origins of gene, genetic code, protein and life: comprehensive view of life systems from a GNC-SNS primitive genetic code hypothesis. J Biosci 2002;27:165–86.

    Article  CAS  PubMed  Google Scholar 

  53. Brooks DJ, Fresco JR, Lesk AM, Singh M. Evolution of amino acid frequencies in proteins over deep time: inferred order of introduction of amino acids into the genetic code. In: Mol Biol Evol; 2002:1645–55.

    Google Scholar 

  54. Brooks DJ, Fresco JR. Increased frequency of cysteine, tyrosine, and phenylalanine residues since the last universal ancestor. In: Mol Cell Proteomics; 2002:125–31.

    Google Scholar 

  55. Jordan IK, Kondrashov FA, Adzhubei IA, et al. A universal trend of amino acid gain and loss in protein evolution. Nature 2005;433:633–8.

    Article  CAS  PubMed  Google Scholar 

  56. Cunchillos C, Lecointre G. Evolution of amino acid metabolism inferred through cladistic analysis. J Biol Chem 2003;278:47960–70.

    Article  CAS  PubMed  Google Scholar 

  57. Cunchillos C, Lecointre G. Early steps of metabolism evolution inferred by cladistic analysis of amino acid catabolic pathways. C R Biol 2002;325:119–29.

    Article  CAS  PubMed  Google Scholar 

  58. Voet D, Voet JG. Solutions manual to accompany biochemistry. 3rd ed. Hoboken, N.J.: John Wiley & Sons; 2004.

    Google Scholar 

  59. Michal G. Biochemical pathways : an atlas of biochemistry and molecular biology. New York, Heidelberg: John Wiley ; Spektrum Akademischer Verlag; 1999.

    Google Scholar 

  60. Young VR, Ajami AM. Glutamine: the emperor or his clothes? J Nutr 2001;131:2449S–59S; discussion 86S–7S.

    CAS  PubMed  Google Scholar 

  61. Horowitz NH. On the Evolution of Biochemical Syntheses. Proc Natl Acad Sci USA 1945;31:153–7.

    Article  CAS  PubMed  Google Scholar 

  62. Cordón F. Tratado Evolucionista de Biología. Madrid, Spain: Aguilar; 1990.

    Google Scholar 

  63. Keefe AD, Lazcano A, Miller SL. Evolution of the biosynthesis of the branched-chain amino acids. Origins of life and evolution of the biosphere : the journal of the International Society for the Study of the Origin of Life 1995;25:99–110.

    Article  CAS  Google Scholar 

  64. Jensen RA. Enzyme recruitment in evolution of new function. Annu Rev Microbiol 1976;30:409–25.

    Article  CAS  PubMed  Google Scholar 

  65. Caetano-Anolles G, Yafremava LS, Gee H, Caetano-Anolles D, Kim HS, Mittenthal JE. The origin and evolution of modern metabolism. Int J Biochem Cell Biol 2008.

    Google Scholar 

  66. Trifonov EN. Consensus temporal order of amino acids and evolution of the triplet code. Gene 2000;261:139–51.

    Article  CAS  PubMed  Google Scholar 

  67. Wiltschi B, Budisa N. Natural history and experimental evolution of the genetic code. Appl Microbiol Biotechnol 2007;74:739–53.

    Article  CAS  PubMed  Google Scholar 

  68. Berman-Frank I, Lundgren P, Chen YB, et al. Segregation of nitrogen fixation and oxygenic photosynthesis in the marine cyanobacterium Trichodesmium. Science 2001;294:1534–7.

    Article  CAS  PubMed  Google Scholar 

  69. Kasting JF, Siefert JL. Biogeochemistry. The nitrogen fix. Nature 2001;412:26–7.

    Article  CAS  PubMed  Google Scholar 

  70. Raymond J, Siefert JL, Staples CR, Blankenship RE. The natural history of nitrogen fixation. Mol Biol Evol 2004;21:541–54.

    Article  CAS  PubMed  Google Scholar 

  71. Di Giulio M. The universal ancestor and the ancestors of Archaea and Bacteria were anaerobes whereas the ancestor of the Eukarya domain was an aerobe. J Evol Biol 2007;20:543–8.

    Article  PubMed  Google Scholar 

  72. Blank CE. Evolutionary timing of the origins of mesophilic sulphate reduction and oxygenic photosynthesis: a phylogenomic dating approach. Geobiology 2004;2:1–20.

    Article  CAS  Google Scholar 

  73. Falkowski Pg. Evolution of the nitrogen cycle and its influence on the biological sequestration of CO 2 in the ocean. Science 1997;387:272–5.

    CAS  Google Scholar 

  74. Gonzalez-Lopez J, Rodelas B, Pozo C, Salmeron-Lopez V, Martinez-Toledo MV, Salmeron V. Liberation of amino acids by heterotrophic nitrogen fixing bacteria. Amino Acids 2005;28:363–7.

    Article  CAS  PubMed  Google Scholar 

  75. Thorneley RN, Ashby GA. Oxidation of nitrogenase iron protein by dioxygen without inactivation could contribute to high respiration rates of Azotobacter species and facilitate nitrogen fixation in other aerobic environments. Biochem J 1989;261:181–7.

    CAS  PubMed  Google Scholar 

  76. van Rhijn P, Vanderleyden J. The Rhizobium-plant symbiosis. Microbiol Rev 1995;59:124–42.

    PubMed  Google Scholar 

  77. Smil V. Enriching the earth : Fritz Haber, Carl Bosch, and the transformation of world food production. Cambridge, Mass.: MIT Press; 2001.

    Google Scholar 

  78. Berman-Frank I, Lundgren P, Falkowski P. Nitrogen fixation and photosynthetic oxygen evolution in cyanobacteria. Res Microbiol 2003;154:157–64.

    Article  CAS  PubMed  Google Scholar 

  79. Jékely G. Did the last common ancestor have a biological membrane? . Biology Direct 2006;1:1–4.

    Article  CAS  Google Scholar 

  80. Wachtershauser G. Evolution of the first metabolic cycles. Proc Natl Acad Sci USA 1990;87:200–4.

    Article  CAS  PubMed  Google Scholar 

  81. Graf J, Ruby EG. Host-derived amino acids support the proliferation of symbiotic bacteria. Proc Natl Acad Sci USA 1998;95:1818–22.

    Article  CAS  PubMed  Google Scholar 

  82. Moya A, Pereto J, Gil R, Latorre A. Learning how to live together: genomic insights into prokaryote-animal symbioses. Nat Rev Genet 2008;9:218–29.

    Article  CAS  PubMed  Google Scholar 

  83. Dunn MS, Shankman S, Camien MN, Block H. The amino acid requirements of twenty-three lactic acid bacteria. J Biol Chem 1947.

    Google Scholar 

  84. Watrin L, Martin-Jezequel V, Prieur D. Minimal amino acid requirements of the hyperthermophilic archaeon pyrococcus abyssi, isolated from deep-sea hydrothermal vents. Appl Environ Microbiol 1995;61:2069.

    CAS  PubMed  Google Scholar 

  85. Payne SH, Loomis WF. Retention and loss of amino acid biosynthetic pathways based on analysis of whole-genome sequences. Eukaryotic Cell 2006;5:272–6.

    Article  CAS  PubMed  Google Scholar 

  86. Singh J, Aneja KR. From ethnomycology to fungal biotechnology : exploiting fungi from natural resources for novel products. New York: Kluwer Academic/Plenum Publishers; 1999.

    Google Scholar 

  87. White JF. Clavicipitalean fungi : evolutionary biology, chemistry, biocontrol, and cultural impacts. New York: M. Dekker; 2003.

    Book  Google Scholar 

  88. Kavanagh K. Fungi : biology and applications. Chichester, West Sussex, England ; ; Hoboken, NJ: John Wiley & Sons; 2005.

    Google Scholar 

  89. Heizer EM, Jr., Raiford DW, Raymer ML, Doom TE, Miller RV, Krane DE. Amino acid cost and codon-usage biases in 6 prokaryotic genomes: a whole-genome analysis. Mol Biol Evol 2006;23:1670–80.

    Article  CAS  PubMed  Google Scholar 

  90. Akashi H, Gojobori T. Metabolic efficiency and amino acid composition in the proteomes of Escherichia coli and Bacillus subtilis. Proc Natl Acad Sci USA 2002;99:3695–700.

    Article  CAS  PubMed  Google Scholar 

  91. Craig CL, Weber RS. Selection costs of amino acid substitutions in ColE1 and ColIa gene clusters harbored by Escherichia coli. Mol Biol Evol 1998;15:774–6.

    CAS  PubMed  Google Scholar 

  92. Swire J. Selection on synthesis cost affects interprotein amino acid usage in all three domains of life. J Mol Evol 2007;64:558–71.

    Article  CAS  PubMed  Google Scholar 

  93. Langenbuch M, Portner HO. Changes in metabolic rate and N excretion in the marine invertebrate Sipunculus nudus under conditions of environmental hypercapnia: identifying effective acid-base variables. J Exp Biol 2002;205:1153–60.

    CAS  PubMed  Google Scholar 

  94. Coulson RA, Hernandez T. Increase in metabolic rate of the alligator fed proteins or amino acids. J Nutr 1979;109:538–50.

    CAS  PubMed  Google Scholar 

  95. Boudko DY, Kohn AB, Meleshkevitch EA, et al. Ancestry and progeny of nutrient amino acid transporters. Proc Natl Acad Sci USA 2005;102:1360–5.

    Article  CAS  PubMed  Google Scholar 

  96. Bush DR. Amino Acid Transport. In: Singh B, ed. Plant amino acids : biochemistry and biotechnology. New York: Marcel Dekker; 1999:305–18.

    Google Scholar 

  97. Ortiz-Lopez A, Chang H, Bush DR. Amino acid transporters in plants. Biochim Biophys Acta 2000;1465:275–80.

    Article  CAS  PubMed  Google Scholar 

  98. Chen L, Bush DR. LHT1, a lysine- and histidine-specific amino acid transporter in arabidopsis. Plant Physiol 1997;115:1127–34.

    Article  CAS  PubMed  Google Scholar 

  99. Birschwilks M, Haupt S, Hofius D, Neumann S. Transfer of phloem-mobile substances from the host plants to the holoparasite Cuscuta sp. J Exp Bot 2006;57:911–21.

    Article  CAS  PubMed  Google Scholar 

  100. Schulze W, Frommer WB, Ward JM. Transporters for ammonium, amino acids and peptides are expressed in pitchers of the carnivorous plant Nepenthes. Plant J 1999;17:637–46.

    Article  CAS  PubMed  Google Scholar 

  101. Ellison AM, Gotelli NJ. Nitrogen availability alters the expression of carnivory in the northern pitcher plant, Sarracenia purpurea. Proc Natl Acad Sci USA 2002;99:4409–12.

    Article  CAS  PubMed  Google Scholar 

  102. Liu X, Bush DR. Expression and transcriptional regulation of amino acid transporters in plants. Amino Acids 2006;30:113–20.

    Article  PubMed  CAS  Google Scholar 

  103. Wipf D, Ludewig U, Tegeder M, Rentsch D, Koch W, Frommer WB. Conservation of amino acid transporters in fungi, plants and animals. Trends Biochem Sci 2002;27:139–47.

    Article  CAS  PubMed  Google Scholar 

  104. Rentsch D, Boorer KJ, Frommer WB. Structure and function of plasma membrane amino acid, oligopeptide and sucrose transporters from higher plants. J Membr Biol 1998;162:177–90.

    Article  CAS  PubMed  Google Scholar 

  105. AGI. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 2000;408:796–815.

    Article  Google Scholar 

  106. Fischer WN, Andre B, Rentsch D, et al. Amino acid transport in plants. Trends Plant Sci 1998;3:188–95.

    Article  Google Scholar 

  107. Su YH, Frommer WB, Ludewig U. Molecular and functional characterization of a family of amino acid transporters from Arabidopsis. Plant Physiol 2004;136:3104–13.

    Article  CAS  PubMed  Google Scholar 

  108. McNeal JR, Kuehl JV, Boore JL, de Pamphilis CW. Complete plastid genome sequences suggest strong selection for retention of photosynthetic genes in the parasitic plant genus Cuscuta. BMC Plant Biol 2007;7:57.

    Article  PubMed  CAS  Google Scholar 

  109. Revill MJ, Stanley S, Hibberd JM. Plastid genome structure and loss of photosynthetic ability in the parasitic genus Cuscuta. J Exp Bot 2005;56:2477–86.

    Article  CAS  PubMed  Google Scholar 

  110. Runyon JB, Mescher MC, De Moraes CM. Volatile chemical cues guide host location and host selection by parasitic plants. Science 2006;313:1964–7.

    Article  CAS  PubMed  Google Scholar 

  111. Merchant SS, Prochnik SE, Vallon O, et al. The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 2007;318:245–50.

    Article  CAS  PubMed  Google Scholar 

  112. Fitzgerald LM, Szmant AM. Biosynthesis of ’essential’ amino acids by scleractinian corals. Biochem J 1997;322 ( Pt 1):213–21.

    CAS  PubMed  Google Scholar 

  113. Dewel RA. Colonial origin for Emetazoa: major morphological transitions and the origin of bilaterian complexity. J Morphol 2000;243:35–74.

    Article  CAS  PubMed  Google Scholar 

  114. Glansdorff N, Xu Y, Labedan B. The Last Universal Common Ancestor: emergence, constitution and genetic legacy of an elusive forerunner. Biol Direct 2008;3:29.

    Article  PubMed  CAS  Google Scholar 

  115. Rumpho ME, Summer EJ, Manhart JR. Solar-powered sea slugs. Mollusc/algal chloroplast symbiosis. Plant Physiol 2000;123:29–38.

    Article  CAS  PubMed  Google Scholar 

  116. Zhang J, Leontovich A, Sarras MP, Jr. Molecular and functional evidence for early divergence of an endothelin-like system during metazoan evolution: analysis of the Cnidarian, hydra. Development 2001;128:1607–15.

    CAS  PubMed  Google Scholar 

  117. De Marais DJ. Evolution. When did photosynthesis emerge on Earth? Science 2000;289:1703–5.

    PubMed  Google Scholar 

  118. Nelson N, Ben-Shem A. The structure of photosystem I and evolution of photosynthesis. Bioessays 2005;27:914–22.

    Article  CAS  PubMed  Google Scholar 

  119. Wong JT. A co-evolution theory of the genetic code. In: Proc Natl Acad Sci USA; 1975:1909–12.

    Google Scholar 

  120. Daniel H. Molecular and integrative physiology of intestinal peptide transport. Annu Rev Physiol 2004;66:361–84.

    Article  CAS  PubMed  Google Scholar 

  121. Hosie AHF, Poole PS. Bacterial ABC transporters of amino acids. Res Microbiol 2001;152:259–70.

    Article  CAS  PubMed  Google Scholar 

  122. Saier MH, Jr. Families of transmembrane transporters selective for amino acids and their derivatives. Microbiology 2000;146 ( Pt 8):1775–95.

    CAS  PubMed  Google Scholar 

  123. Burkovski A, Kramer R. Bacterial amino acid transport proteins: occurrence, functions, and significance for biotechnological applications. Appl Microbiol Biotechnol 2002;58:265–74.

    Article  CAS  PubMed  Google Scholar 

  124. Boudko DY, Meleshkevitch EA, Harvey WR. Novel transport phenotypes in the sodium neurotransmitter symporter family. Faseb J 2005;19:A748–A.

    Google Scholar 

  125. Okech BA, Meleshkevitch EA, Miller MM, Popova LB, Harvey WR, Boudko DY. Synergy and specificity of two Na+-aromatic amino acid symporters in the model alimentary canal of mosquito larvae. J Exp Biol 2008;211:1594–602.

    Article  CAS  PubMed  Google Scholar 

  126. Meleshkevitch EA, Robinson M, Popova LB, M.M. M, W.R. H, D.Y. B. Cloning and functional expression of the eukaryotic sodium-tryptophan symporter. JEB 2008;in press.

    Google Scholar 

  127. Christensen HN. Transport System Serving for Mono- + Diamino Acids. Proc Natl Acad Sci USA 1964;51:337.

    Article  CAS  PubMed  Google Scholar 

  128. Gerencser GA, Stevens BR. Thermodynamics of symport and antiport catalyzed by cloned or native transporters. J Exp Biol 1994;196:59–75.

    CAS  PubMed  Google Scholar 

  129. Christensen HN. Methods for distinguishing amino acid transport systems of a given cell or tissue. Fed Proc 1966;25:850–3.

    CAS  PubMed  Google Scholar 

  130. Bannai S, Christensen HN, Vadgama JV, et al. Amino acid transport systems. Nature 1984;311:308.

    CAS  PubMed  Google Scholar 

  131. Kilberg MS, Häussinger D. Mammalian amino acid transport : mechanisms and control. New York: Plenum Press; 1992.

    Google Scholar 

  132. Christensen HN, Albritton LM, Kakuda DK, MacLeod CL. Gene-product designations for amino acid transporters. J Exp Biol 1994;196:51–7.

    CAS  PubMed  Google Scholar 

  133. Broer S. Adaptation of plasma membrane amino acid transport mechanisms to physiological demands. Pflugers Arch 2002;444:457–66.

    Article  CAS  PubMed  Google Scholar 

  134. Broer S. Amino acid transport across mammalian intestinal and renal epithelia. Physiol Rev 2008;88:249–86.

    Article  CAS  PubMed  Google Scholar 

  135. Hyde R, Taylor PM, Hundal HS. Amino acid transporters: roles in amino acid sensing and signalling in animal cells. Biochem J 2003;373:1–18.

    Article  CAS  PubMed  Google Scholar 

  136. Bohmer C, Broer A, Munzinger M, et al. Characterization of mouse amino acid transporter B(0)AT1 (slc6a19). Biochem J 2005;389:745–51.

    Article  PubMed  Google Scholar 

  137. Broer A, Tietze N, Kowalczuk S, et al. The orphan transporter v7-3 (slc6a15) is a Na+-dependent neutral amino acid transporter (B0AT2). Biochem J 2006;393:421–30.

    Article  CAS  PubMed  Google Scholar 

  138. Romeo E, Dave MH, Bacic D, et al. Luminal kidney and intestine SLC6 amino acid transporters of B0AT-cluster and their tissue distribution in Mus musculus. Am J Physiol Renal Physiol 2006;290:F376–83.

    Article  CAS  PubMed  Google Scholar 

  139. Saier MH. Genome archeology leading to the characterization and classification of transport proteins. Curr Opin Microbiol 1999;2:555–61.

    Article  CAS  PubMed  Google Scholar 

  140. Saier MH, Jr. A functional-phylogenetic classification system for transmembrane solute transporters. Microbiol Mol Biol Rev 2000;64:354–411.

    Article  CAS  PubMed  Google Scholar 

  141. Busch W, Saier MH, Jr. The IUBMB-Endorsed Transporter Classification System. In: Yan Q, ed. Membrane transporters : methods and protocols Methods in molecular biology. Totowa, N.J.: Humana Press; 2003:xii, 369 p.

    Google Scholar 

  142. Saier MH, Jr. Families of Transporters and Their Classification. In: Quick MW, ed. Transmembrane transporters. New York: Wiley-Liss; 2002:1–18.

    Chapter  Google Scholar 

  143. Busch W, Saier MH, Jr. The IUBMB-endorsed transporter classification system. Mol Biotechnol 2004;27:253–62.

    Article  CAS  PubMed  Google Scholar 

  144. Saier MH, Jr., Tran CV, Barabote RD. TCDB: the Transporter Classification Database for membrane transport protein analyses and information. Nucleic Acids Res 2006;34:D181–6.

    Article  CAS  PubMed  Google Scholar 

  145. Jack DL, Yang NM, Saier MH, Jr. The drug/metabolite transporter superfamily. Eur J Biochem 2001;268:3620–39.

    Article  CAS  PubMed  Google Scholar 

  146. Boudko DY, Stevens BR, Donly BC, Harvey WR. Nutrient Amino acid and Neurotransmitter transporters. In: Lawrence I. Gilbert KIaSSG, ed. Comprehensive Molecular Insect Science. First edition ed. Amsterdam: Elsevier; 2005:255–309.

    Google Scholar 

  147. Hediger MA, Romero MF, Peng JB, Rolfs A, Takanaga H, Bruford EA. The ABCs of solute carriers: physiological, pathological and therapeutic implications of human membrane transport proteins. Pflugers Arch 2004;447:465–8.

    Article  CAS  PubMed  Google Scholar 

  148. Palacin M, Estevez R, Bertran J, Zorzano A. Molecular biology of mammalian plasma membrane amino acid transporters. Physiol Rev 1998;78:969–1054.

    CAS  PubMed  Google Scholar 

  149. Bergeron MJ, Simonin A, Burzle M, Hediger MA. Inherited epithelial transporter disorders-an overview. J Inherit Metab Dis 2008.

    Google Scholar 

  150. Kanai Y, Endou H. Functional properties of multispecific amino acid transporters and their implications to transporter-mediated toxicity. J Toxicol Sci 2003;28:1–17.

    Article  CAS  PubMed  Google Scholar 

  151. Asai K, Baik SH, Kasahara Y, Moriya S, Ogasawara N. Regulation of the transport system for C4-dicarboxylic acids in Bacillus subtilis. Microbiology 2000;146 ( Pt 2):263–71.

    CAS  PubMed  Google Scholar 

  152. Krom BP, Warner JB, Konings WN, Lolkema JS. Transporters involved in uptake of di- and tricarboxylates in Bacillus subtilis. Antonie Van Leeuwenhoek 2003;84:69–80.

    Article  CAS  PubMed  Google Scholar 

  153. Tolner B, Ubbink-Kok T, Poolman B, Konings WN. Characterization of the proton/glutamate symport protein of Bacillus subtilis and its functional expression in Escherichia coli. J Bacteriol 1995;177:2863–9.

    CAS  PubMed  Google Scholar 

  154. Burguiere P, Auger S, Hullo MF, Danchin A, Martin-Verstraete I. Three different systems participate in L-cystine uptake in Bacillus subtilis. J Bacteriol 2004;186:4875–84.

    Article  CAS  PubMed  Google Scholar 

  155. Kanai Y, Hediger MA. The glutamate and neutral amino acid transporter family: physiological and pharmacological implications. Eur J Pharmacol 2003;479:237–47.

    Article  CAS  PubMed  Google Scholar 

  156. Pita-Almenar JD, Collado MS, Colbert CM, Eskin A. Different mechanisms exist for the plasticity of glutamate reuptake during early long-term potentiation (LTP) and late LTP. J Neurosci 2006;26:10461–71.

    Article  CAS  PubMed  Google Scholar 

  157. Wang ZY, Zhang YQ, Zhao ZQ. Inhibition of tetanically sciatic stimulation-induced LTP of spinal neurons and Fos expression by disrupting glutamate transporter GLT-1. Neuropharmacology 2006;51:764–72.

    Article  CAS  PubMed  Google Scholar 

  158. Shen Y, Linden DJ. Long-term potentiation of neuronal glutamate transporters. Neuron 2005;46:715–22.

    Article  CAS  PubMed  Google Scholar 

  159. Hughes EG, Maguire JL, McMinn MT, Scholz RE, Sutherland ML. Loss of glial fibrillary acidic protein results in decreased glutamate transport and inhibition of PKA-induced EAAT2 cell surface trafficking. Brain Res Mol Brain Res 2004;124:114–23.

    Article  CAS  PubMed  Google Scholar 

  160. Levenson J, Weeber E, Selcher JC, Kategaya LS, Sweatt JD, Eskin A. Long-term potentiation and contextual fear conditioning increase neuronal glutamate uptake. Nat Neurosci 2002;5:155–61.

    Article  CAS  PubMed  Google Scholar 

  161. Luscher C, Malenka RC, Nicoll RA. Monitoring glutamate release during LTP with glial transporter currents. Neuron 1998;21:435–41.

    Article  CAS  PubMed  Google Scholar 

  162. Diamond JS, Bergles DE, Jahr CE. Glutamate release monitored with astrocyte transporter currents during LTP. Neuron 1998;21:425–33.

    Article  CAS  PubMed  Google Scholar 

  163. Arriza JL, Kavanaugh MP, Fairman WA, et al. Cloning and expression of a human neutral amino acid transporter with structural similarity to the glutamate transporter gene family. J Biol Chem 1993;268:15329–32.

    CAS  PubMed  Google Scholar 

  164. Kekuda R, Prasad PD, Fei YJ, et al. Cloning of the sodium-dependent, broad-scope, neutral amino acid transporter Bo from a human placental choriocarcinoma cell line. J Biol Chem 1996;271:18657–61.

    Article  CAS  PubMed  Google Scholar 

  165. Utsunomiya-Tate N, Endou H, Kanai Y. Cloning and functional characterization of a system ASC-like Na+-dependent neutral amino acid transporter. J Biol Chem 1996;271:14883–90.

    Article  CAS  PubMed  Google Scholar 

  166. Wolfgang CL, Lin C, Meng Q, Karinch AM, Vary TC, Pan M. Epidermal growth factor activation of intestinal glutamine transport is mediated by mitogen-activated protein kinases. J Gastrointest Surg 2003;7:149–56.

    Article  PubMed  Google Scholar 

  167. Furuya S, Watanabe M. Novel neuroglial and glioglial relationships mediated by L-serine metabolism. Arch Histol Cytol 2003;66:109–21.

    Article  CAS  PubMed  Google Scholar 

  168. Li R, Younes M, Frolov A, et al. Expression of neutral amino acid transporter ASCT2 in human prostate. Anticancer Res 2003;23:3413–8.

    CAS  PubMed  Google Scholar 

  169. Kanai Y, Hediger MA. The glutamate/neutral amino acid transporter family SLC1: molecular, physiological and pharmacological aspects. Pflugers Arch 2004;447:469–79.

    Article  CAS  PubMed  Google Scholar 

  170. Broer A, Wagner C, Lang F, Broer S. Neutral amino acid transporter ASCT2 displays substrate-induced Na+ exchange and a substrate-gated anion conductance. Biochem J 2000;346:705–10.

    Article  CAS  PubMed  Google Scholar 

  171. Boudker O, Ryan RM, Yernool D, Shimamoto K, Gouaux E. Coupling substrate and ion binding to extracellular gate of a sodium-dependent aspartate transporter. Nature 2007;445:387–93.

    Article  CAS  PubMed  Google Scholar 

  172. Rasko JEJ, Battini J-L, Gottschalk RJ, Mazo I, Miller AD. The RD114/simian type D retrovirus receptor is a neutral amino acid transporter. PNAS 1999;96:2129–34.

    Article  CAS  PubMed  Google Scholar 

  173. Marin M, Lavillette D, Kelly SM, Kabat D. N-linked glycosylation and sequence changes in a critical negative control region of the ASCT1 and ASCT2 neutral amino acid transporters determine their retroviral receptor functions. J Virol 2003;77:2936–45.

    Article  CAS  PubMed  Google Scholar 

  174. Donly C, Jevnikar J, McLean H, Caveney S. Substrate-stereoselectivity of a high-affinity glutamate transporter cloned from the CNS of the cockroach Diploptera punctata. Insect Biochem Mol Biol 2000;30:369–76.

    Article  CAS  PubMed  Google Scholar 

  175. Kirschner MA, Copeland NG, Gilbert DJ, Jenkins NA, Amara SG. Mouse excitatory amino acid transporter EAAT2: isolation, characterization, and proximity to neuroexcitability loci on mouse chromosome 2. Genomics 1994;24:218–24.

    Article  CAS  PubMed  Google Scholar 

  176. Kanai Y, Smith CP, Hediger MA. The elusive transporters with a high affinity for glutamate. Trends Neurosci 1993;16:365–70.

    Article  CAS  PubMed  Google Scholar 

  177. Kanai Y, Hediger MA. Primary structure and functional characterization of a high-affinity glutamate transporter. Nature 1992;360:467–71.

    Article  CAS  PubMed  Google Scholar 

  178. Suchak SK, Baloyianni NV, Perkinton MS, Williams RJ, Meldrum BS, Rattray M. The ’glial’ glutamate transporter, EAAT2 (Glt-1) accounts for high affinity glutamate uptake into adult rodent nerve endings. J Neurochem 2003;84:522–32.

    Article  CAS  PubMed  Google Scholar 

  179. Besson MT, Soustelle L, Birman S. Identification and structural characterization of two genes encoding glutamate transporter homologues differently expressed in the nervous system of Drosophila melanogaster. FEBS Lett 1999;443:97–104.

    Article  CAS  PubMed  Google Scholar 

  180. Arriza JL, Eliasof S, Kavanaugh MP, Amara SG. Excitatory amino acid transporter 5, a retinal glutamate transporter coupled to a chloride conductance. Proc Natl Acad Sci USA 1997;94:4155–60.

    Article  CAS  PubMed  Google Scholar 

  181. Kucharski R, Ball EE, Hayward DC, Maleszka R. Molecular cloning and expression analysis of a cDNA encoding a glutamate transporter in the honeybee brain. Gene 2000;242:399–405.

    Article  CAS  PubMed  Google Scholar 

  182. Rimaniol AC, Haik S, Martin M, et al. Na+-dependent high-affinity glutamate transport in macrophages. J Immunol 2000;164:5430–8.

    CAS  PubMed  Google Scholar 

  183. Huggett JF, Mustafa A, O’Neal L, Mason DJ. The glutamate transporter GLAST-1 (EAAT-1) is expressed in the plasma membrane of osteocytes and is responsive to extracellular glutamate concentration. Biochem Soc Trans 2002;30:890–3.

    Article  CAS  PubMed  Google Scholar 

  184. Amara SG, Fontana AC. Excitatory amino acid transporters: keeping up with glutamate. Neurochem Int 2002;41:313–8.

    Article  CAS  PubMed  Google Scholar 

  185. Arriza JL, Fairman WA, Wadiche JI, Murdoch GH, Kavanaugh MP, Amara SG. Functional comparisons of three glutamate transporter subtypes cloned from human motor cortex. J Neurosci 1994;14:5559–69.

    CAS  PubMed  Google Scholar 

  186. Chen Y, Swanson RA. The glutamate transporters EAAT2 and EAAT3 mediate cysteine uptake in cortical neuron cultures. J Neurochem 2003a;84:1332–9.

    Article  CAS  PubMed  Google Scholar 

  187. Fairman WA, Vandenberg RJ, Arriza JL, Kavanaugh MP, Amara SG. An excitatory amino-acid transporter with properties of a ligand-gated chloride channel. Nature 1995;375:599–603.

    Article  CAS  PubMed  Google Scholar 

  188. Torres GE, Amara SG. Glutamate and monoamine transporters: new visions of form and function. Curr Opin Neurobiol 2007;17:304–12.

    Article  CAS  PubMed  Google Scholar 

  189. Danbolt NC. Glutamate uptake. Prog Neurobiol 2001;65:1–105.

    Article  CAS  PubMed  Google Scholar 

  190. Furuta A, Martin LJ, Lin CL, Dykes-Hoberg M, Rothstein JD. Cellular and synaptic localization of the neuronal glutamate transporters excitatory amino acid transporter 3 and 4. Neuroscience 1997;81:1031–42.

    Article  CAS  PubMed  Google Scholar 

  191. Ganel R, Rothstein JD. Glutamate Transporter Dysfunction and Neuronal Death. In: Adelmann G, Jonas P, Monyer H, eds. Ionotropic glutamate receptors in the CNS Handbook of experimental pharmacology v 141. Berlin ; New York: Springer; 2000:xxii, 535 p.

    Google Scholar 

  192. Yi JH, Hazell AS. Excitotoxic mechanisms and the role of astrocytic glutamate transporters in traumatic brain injury. Neurochem Int 2006;48:394–403.

    Article  CAS  PubMed  Google Scholar 

  193. Smith CP, Weremowicz S, Kanai Y, Stelzner M, Morton CC, Hediger MA. Assignment of the gene coding for the human high-affinity glutamate transporter EAAC1 to 9p24: potential role in dicarboxylic aminoaciduria and neurodegenerative disorders. Genomics 1994;20:335–6.

    Article  CAS  PubMed  Google Scholar 

  194. Aoki M, Lin CL, Rothstein JD, et al. Mutations in the glutamate transporter EAAT2 gene do not cause abnormal EAAT2 transcripts in amyotrophic lateral sclerosis. Ann Neurol 1998;43:645–53.

    Article  CAS  PubMed  Google Scholar 

  195. Trotti D, Aoki M, Pasinelli P, et al. Amyotrophic lateral sclerosis-linked glutamate transporter mutant has impaired glutamate clearance capacity. J Biol Chem 2001;276:576–82.

    Article  CAS  PubMed  Google Scholar 

  196. Pampliega O, Domercq M, Villoslada P, Sepulcre J, Rodriguez-Antiguedad A, Matute C. Association of an EAAT2 polymorphism with higher glutamate concentration in relapsing multiple sclerosis. J Neuroimmunol 2008;195:194–8.

    Article  CAS  PubMed  Google Scholar 

  197. Jen JC, Wan J, Palos TP, Howard BD, Baloh RW. Mutation in the glutamate transporter EAAT1 causes episodic ataxia, hemiplegia, and seizures. Neurology 2005;65:529–34.

    Article  CAS  PubMed  Google Scholar 

  198. Usherwood PNR. Insect glutamate receptors. Adv Insect Physiol 1994;24:309–41.

    Article  CAS  Google Scholar 

  199. Bicker G, Schafer S, Ottersen OP, Storm-Mathisen J. Glutamate-like immunoreactivity in identified neuronal populations of insect nervous systems. J Neurosci 1988;8:2108–22.

    CAS  PubMed  Google Scholar 

  200. Monaghan DT, Bridges RJ, Cotman CW. The excitatory amino acid receptors: their classes, pharmacology, and distinct properties in the function of the central nervous system. Annu Rev Pharmacol Toxicol 1989;29:365–402.

    Article  CAS  PubMed  Google Scholar 

  201. Gasic GP, Hollmann M. Molecular neurobiology of glutamate receptors. Annu Rev Physiol 1992;54:507–36.

    Article  CAS  PubMed  Google Scholar 

  202. Jan LY, Jan YN. Properties of the larval neuromuscular junction in Drosophila melanogaster. J Physiol 1976b;262:189–214.

    CAS  PubMed  Google Scholar 

  203. Jan LY, Jan YN. L-glutamate as an excitatory transmitter at the Drosophila larval neuromuscular junction. J Physiol 1976a;262:215–36.

    CAS  PubMed  Google Scholar 

  204. Petersen SA, Fetter RD, Noordermeer JN, Goodman CS, DiAntonio A. Genetic analysis of glutamate receptors in drosophila reveals a retrograde signal regulating presynaptic transmitter release. Neuron 1997;19:1237–48.

    Article  CAS  PubMed  Google Scholar 

  205. Schuster CM, Ultsch A, Schloss P, Cox JA, Schmitt B, Betz H. Molecular cloning of an invertebrate glutamate receptor subunit expression in Drosophila muscle. Science 1991;254:112–4.

    Article  CAS  PubMed  Google Scholar 

  206. Maleszka R, Helliwell P, Kucharski R. Pharmacological interference with glutamate re-uptake impairs long-term memory in the honeybee, apis mellifera. Behav Brain Res 2000;115:49–53.

    Article  CAS  PubMed  Google Scholar 

  207. Chiang AS, Lin WY, Liu HP, et al. Insect NMDA receptors mediate juvenile hormone biosynthesis. Proc Natl Acad Sci USA 2002;99:37–42.

    Article  CAS  PubMed  Google Scholar 

  208. Seal RP, Daniels GM, Wolfgang WJ, Forte M, Amara S. Identification and characterization of a cDNA encoding a neuronal glutamate transporter from Drosophila melanogaster. Recept Channel 1998;6:51–64.

    CAS  Google Scholar 

  209. Donly BC, Richman A, Hawkins E, McLean H, Caveney S. Molecular cloning and functional expression of an insect high-affinity Na+-dependent glutamate transporter. Eur J Biochem 1997;248:535–42.

    Article  CAS  PubMed  Google Scholar 

  210. Umesh A, Cohen BN, Ross LS, Gill SS. Functional characterization of a glutamate/aspartate transporter from the mosquito Aedes aegypti. J Exp Biol 2003;206:2241–55.

    Article  CAS  PubMed  Google Scholar 

  211. Besson MT, Soustelle L, Birman S. Selective high-affinity transport of aspartate by a Drosophila homologue of the excitatory amino-acid transporters. Curr Biol 2000;10:207–10.

    Article  CAS  PubMed  Google Scholar 

  212. Besson MT, Re DB, Moulin M, Birman S. High affinity transport of taurine by the Drosophila aspartate transporter dEAAT2. J Biol Chem 2005;280:6621–6.

    Article  CAS  PubMed  Google Scholar 

  213. Caveney S, Donly BC. Neurotransmitter transporters in the insect nervous system. Adv Insect Physiol 2002;29:55–149.

    Article  CAS  Google Scholar 

  214. Gardiner RB, Ullensvang K, Danbolt NC, Caveney S, Donly BC. Cellular distribution of a high-affinity glutamate transporter in the nervous system of the cabbage looper Trichoplusia ni. J Exp Biol 2002;205:2605–14.

    CAS  PubMed  Google Scholar 

  215. Yernool D, Boudker O, Jin Y, Gouaux E. Structure of a glutamate transporter homologue from Pyrococcus horikoshii. Nature 2004;431:811–8.

    Article  CAS  PubMed  Google Scholar 

  216. Yernool D, Boudker O, Folta-Stogniew E, Gouaux E. Trimeric subunit stoichiometry of the glutamate transporters from Bacillus caldotenax and Bacillus stearothermophilus. Biochemistry 2003;42:12981–8.

    Article  CAS  PubMed  Google Scholar 

  217. Haugeto O, Ullensvang K, Levy LM, et al. Brain glutamate transporter proteins form homomultimers. J Biol Chem 1996;271:27715–22.

    Article  CAS  PubMed  Google Scholar 

  218. Gouaux E. Review. The molecular logic of sodium-coupled neurotransmitter transporters. Philos Trans R Soc Lond B Biol Sci 2008.

    Google Scholar 

  219. Eskandari S, Kreman M, Kavanaugh MP, Wright EM, Zampighi GA. Pentameric assembly of a neuronal glutamate transporter. Proc Natl Acad Sci USA 2000;97:8641–6.

    Article  CAS  PubMed  Google Scholar 

  220. Shrivastava IH, Jiang J, Amara SG, Bahar I. Time-resolved mechanism of extracellular gate opening and substrate binding in a glutamate transporter. J Biol Chem 2008;283:28680–90.

    Article  CAS  PubMed  Google Scholar 

  221. Chen YB, Durnford DG, Koblizek M, Falkowski PG. Plastid regulation of Lhcb1 transcription in the chlorophyte alga Dunaliella tertiolecta. Plant Physiol 2004;136:3737–50.

    Article  CAS  PubMed  Google Scholar 

  222. Broer S. The SLC6 orphans are forming a family of amino acid transporters. Neurochemistry International Glutamate in CNS Metabolism and Neurotransmission: Interactions at the Inter and Intracellular Level 2006;48:559–67.

    Google Scholar 

  223. Castagna M, Shayakul C, Trotti D, Sacchi VF, Harvey WR, Hediger MA. Molecular characteristics of mammalian and insect amino acid transporters: implications for amino acid homeostasis. J Exp Biol 1997;200 ( Pt 2):269–86.

    CAS  PubMed  Google Scholar 

  224. Yamashita A, Singh SK, Kawate T, Jin Y, Gouaux E. Crystal structure of a bacterial homologue of Na+/Cl−-dependent neurotransmitter transporters. Nature 2005;437:215–23.

    Article  CAS  PubMed  Google Scholar 

  225. Androutsellis-Theotokis A, Goldberg NR, Ueda K, et al. Characterization of a functional bacterial homologue of sodium-dependent neurotransmitter transporters. J Biol Chem 2003;278:12703–9.

    Article  CAS  PubMed  Google Scholar 

  226. Hoglund PJ, Adzic D, Scicluna SJ, Lindblom J, Fredriksson R. The repertoire of solute carriers of family 6: identification of new human and rodent genes. Biochem Biophys Res Commun 2005;336:175–89.

    Article  PubMed  CAS  Google Scholar 

  227. Lill H, Nelson N. Homologies and family relationships among Na+/Cl− neurotransmitter transporters. Meth Enzymol 1998;296:425–36.

    Article  CAS  PubMed  Google Scholar 

  228. Johnson K, Knust E, Skaer H. bloated tubules (blot) encodes a Drosophila member of the neurotransmitter transporter family required for organisation of the apical cytocortex. Dev Biol 1999;212:440–54.

    Article  CAS  PubMed  Google Scholar 

  229. Chen NH, Reith ME, Quick MW. Synaptic uptake and beyond: the sodium- and chloride-dependent neurotransmitter transporter family SLC6. Pflugers Arch 2003;29:29.

    Google Scholar 

  230. Levi G, Raiteri M. Exchange of Neurotransmitter Amino-Acid at Nerve-Endings Can Simulate High Affinity Uptake. Nature 1974;250:735–7.

    Article  CAS  PubMed  Google Scholar 

  231. Guastella J, Nelson N, Nelson H, et al. Cloning and expression of a rat brain GABA transporter. Science 1990;249:1303–6.

    Article  CAS  PubMed  Google Scholar 

  232. Liu QR, Mandiyan S, Nelson H, Nelson N. A family of genes encoding neurotransmitter transporters. Proc Natl Acad Sci USA 1992;89:6639–43.

    Article  CAS  PubMed  Google Scholar 

  233. Pacholczyk T, Blakely RD, Amara SD. Expression cloning of a cocaine- and antidepressant-sensitive human noradrenaline transporter. Nature 1991;350:350–4.

    Article  CAS  PubMed  Google Scholar 

  234. Nelson H, Mandiyan S, Nelson N. Cloning of the human brain GABA transporter. FEBS Lett 1990;269:181–4.

    Article  CAS  PubMed  Google Scholar 

  235. Borden LA, Smith KE, Gustafson EL, Branchek TA, Weinshank RL. Cloning and expression of a betaine/GABA transporter from human brain. J Neurochem 1995;64:977–84.

    Article  CAS  PubMed  Google Scholar 

  236. Lill H, Nelson N. Homologies and family relationships among Na+/Cl− neurotransmitter transporters. In: Amara SG, ed. Methods Enzymol Neurotransmitter Transporter. San Diego: Academic Press; 1998: 425–36.

    Chapter  Google Scholar 

  237. Kanner BI. Structure and function of sodium-coupled GABA and glutamate transporters. J Membr Biol 2006;213:89–100.

    Article  CAS  PubMed  Google Scholar 

  238. Callec JJ. Synaptic transmission in the central nervous system. In: Kerkut GA, Gilbert LI, eds. Comprehensive Insect Physiology, Biochemistry and Pharmacology. Oxford: Pergamon Press; 1985:139–79.

    Google Scholar 

  239. Umesh A, Gill SS. Immunocytochemical localization of a Manduca sexta gamma-aminobutyric acid transporter. J Compar Neurol 2002;448:388–98.

    Article  CAS  Google Scholar 

  240. Mbungu D, Ross LS, Gill SS. Cloning, functional expression, and pharmacology of a GABA transporter from Manduca sexta. Arch Biochem Biophys 1995;318:489–97.

    Article  CAS  PubMed  Google Scholar 

  241. Gao X, McLean H, Caveney S, Donly C. Molecular cloning and functional characterization of a GABA transporter from the CNS of the cabbage looper, Trichoplusia ni. Insect Biochem Mol Biol 1999;29:609–23.

    Article  CAS  PubMed  Google Scholar 

  242. Neckameyer WS. Dopamine and mushroom bodies in Drosophila: experience-dependent and -independent aspects of sexual behavior. Learn Mem 1998;5:157–65.

    CAS  PubMed  Google Scholar 

  243. Raible F, Arendt D. Metazoan evolution: some animals are more equal than others. Curr Biol 2004;14:R106–8.

    CAS  PubMed  Google Scholar 

  244. Pflüger H-J, Stevenson PA. Evolutionary aspects of octopaminergic systems with emphasis on the arthropods. Arthropod Structure and Development. Arthropod Struct Dev 2005;34:379–96.

    Article  CAS  Google Scholar 

  245. Evans PD, Maqueira B. Insect octopamine receptors: a new classification scheme based on studies of cloned Drosophila G-protein coupled receptors. Invert Neurosci 2005;5:111–8.

    Article  CAS  PubMed  Google Scholar 

  246. Caveney S, Cladman W, Verellen L, Donly C. Ancestry of neuronal monoamine transporters in the Metazoa. J Exp Biol 2006;209:4858–68.

    Article  CAS  PubMed  Google Scholar 

  247. Gu HH, Wu X, Han DD. Conserved serine residues in serotonin transporter contribute to high-affinity cocaine binding. Biochem Biophys Res Commun 2006;343:1179–85.

    Article  CAS  PubMed  Google Scholar 

  248. Chen R, Wu X, Wei H, Han DD, Gu HH. Molecular cloning and functional characterization of the dopamine transporter from Eloria noyesi, a caterpillar pest of cocaine-rich coca plants. Gene 2006;366:152–60.

    Article  CAS  PubMed  Google Scholar 

  249. Haddley K, Vasiliou AS, Ali FR, Paredes UM, Bubb VJ, Quinn JP. Molecular genetics of monoamine transporters: relevance to brain disorders. Neurochem Res 2008;33:652–67.

    Article  CAS  PubMed  Google Scholar 

  250. Zis AP, Goodwin FK. Novel antidepressants and the biogenic amine hypothesis of depression. The case for iprindole and mianserin. Arch Gen Psychiatry 1979;36:1097–107.

    CAS  PubMed  Google Scholar 

  251. Shirahata T, Tsunoda M, Santa T, Kirino Y, Watanabe S. Depletion of serotonin selectively impairs short-term memory without affecting long-term memory in odor learning in the terrestrial slug Limax valentianus. Learn Mem 2006;13:267–70.

    Article  CAS  PubMed  Google Scholar 

  252. King MV, Marsden CA, Fone KC. A role for the 5-HT(1A), 5-HT(4) and 5-HT(6) receptors in learning and memory. Trends Pharmacol Sci 2008;29:482–92.

    Article  CAS  PubMed  Google Scholar 

  253. Eison MS. Serotonin: a common neurobiologic substrate in anxiety and depression. J Clin Psychopharmacol 1990;10:26S–30S.

    CAS  PubMed  Google Scholar 

  254. Weizman A, Weizman R. Serotonin transporter polymorphism and response to SSRIs in major depression and relevance to anxiety disorders and substance abuse. Pharmacogenomics 2000;1:335–41.

    Article  CAS  PubMed  Google Scholar 

  255. Gillette R. Evolution and Function in Serotonergic Systems. Integr Comp Biol 2006;46:838–46.

    Article  CAS  Google Scholar 

  256. Klemm N, Schneider L. Selective uptake of indolamine into nervous fibers in the brain of the desert locust, Schistocerca gregaria Forskal (Insecta). A fluorescence and electron microscopic investigation. Comp Biochem Physiol 1975;50C:177–82.

    Google Scholar 

  257. McDonald TJ. Neuromuscular pharmacology of insects. Annu Rev Entomol 1975;20:151–66.

    Article  CAS  PubMed  Google Scholar 

  258. Maddrell SH. A Diuretic Hormone in Rhodnius Prolixus Stal. Nature 1962;194:605.

    Article  Google Scholar 

  259. O’Donnell MJ, Maddrell SH. Secretion by the Malpighian tubules of Rhodnius prolixus stal: electrical events. J Exp Biol 1984;110:275–90.

    PubMed  Google Scholar 

  260. Brown CS, Nestler C. Catecholamines and indolalkylamines. In: Kerkut GA, Gilbert LI, eds. Comprehensive Insect Physiology, Biochemistry and Pharmacology. Oxford: Pergamon Press; 1985:436–97.

    Google Scholar 

  261. Clark TM, Hutchinson MJ, Huegel KL, Moffett SB, Moffett DF. Additional morphological and physiological heterogeneity within the midgut of larval Aedes aegypti (Diptera : Culicidae) revealed by histology, electrophysiology, and effects of Bacillus thuringiensis endotoxin. Tissue Cell 2005;37:457–68.

    Article  CAS  PubMed  Google Scholar 

  262. Schewe B, Schmalzlin E, Walz B. Intracellular pH homeostasis and serotonin-induced pH changes in Calliphora salivary glands: the contribution of V-ATPase and carbonic anhydrase. J Exp Biol 2008;211:805–15.

    Article  CAS  PubMed  Google Scholar 

  263. Boudko DY, Moroz LL, Harvey WR, Linser PJ. Alkalinization by chloride/bicarbonate pathway in larval mosquito midgut. Proc Natl Acad Sci USA 2001;98:15354–9.

    Article  CAS  PubMed  Google Scholar 

  264. Okech BA, Boudko DY, Linser PJ, Harvey WR. Cationic pathway of pH regulation in larvae of Anopheles gambiae. J Exp Biol 2008;211:957–68.

    Article  CAS  PubMed  Google Scholar 

  265. Baier A, Wittek B, Brembs B. Drosophila as a new model organism for the neurobiology of aggression? J Exp Biol 2002;205:1233–40.

    PubMed  Google Scholar 

  266. Kostowski W, Tarchalska-Krynska B, Markowska L. Aggressive behavior and brain serotonin and catecholamines in ants (Formica rufa). Pharmacol Biochem Behav 1975;3:717–9.

    Article  CAS  PubMed  Google Scholar 

  267. Novak MG, Rowley WA. Serotonin depletion affects blood-feeding but not host-seeking ability in Aedes triseriatus (Diptera: Culicidae). J Med Entomol 1994;31:600–6.

    CAS  PubMed  Google Scholar 

  268. Yellman C, Tao H, He B, Hirsh J. Conserved and sexually dimorphic behavioral responses to biogenic amines in decapitated Drosophila. Proc Natl Acad Sci USA 1997;94:4131–6.

    Article  CAS  PubMed  Google Scholar 

  269. Muszynska-Pytel M, Cymboroski B. The role of serotonin in regulation the circadian rhythm of locomotor activity in the cricket (Acheta domesticus L.) II. Distribution of serotonin and variations in different brain structure. Comp Biochem Physiol C 1978;59:17–20.

    Article  CAS  PubMed  Google Scholar 

  270. Muzynska-Pytel M, Cymborowski B. The role of serotonin in regulation of the circadian rhythms of locomotor activity in the cricket (Acheta domesticus L.) I. Circadian variations in serotonin concentration in the brain and hemolymph. Comp Biochem Physiol C 1978;59:13–5.

    Article  CAS  PubMed  Google Scholar 

  271. Carew TJ. Molecular enhancement of memory formation. Neuron 1996;16:5–8.

    Article  CAS  PubMed  Google Scholar 

  272. Demchyshyn LL, Pristupa ZB, Sugamori KS, et al. Cloning, expression, and localization of a chloride-facilitated, cocaine-sensitive serotonin transporter from Drosophila melanogaster. Proc Natl Acad Sci USA 1994;91:5158–62.

    Article  CAS  PubMed  Google Scholar 

  273. Corey JL, Quick MW, Davidson N, Lester HA, Guastella J. A cocaine-sensitive Drosophila serotonin transporter: Cloning, expression, and electrophysiological characterization. Proc Natl Acad Sci USA 1994;91:1188–92.

    Article  CAS  PubMed  Google Scholar 

  274. Sandhu SK, Ross LS, Gill SS. A cocaine insensitive chimeric insect serotonin transporter reveals domains critical for cocaine interaction. Eur J Biochem 2002b;269:3934–44.

    Article  CAS  PubMed  Google Scholar 

  275. Osborne RH. Insect neurotransmission: Neurotransmitters and their receptors. Pharmacol Ther 1996;69:117–42.

    Article  CAS  PubMed  Google Scholar 

  276. Kanner BI. Sodium-coupled neurotransmitter transport: structure, function and regulation. J Exp Biol 1994;196:237–49.

    CAS  PubMed  Google Scholar 

  277. Giros B, el Mestikawy S, Godinot N, et al. Cloning, pharmacological characterization, and chromosome assignment of the human dopamine transporter. Mol Pharmacol 1992;42:383–90.

    CAS  PubMed  Google Scholar 

  278. Pörzgen P, Park SK, Hirsch J, Sonders MS, Amara SG. The antidepressant-sensitive dopamine transporter in Drosophila melanogaster: A primordial carrier for catecholamines. Molec Pharmacol 2001;59:83–95.

    Google Scholar 

  279. Gallant P, Malutan T, McLean H, Verellen L, Caveney S, Donly C. Functionally distinct dopamine and octopamine transporters in the CNS of the cabbage looper moth. Eur J Biochem 2003;270:664–74.

    Article  CAS  PubMed  Google Scholar 

  280. Croll RP, Boudko DY, Pires A, Hadfield MG. Transmitter contents of cells and fibers in the cephalic sensory organs of the gastropod mollusc Phestilla sibogae. Cell Tissue Res 2003;314:437–48.

    Article  CAS  PubMed  Google Scholar 

  281. Croll RP, Boudko DY, Hadfield MG. Histochemical survey of transmitters in the central ganglia of the gastropod mollusc Phestilla sibogae. Cell Tissue Res 2001;305:417–32.

    Article  CAS  PubMed  Google Scholar 

  282. Braubach OR, Dickinson AJ, Evans CC, Croll RP. Neural control of the velum in larvae of the gastropod, Ilyanassa obsoleta. J Exp Biol 2006;209:4676–89.

    Article  PubMed  Google Scholar 

  283. Kim CH, Waldman ID, Blakely RD, Kim KS. Functional gene variation in the human norepinephrine transporter: association with attention deficit hyperactivity disorder. Ann NY Acad Sci 2008;1129:256–60.

    Article  CAS  PubMed  Google Scholar 

  284. Robertson D, Flattem N, Tellioglu T, et al. Familial orthostatic tachycardia due to norepinephrine transporter deficiency. Ann NY Acad Sci 2001;940:527–43.

    Article  CAS  PubMed  Google Scholar 

  285. Zhou J. Norepinephrine transporter inhibitors and their therapeutic potential. Drugs Future 2004;29:1235–44.

    Article  CAS  PubMed  Google Scholar 

  286. Bonisch H, Bruss M. The norepinephrine transporter in physiology and disease. Handb Exp Pharmacol 2006:485–524.

    Google Scholar 

  287. Blakely RD, De Felice LJ, Hartzell HC. Molecular physiology of norepinephrine and serotonin transporters. J Exp Biol 1994;196:263–81.

    CAS  PubMed  Google Scholar 

  288. Axelrod J, Kopin IJ. The uptake, storage, release and metabolism of noradrenaline in sympathetic nerves. Prog Brain Res 1969;31:21–32.

    Article  CAS  PubMed  Google Scholar 

  289. Iversen LL, Jarrott B, Simmonds MA. Differences in the uptake, storage and metabolism of (+)- and (−)-noradrenaline. Br J Pharmacol 1971;43:845–55.

    CAS  PubMed  Google Scholar 

  290. Zahniser NR, Doolen S. Chronic and acute regulation of Na+/Cl− -dependent neurotransmitter transporters: drugs, substrates, presynaptic receptors, and signaling systems. Pharmacol Ther 2001;92:21–55.

    Article  CAS  PubMed  Google Scholar 

  291. Roeder T. Octopamine in invertebrates. Progr Neurobiol 1999;59:533–61.

    Article  CAS  Google Scholar 

  292. Homberg U. Neurotransmitters and neuropeptides in the brain of the locust. Microsc Res Tech 2002;56:189–209.

    Article  CAS  PubMed  Google Scholar 

  293. Leitch B, Judge S, Pitman RM. Octopaminergic modulation of synaptic transmission between an identified sensory afferent and flight motoneuron in the locust. J Comp Neurol 2003;462:55–70.

    Article  CAS  PubMed  Google Scholar 

  294. Sinakevitch IG, Geffard M, Pelhate M, Lapied B. Octopamine-Like Immunoreactivity in the Dorsal Unpaired Median (Dum) Neurons Innervating the Accessory-Gland of the Male Cockroach Periplaneta-Americana. Cell and Tissue Research 1994;276:15–21.

    Article  CAS  Google Scholar 

  295. Copeland J, Robertson HA. Octopamine as the Transmitter at the Firefly Lantern – Presence of an Octopamine-Sensitive and a Dopamine-Sensitive Adenylate-Cyclase. Comp Biochem Physiol C-Pharmacol Toxicol Endocrinol 1982;72:125–7.

    Article  CAS  Google Scholar 

  296. Robertson HA, Carlson AD. Octopamine – Presence in Firefly Lantern Suggests a Transmitter Role. J Exp Zool 1976;195:159–64.

    Article  CAS  PubMed  Google Scholar 

  297. Farooqui T, Robinson K, Vaessin H, Smith BH. Modulation of early olfactory processing by an octopaminergic reinforcement pathway in the honeybee. J Neurosci 2003;23:5370–80.

    CAS  PubMed  Google Scholar 

  298. Spivak M, Masterman R, Ross R, Mesce KA. Hygienic behavior in the honey bee (Apis mellifera L.) and the modulatory role of octopamine. J Neurobiol 2003;55:341–54.

    Article  CAS  PubMed  Google Scholar 

  299. Schulz DJ, Barron AB, Robinson GE. A role for octopamine in honey bee division of labor. Brain Behav Evol 2002;60:350–9.

    Article  PubMed  Google Scholar 

  300. Malutan T, McLean H, Caveney S, Donly C. A high-affinity octopamine transporter cloned from the central nervous system of cabbage looper. Trichoplusia ni. Insect Biochem Mol Biol 2002;32:343–57.

    Article  CAS  PubMed  Google Scholar 

  301. Deken SL, Fremeau RTJ, Quick MW. Family of Sodium-Coupled Transporters for GABA, Glycine, Proline, Betaine, Taurine, and Creatine. In: Reith MEA, ed. Neurotransmitter Transporters: Structure, Function and Regulation. Totowa, New Jersey: Humana Press Inc; 2002:193–234.

    Chapter  Google Scholar 

  302. Witte I, Kreienkamp H-J, Gewecke M, Roeder T. Putative histamine-gated chloride channel subunits of the insect visual system and thoracic ganglion. J Neurochem 2002;83:504–14.

    Article  CAS  PubMed  Google Scholar 

  303. Sandhu SK, Ross LS, Gill SS. Molecular cloning and functional expression of a proline transporter from Manduca sexta. Insect Biochem Mol Biol 2002a;32:1391–400.

    Article  CAS  PubMed  Google Scholar 

  304. Castagna M, Shayakul C, Trotti D, Sacchi VF, Harvey WR, Hediger MA. Cloning and characterization of a potassium-coupled amino acid transporter. Proc Natl Acad Sci USA 1998;95:5395–400.

    Article  CAS  PubMed  Google Scholar 

  305. Hennigan BB, Wolfersberger MG, Harvey WR. Neutral amino acid symport in larval Manduca sexta midgut brush-border membrane vesicles deduced from cation-dependent uptake of leucine, alanine, and phenylalanine. Biochim Biophys Acta 1993a;1148:216–22.

    Article  CAS  PubMed  Google Scholar 

  306. Hennigan BB, Wolfersberger MG, Parthasarathy R, Harvey WR. Cation-dependent leucine, alanine, and phenylalanine uptake at pH 10 in brush-border membrane vesicles from larval Manduca sexta midgut. Biochim Biophys Acta 1993b;1148:209–15.

    Article  CAS  PubMed  Google Scholar 

  307. Peres A, Bossi E. Effects of pH on the uncoupled, coupled and pre-steady-state currents at the amino acid transporter KAAT1 expressed in Xenopus oocytes. J Physiol Lond 2000;525:83–9.

    Article  CAS  PubMed  Google Scholar 

  308. Vincenti S, Castagna M, Peres A, Sacchi VF. Substrate selectivity and pH dependence of KAAT1 expressed in Xenopus laevis oocytes. J Membr Biol 2000;174:213–24.

    Article  CAS  PubMed  Google Scholar 

  309. Bossi E, Centinaio E, Castagna M, et al. Ion binding and permeation through the lepidopteran amino acid transporter KAAT1 expressed in Xenopus oocytes. J Physiol-Lond 1999;515:729–42.

    Article  CAS  PubMed  Google Scholar 

  310. Bossi E, Sacchi VF, Peres A. Ionic selectivity of the coupled and uncoupled currents carried by the amino acid transporter KAAT1. Pflugers Archiv Eur J Physiol 1999;438:788–96.

    Article  CAS  Google Scholar 

  311. Liu Z, Stevens BR, Feldman DH, Hediger MA, Harvey WR. K+ amino acid transporter KAAT1 mutant Y147F has increased transport activity and altered substrate selectivity. J Exp Biol 2003;206:245–54.

    Article  CAS  PubMed  Google Scholar 

  312. Sacchi VF, Castagna M, Mari SA, Perego C, Bossi E, Peres A. Glutamate 59 is critical for transport function of the amino acid cotransporter KAAT1. Am J Physiol Cell Physiol 2003;285:C623–32.

    CAS  PubMed  Google Scholar 

  313. Castagna M, Vincenti S, Marciani P, Sacchi VF. Inhibition of the lepidopteran amino acid co-transporter KAAT1 by phenylglyoxal: role of arginine 76. Insect Mol Biol 2002;11:283–9.

    Article  CAS  PubMed  Google Scholar 

  314. Bossi E, Soragna A, Miszner A, Giovannardi S, Frangione V, Peres A. Oligomeric structure of the neutral amino acid transporters Kaat1 And Caatch1. 10.1152/ajpcell.00473.2006. Am J Physiol Cell Physiol 2006:00473.2006.

    Google Scholar 

  315. Miszner A, Peres A, Castagna M, et al. Structural and functional basis of amino acid specificity in the invertebrate cotransporter KAAT1. J Physiol 2007;581:899–913.

    Article  CAS  PubMed  Google Scholar 

  316. Feldman DH, Harvey WR, Stevens BR. A novel electrogenic amino acid transporter is activated by K+ or Na+, is alkaline pH-dependent, and is Cl−-independent. J Biol Chem 2000;275:24518–26.

    Article  CAS  PubMed  Google Scholar 

  317. Quick M, Stevens BR. Amino acid transporter CAATCH1 is also an amino acid-gated cation channel. J Biol Chem 2001;276:33413–8.

    Article  CAS  PubMed  Google Scholar 

  318. Stevens BR, Feldman DH, Liu ZL, Harvey WR. Conserved tyrosine-147 plays a critical role in the ligand-gated current of the epithelial cation/amino acid transporter/channel CAATCH1. J Exp Biol 2002;205:2545–53.

    CAS  PubMed  Google Scholar 

  319. Bismuth Y, Kavanaugh MP, Kanner BI. Tyrosine 140 of the gamma-aminobutyric acid transporter GAT-1 plays a critical role in neurotransmitter recognition. J Biol Chem 1997;272:16096-102.

    Article  CAS  PubMed  Google Scholar 

  320. Ito K, Kidokoro K, Sezutsu H, et al. Deletion of a gene encoding an amino acid transporter in the midgut membrane causes resistance to a Bombyx parvo-like virus. Proc Natl Acad Sci USA 2008;105:7523–7.

    Article  CAS  PubMed  Google Scholar 

  321. Harvey WR, Pung L, Meleshkevitch EA, Kohn A, Boudko DY. Molecular and electrochemical integration of nutrient amino acid uptake in mosquito larvae. In: Sixth International Congress of Comparative Physiology and Biochemistry; 2003; Mt. Buller, Australia; 2003.

    Google Scholar 

  322. Clements AN. The Biology of Mosquitoes. London: Chapman and Hall Press; 1992.

    Google Scholar 

  323. Sloan JL, Mager S. Cloning and Functional Expression of a Human Na+ and Cl− -dependent Neutral and Cationic Amino Acid Transporter B0+. J Biol Chem 1999;274:23740–5.

    Article  CAS  PubMed  Google Scholar 

  324. Kim DK, Kanai Y, Chairoungdua A, Matsuo H, Cha SH, Endou H. Expression cloning of a Na+-independent aromatic amino acid transporter with structural similarity to H+/monocarboxylate transporters. J Biolo Chem 2001;276:17221–8.

    Article  CAS  Google Scholar 

  325. Mastroberardino L, Spindler B, Pfeiffer R, et al. Amino-acid transport by heterodimers of 4F2hc/CD98 and members of a permease family. Nature 1998;395:288–91.

    Article  CAS  PubMed  Google Scholar 

  326. Rossier G, Meier C, Bauch C, et al. LAT2, a New Basolateral 4F2hc/CD98-associated Amino Acid Transporter of Kidney and Intestine. J Biol Chem 1999;274:34948–54.

    Article  CAS  PubMed  Google Scholar 

  327. Verrey F, Closs EI, Wagner CA, Palacin M, Endou H, Kanai Y. CATs and HATs: the SLC7 family of amino acid transporters. Pflugers Arch 2003;11:11.

    Google Scholar 

  328. Broer A, Klingel K, Kowalczuk S, Rasko JEJ, Cavanaugh J, Broer S. Molecular cloning of mouse amino acid transport system B-0, a neutral amino acid transporter related to Hartnup disorder. J Biol Chem 2004;279:24467–76.

    Article  CAS  PubMed  Google Scholar 

  329. Seow HF, Broer S, Broer A, et al. Hartnup disorder is caused by mutations in the gene encoding the neutral amino acid transporter SLC6A19. Nat Genet 2004;36:1003–7.

    Article  CAS  PubMed  Google Scholar 

  330. Kowalczuk S, Broer A, Munzinger M, Tietze N, Klingel K, Broer S. Molecular cloning of the mouse IMINO system: an Na+- and Cl− -dependent proline transporter. Biochem J 2005;386:417–22.

    Article  CAS  PubMed  Google Scholar 

  331. Takanaga H, Mackenzie B, Suzuki Y, Hediger MA. Identification of mammalian proline transporter SIT1 (SLC6A20) with characteristics of classical system imino. J Biol Chem 2005;280:8974–84.

    Article  CAS  PubMed  Google Scholar 

  332. Ristic Z, Camargo SM, Romeo E, et al. Neutral amino acid transport mediated by ortholog of imino acid transporter SIT1/SLC6A20 in opossum kidney cells. Am J Physiol Renal Physiol 2006;290:F880–7.

    Article  CAS  PubMed  Google Scholar 

  333. Kleta R, Romeo E, Ristic Z, et al. Mutations in SLC6A19, encoding B0AT1, cause Hartnup disorder. Nat Genet 2004;36:999–1002.

    Article  CAS  PubMed  Google Scholar 

  334. Jonas AJ, Butler IJ. Circumvention of defective neutral amino acid transport in Hartnup disease using tryptophan ethyl ester. J Clin Invest 1989;84:200–4.

    Article  CAS  PubMed  Google Scholar 

  335. Verrey F, Ristic Z, Romeo E, et al. Novel renal amino acid transporters. Annu Rev Physiol 2005;67:557–72.

    Article  CAS  PubMed  Google Scholar 

  336. Meleshkevitch EA, Assis-Nascimento P, Popova LB, et al. Molecular characterization of the first aromatic nutrient transporter from the sodium neurotransmitter symporter family. J Exp Biol 2006;209:3183–98.

    Article  CAS  PubMed  Google Scholar 

  337. Holt RA, Subramanian GM, Halpern A, al. e. The genome sequence of the malaria mosquito Anopheles gambiae. Science 2002;298:129–49.

    Article  CAS  PubMed  Google Scholar 

  338. Broer A, Cavanaugh JA, Rasko JEJ, Broer S. The molecular basis of neutral aminoacidurias. Pflugers Archiv Eur J Physiol 2006;451:511–7.

    Article  CAS  Google Scholar 

  339. Zomot E, Bendahan A, Quick M, Zhao Y, Javitch JA, Kanner BI. Mechanism of chloride interaction with neurotransmitter:sodium symporters. Nature 2007;449:726–30.

    Article  CAS  PubMed  Google Scholar 

  340. Forrest LR, Tavoulari S, Zhang YW, Rudnick G, Honig B. Identification of a chloride ion binding site in Na+/Cl -dependent transporters. Proc Natl Acad Sci USA 2007;104:12761–6.

    Article  CAS  PubMed  Google Scholar 

  341. Ueda K, Yamashita A, Ishikawa J, et al. Genome sequence of Symbiobacterium thermophilum, an uncultivable bacterium that depends on microbial commensalism. Nucleic Acids Res 2004;32:4937–44.

    Article  CAS  PubMed  Google Scholar 

  342. Miller MM, Popova LB, Meleshkevitch EA, Tran PV, Boudko DY. The invertebrate B(0) system transporter, D. melanogaster NAT1, has unique d-amino acid affinity and mediates gut and brain functions. Insect Biochem Mol Biol 2008;38:923–31.

    Article  CAS  PubMed  Google Scholar 

  343. Geer BW. Utilization of D-amino acids for growth by Drosophila melanogaster larvae. J Nutr 1966;90:31–9.

    CAS  PubMed  Google Scholar 

  344. Stern M, Ganetzky B. Identification and characterization of inebriated, a gene affecting neuronal excitability in Drosophila. J Neurogenet 1992;8:157–72.

    Article  CAS  PubMed  Google Scholar 

  345. Soehnge H, Huang X, Becker M, Whitley P, Conover D, Stern M. A neurotransmitter transporter encoded by the Drosophila inebriated gene. Proc Natl Acad Sci USA 1996;93:13262–7.

    Article  CAS  PubMed  Google Scholar 

  346. Huang Y, Stern M. In vivo properties of the Drosophila inebriated-encoded neurotransmitter transporter. J Neurosci 2002;22:1698–708.

    CAS  PubMed  Google Scholar 

  347. Huang X, Huang Y, Chinnappan R, Bocchini C, Gustin MC, Stern M. The Drosophila inebriated-encoded neurotransmitter/osmolyte transporter: dual roles in the control of neuronal excitability and the osmotic stress response. Genetics 2002;160:561–9.

    CAS  PubMed  Google Scholar 

  348. Chiu C-S, Ross LS, Cohen BN, Lester HA, Gill SS. The transporter-like protein inebriated mediates hyperosmotic stimuli through intracellular signalling. J Exp Biol 2000;203:3531–46.

    CAS  PubMed  Google Scholar 

  349. Jin X, Aimanova K, Ross LS, Gill SS. Identification, functional characterization and expression of a LAT type amino acid transporter from the mosquito Aedes aegypti. Insect Biochem Mol Biol 2003;33:815–27.

    Article  CAS  PubMed  Google Scholar 

  350. Wolf S, Janzen A, Vekony N, Martine U, Strand D, Closs EI. Expression of solute carrier 7A4 (SLC7A4) in the plasma membrane is not sufficient to mediate amino acid transport activity. Biochem J 2002;364:767–75.

    Article  CAS  PubMed  Google Scholar 

  351. Closs EI. Expression, regulation and function of carrier proteins for cationic amino acids. Curr Opin Nephrol Hypertens 2002;11:99–107.

    Article  PubMed  Google Scholar 

  352. Albritton LM, Tseng L, Scadden D, Cunningham JM. A Putative Murine Ecotropic Retrovirus Receptor Gene Encodes a Multiple Membrane-Spanning Protein and Confers Susceptibility to Virus-Infection. Cell 1989;57:659–66.

    Article  CAS  PubMed  Google Scholar 

  353. Kim JW, Closs EI, Albritton LM, Cunningham JM. Transport of cationic amino acids by the mouse ecotropic retrovirus receptor. Nature 1991;352:725–8.

    Article  CAS  PubMed  Google Scholar 

  354. Simell O. Lysinuric protein intolerance and other cationic amino acidurias. In: Scriver CR, Beaudet AL, Sly SW, Valle D, eds. Metabolic and molecular bases of inherited diseases,. 8th ed. New York: McGraw-Hill; 2001:4933–56.

    Google Scholar 

  355. Zharikov SI, Block ER. Characterization of L-arginine uptake by plasma membrane vesicles isolated from cultured pulmonary artery endothelial cells. Biochim Biophys Acta 1998;1369:173–83.

    Article  CAS  PubMed  Google Scholar 

  356. Rothenberg ME, Doepker MP, Lewkowich IP, et al. Cationic amino acid transporter 2 regulates inflammatory homeostasis in the lung. Proc Natl Acad Sci USA 2006;103:14895–900.

    Article  CAS  PubMed  Google Scholar 

  357. Boudko DY, Cooper BY, Harvey WR, Moroz LL. High-resolution microanalysis of nitrite and nitrate in neuronal tissues by capillary electrophoresis with conductivity detection. J Chromatogr B Analyt Technol Biomed Life Sci 2002;774:97–104.

    Article  CAS  PubMed  Google Scholar 

  358. Fernandez J, Bode B, Koromilas A, et al. Translation Mediated by the Internal Ribosome Entry Site of the cat-1 mRNA Is Regulated by Glucose Availability in a PERK Kinase-dependent Manner. J Biol Chem 2002;277:11780–7.

    Article  CAS  PubMed  Google Scholar 

  359. Graf P, Forstermann U, Closs EI. The transport activity of the human cationic amino acid transporter hCAT-1 is downregulated by activation of protein kinase C. Br J Pharmacol 2001;132:1193–200.

    Article  CAS  PubMed  Google Scholar 

  360. Zharikov SI, Sigova AA, Chen S, Bubb MR, Block ER. Cytoskeletal regulation of the L-arginine/NO pathway in pulmonary artery endothelial cells. Am J Physiol Lung Cell Mol Physiol 2001;280:L465–73.

    CAS  PubMed  Google Scholar 

  361. Hemler ME, Strominger JL. Characterization of antigen recognized by the monoclonal antibody (4F2): different molecular forms on human T and B lymphoblastoid cell lines. J Immunol 1982;129:623–8.

    CAS  PubMed  Google Scholar 

  362. Bertran J, Werner A, Moore ML, et al. Expression cloning of a cDNA from rabbit kidney cortex that induces a single transport system for cystine and dibasic and neutral amino acids. Proc Natl Acad Sci USA 1992;89:5601–5.

    Article  CAS  PubMed  Google Scholar 

  363. Tate SS, Yan N, Udenfriend S. Expression cloning of a Na(+)-independent neutral amino acid transporter from rat kidney. Proc Natl Acad Sci USA 1992;89:1–5.

    Article  CAS  PubMed  Google Scholar 

  364. Wells RG, Hediger MA. Cloning of a rat kidney cDNA that stimulates dibasic and neutral amino acid transport and has sequence similarity to glucosidases. Proc Natl Acad Sci USA 1992;89:5596–600.

    Article  CAS  PubMed  Google Scholar 

  365. Chillaron J, Roca R, Valencia A, Zorzano A, Palacin M. Heteromeric amino acid transporters: biochemistry, genetics, and physiology. Am J Physiol Renal Physiol 2001;281:F995–1018.

    CAS  PubMed  Google Scholar 

  366. Pfeiffer R, Spindler B, Loffing J, Skelly PJ, Shoemaker CB, Verrey F. Functional heterodimeric amino acid transporters lacking cysteine residues involved in disulfide bond. FEBS Lett 1998;439:157–62.

    Article  CAS  PubMed  Google Scholar 

  367. Palacin M, Kanai Y. The ancillary proteins of HATs: SLC3 family of amino acid transporters. Pflugers Arch 2003;6:6.

    Google Scholar 

  368. Broer A, Wagner CA, Lang F, Broer S. The heterodimeric amino acid transporter 4F2hc/y+LAT2 mediates arginine efflux in exchange with glutamine. Biochem J 2000;349:787–95.

    CAS  PubMed  Google Scholar 

  369. Pfeiffer R, Rossier G, Spindler B, Meier C, Kuhn L, Verrey F. Amino acid transport of y+L-type by heterodimers of 4F2hc/CD98 and members of the glycoprotein-associated amino acid transporter family. Embo J 1999;18:49–57.

    Article  CAS  PubMed  Google Scholar 

  370. Fernandez E, Torrents D, Chillaron J, Martin Del Rio R, Zorzano A, Palacin M. Basolateral LAT-2 has a major role in the transepithelial flux of L-cystine in the renal proximal tubule cell line OK. J Am Soc Nephrol 2003;14:837–47.

    Article  CAS  PubMed  Google Scholar 

  371. Chillaron J, Estevez R, Mora C, et al. Obligatory amino acid exchange via systems bo,+-like and y+L-like. A tertiary active transport mechanism for renal reabsorption of cystine and dibasic amino acids. J Biol Chem 1996;271:17761–70.

    Article  CAS  PubMed  Google Scholar 

  372. Meier C, Ristic Z, Klauser S, Verrey F. Activation of system L heterodimeric amino acid exchangers by intracellular substrates. Embo J 2002;21:580–9.

    Article  CAS  PubMed  Google Scholar 

  373. Sato H, Tamba M, Ishii T, Bannai S. Cloning and expression of a plasma membrane cystine/glutamate exchange transporter composed of two distinct proteins. J Biol Chem 1999;274:11455–8.

    Article  CAS  PubMed  Google Scholar 

  374. Bridges CC, Kekuda R, Wang HP, et al. Structure, function, and regulation of human cystine/glutamate transporter in retinal pigment epithelial cells. Investig Ophthalmol Visual Sci 2001;42:47–54.

    CAS  Google Scholar 

  375. Tomi M, Funaki T, Abukawa H, et al. Expression and regulation of L-cystine transporter, system x(c)(–), in the newly developed rat retinal Muller cell line (TR-MUL). Glia 2003;43:208–17.

    Article  PubMed  Google Scholar 

  376. Bassi MT, Gasol E, Manzoni M, et al. Identification and characterisation of human xCT that co-expresses, with 4F2 heavy chain, the amino acid transport activity system x(c)(–). Pflugers Archiv Eur J Physiol 2001;442:286–96.

    Article  CAS  Google Scholar 

  377. Sato H, Tamba M, Okuno S, et al. Distribution of cystine/glutamate exchange transporter, system x(c)(–), in the mouse brain. J Neurosci 2002;22:8028–33.

    CAS  PubMed  Google Scholar 

  378. Wang HY, Tamba M, Kimata M, Sakamoto K, Bannai S, Sato H. Expression of the activity of cystine/glutamate exchange transporter, system x(c)(–), by xCT and rBAT. Biochem Biophys Res Commun 2003;305:611–8.

    Article  CAS  PubMed  Google Scholar 

  379. MacGregor EA, Janecek S, Svensson B. Relationship of sequence and structure to specificity in the alpha-amylase family of enzymes. Biochim Biophys Acta 2001;1546:1–20.

    CAS  PubMed  Google Scholar 

  380. Janecek S. Sequence Similarities and Evolutionary Relationships of Microbial, Plant and Animal Alpha-Amylases. Eur J Biochem 1994;224:519–24.

    Article  CAS  PubMed  Google Scholar 

  381. Watanabe K, Hata Y, Kizaki H, Katsube Y, Suzuki Y. The refined crystal structure of Bacillus cereus oligo-1,6-glucosidase at 2.0 angstrom resolution: Structural characterization of proline-substitution sites for protein thermostabilization. J Mol Biol 1997;269:142–53.

    Article  CAS  PubMed  Google Scholar 

  382. Darboux I, Nielsen-LeRoux C, Charles JF, Pauron D. The receptor of Bacillus sphaericus binary toxin in Culex pipiens (Diptera: Culicidae) midgut: molecular cloning and expression. Insect Biochem Mol Biol 2001;31:981–90.

    Article  CAS  PubMed  Google Scholar 

  383. Steiner HY, Naider F, Becker JM. The PTR family: a new group of peptide transporters. Mol Microbiol 1995;16:825–34.

    Article  CAS  PubMed  Google Scholar 

  384. Daniel H, Kottra G. The proton oligopeptide cotransporter family SLC15 in physiology and pharmacology. Pflugers Arch 2003;7:7.

    Google Scholar 

  385. Fei YJ, Kanai Y, Nussberger S, et al. Expression cloning of a mammalian proton-coupled oligopeptide transporter. Nature 1994;368:563–6.

    Article  CAS  PubMed  Google Scholar 

  386. Boll M, Herget M, Wagener M, et al. Expression cloning and functional characterization of the kidney cortex high-affinity proton-coupled peptide transporter. Proc Nat Acad Sci USA 1996;93:284–9.

    Article  CAS  PubMed  Google Scholar 

  387. Tomita Y, Takano M, Yasuhara M, Hori R, Inui KI. Transport of Oral Cephalosporins by the H+/Dipeptide Cotransporter and Distribution of the Transport Activity in Isolated Rabbit Intestinal Epithelial-Cells. J Pharmacol Exp Therapeut 1995;272:63–9.

    CAS  Google Scholar 

  388. Boll M, Markovich D, Weber WM, Korte H, Daniel H, Murer H. Expression Cloning of a Cdna from Rabbit Small-Intestine Related to Proton-Coupled Transport of Peptides, Beta-Lactam Antibiotics and Ace-Inhibitors. Pflugers Archiv Eur J Physiol 1994;429:146–9.

    Article  CAS  Google Scholar 

  389. Liang R, Fei YJ, Prasad PD, et al. Human intestinal H+/peptide cotransporter. Cloning, functional expression, and chromosomal localization. J Biol Chem 1995;270:6456–63.

    Article  CAS  PubMed  Google Scholar 

  390. Saito H, Terada T, Okuda M, Sasaki S, Inui K. Molecular cloning and tissue distribution of rat peptide transporter PEPT2. Biochimica Et Biophysica Acta-Biomembranes 1996;1280:173–7.

    Article  Google Scholar 

  391. Rubio-Aliaga I, Boll M, Daniel H. Cloning and characterization of the gene encoding the mouse peptide transporter PEPT2. Biochem Biophys Res Commun 2000;276:734–41.

    Article  CAS  PubMed  Google Scholar 

  392. Chen H, Pan YX, Wong EA, Bloomquist JR, Webb KE. Molecular cloning and functional expression of a chicken intestinal peptide transporter (cPepT1) in Xenopus oocytes and Chinese hamster ovary cells. J Nutr 2002;132:387–93.

    CAS  PubMed  Google Scholar 

  393. Verri T, Kottra G, Romano A, et al. Molecular and functional characterisation of the zebrafish (Danio rerio) PEPT1-type peptide transporter. Febs Lett 2003;549:115–22.

    Article  CAS  PubMed  Google Scholar 

  394. Roman G, Meller V, Wu KH, Davis RL. The opt1 gene of Drosophila melanogaster encodes a proton-dependent dipeptide transporter. Am J Physiol Cell Physiol 1998;44:C857–C69.

    Google Scholar 

  395. Yamashita T, Shimada S, Guo W, et al. Cloning and functional expression of a brain peptide/histidine transporter. J Biol Chem 1997;272:10205–11.

    Article  CAS  PubMed  Google Scholar 

  396. Sakata K, Yamashita T, Maeda M, Moriyama Y, Shimada S, Tohyama M. Cloning of a lymphatic peptide/histidine transporter. Biochem J 2001;356:53–60.

    Article  CAS  PubMed  Google Scholar 

  397. Chen PS. Amino acid and protein metabolism in insect development. Adv Insect Physiol 1966;3:53–132.

    Article  CAS  Google Scholar 

  398. Collett JI. Small peptides, a life-long store of amino acid in adult Drosophila and Calliphora. J Insect Physiol 1976;22:433–1440.

    Google Scholar 

  399. Law JH, Dunn PE, Kramer KJ. Insect proteases and peptidases. Adv Enzymol Relat Areas Mol Biol 1977;45:389–425.

    CAS  PubMed  Google Scholar 

  400. Bonen A. Lactate transporters (MCT proteins) in heart and skeletal muscles. Med Sci Sports Exercise 2000;32:778–89.

    Article  CAS  Google Scholar 

  401. Halestrap AP, Meredith D. The SLC16 gene family-from monocarboxylate transporters (MCTs) to aromatic amino acid transporters and beyond. Pflugers Arch 2003;9:9.

    Google Scholar 

  402. Kim do K, Kanai Y, Matsuo H, et al. The human T-type amino acid transporter-1: characterization, gene organization, and chromosomal location. Genomics 2002;79:95–103.

    Article  PubMed  CAS  Google Scholar 

  403. Kim DK, Kanai Y, Chairoungdua A, et al. Identification and characterization of a novel epithelial aromatic amino acid transporter TAT1. Jpn J Pharmacol 2002;88:223P.

    Google Scholar 

  404. Toure A, Morin L, Pineau C, Becq F, Dorseuil O, Gacon G. Tat1, a novel sulfate transporter specifically expressed in human male germ cells and potentially linked to RhoGTPase signaling. J Biol Chem 2001;276:20309–15.

    Article  CAS  PubMed  Google Scholar 

  405. Vincourt JB, Jullien D, Amalric F, Girard JP. Molecular and functional characterization of SLC26A11, a sodium-independent sulfate transporter from high endothelial venules. Faseb J 2003;17.

    Google Scholar 

  406. Bajmoczi M, Sneve M, Eide DJ, Drewes LR. TATI encodes a low-affinity histidine transporter in Saccharomyces cerevisiae. Biochem Biophys Res Commun 1998;243:205–9.

    Article  CAS  PubMed  Google Scholar 

  407. Price NT, Jackson VN, Halestrap AP. Cloning and sequencing of four new mammalian monocarboxylate transporter (MCT) homologues confirms the existence of a transporter family with an ancient past. Biochem J 1998;329:321–8.

    CAS  PubMed  Google Scholar 

  408. Kirk P, Wilson MC, Heddle C, Brown MH, Barclay AN, Halestrap AP. CD147 is tightly associated with lactate transporters MCT1 and MCT4 and facilitates their cell surface expression. Embo J 2000;19:3896–904.

    Article  CAS  PubMed  Google Scholar 

  409. Zhao C, Wilson MC, Schuit F, Halestrap AP, Rutter GA. Expression and distribution of lactate/monocarboxylate transporter isoforms in pancreatic islets and the exocrine pancreas. Diabetes 2001;50:361–6.

    Article  CAS  PubMed  Google Scholar 

  410. Wilson MC, Meredith D, Halestrap AP. Fluorescence resonance energy transfer studies on the interaction between the lactate transporter MCT1 and CD147 provide information on the topology and stoichiometry of the complex in situ. J Biol Chem 2002;277:3666–72.

    Article  CAS  PubMed  Google Scholar 

  411. Meredith D, Halestrap AP. OX47 (basigin) may act as a chaperone for expression of the monocarboxylate transporter MCT1 at the plasma membrane of Xenopus laevis oocytes. J Physiol Lond 2000;526:23P–4P.

    Google Scholar 

  412. Reimer RJ, Edwards RH. Organic anion transport is the primary function of the SLC17/type I phosphate transporter family. Pflugers Arch 2003;17:17.

    Google Scholar 

  413. Tabb JS, Ueda T. Phylogenetic studies on the synaptic vesicle glutamate transport system. J Neurosci 1991;11:1822–8.

    CAS  PubMed  Google Scholar 

  414. Werner A, Moore ML, Mantei N, Biber J, Semenza G, Murer H. Cloning and expression of cDNA for a Na/Pi cotransport system of kidney cortex. Proc Natl Acad Sci USA 1991;88:9608–12.

    Article  CAS  PubMed  Google Scholar 

  415. Miyamoto K, Tatsumi S, Sonoda T, et al. Cloning and functional expression of a Na(+)-dependent phosphate co-transporter from human kidney: cDNA cloning and functional expression. Biochem J 1995;305:81–5.

    CAS  PubMed  Google Scholar 

  416. Busch AE, Biber J, Murer H, Lang F. Electrophysiological insights of type I and II Na/Pi transporters. Kidney Int 1996;49:986–7.

    Article  CAS  PubMed  Google Scholar 

  417. Busch AE, Schuster A, Waldegger S, et al. Expression of a renal type I sodium/phosphate transporter (NaPi-1) induces a conductance in Xenopus oocytes permeable for organic and inorganic anions. Proc Natl Acad Sci USA 1996;93:5347–51.

    Article  CAS  PubMed  Google Scholar 

  418. Broer S, Schuster A, Wagner CA, et al. Chloride conductance and Pi transport are separate functions induced by the expression of NaPi-1 in Xenopus oocytes. J Membr Biol 1998;164:71–7.

    Article  CAS  PubMed  Google Scholar 

  419. Amstutz M, Mohrmann M, Gmaj P, Murer H. Effect of pH on phosphate transport in rat renal brush border membrane vesicles. Am J Physiol 1985;248:F705–10.

    CAS  PubMed  Google Scholar 

  420. Murer H, Hernando N, Forster I, Biber J. Proximal tubular phosphate reabsorption: molecular mechanisms. Physiol Rev 2000;80:1373–409.

    CAS  PubMed  Google Scholar 

  421. Magagnin S, Werner A, Markovich D, et al. Expression Cloning of Human and Rat Renal Cortex Na/Pi Cotransport. PNAS 1993;90:5979–83.

    Article  CAS  PubMed  Google Scholar 

  422. Kavanaugh MP, Miller DG, Zhang W, et al. Cell-surface receptors for gibbon ape leukemia virus and amphotropic murine retrovirus are inducible sodium-dependent phosphate symporters. Proc Natl Acad Sci USA 1994;91:7071–5.

    Article  CAS  PubMed  Google Scholar 

  423. Murer H, Forster I, Biber J. The sodium phosphate cotransporter family SLC34. Pflugers Arch 2003;16:16.

    Google Scholar 

  424. Olah Z, Lehel C, Anderson WB, Eiden MV, Wilson CA. The cellular receptor for gibbon ape leukemia virus is a novel high affinity sodium-dependent phosphate transporter. J Biol Chem 1994;269:25426–31.

    CAS  PubMed  Google Scholar 

  425. Collins JF, Bai L, Ghishan FK. The SLC20 family of proteins: dual functions as sodium-phosphate cotransporters and viral receptors. Pflugers Arch 2003;21:21.

    Google Scholar 

  426. Ni B, Rosteck PR, Jr., Nadi NS, Paul SM. Cloning and expression of a cDNA encoding a brain-specific Na(+)-dependent inorganic phosphate cotransporter. Proc Natl Acad Sci USA 1994;91:5607–11.

    Article  CAS  PubMed  Google Scholar 

  427. Aihara Y, Mashima H, Onda H, et al. Molecular cloning of a novel brain-type Na(+)-dependent inorganic phosphate cotransporter. J Neurochem 2000;74:2622–5.

    Article  CAS  PubMed  Google Scholar 

  428. Bellocchio EE, Reimer RJ, Fremeau RT, Jr., Edwards RH. Uptake of glutamate into synaptic vesicles by an inorganic phosphate transporter. Science 2000;289:957–60.

    Article  CAS  PubMed  Google Scholar 

  429. Hayashi M, Otsuka M, Morimoto R, et al. Differentiation-associated Na+-dependent inorganic phosphate cotransporter (DNPI) is a vesicular glutamate transporter in endocrine glutamatergic systems. J Biol Chem 2001;276:43400–6.

    Article  CAS  PubMed  Google Scholar 

  430. Takamori S, Rhee JS, Rosenmund C, Jahn R. Identification of differentiation-associated brain-specific phosphate transporter as a second vesicular glutamate transporter (VGLUT2). J Neurosci 2001;21:RC182.

    CAS  PubMed  Google Scholar 

  431. Bellocchio EE, Hu H, Pohorille A, Chan J, Pickel VM, Edwards RH. The localization of the brain-specific inorganic phosphate transporter suggests a specific presynaptic role in glutamatergic transmission. J Neurosci 1998;18:8648–59.

    CAS  PubMed  Google Scholar 

  432. Fremeau RT, Jr., Burman J, Qureshi T, et al. The identification of vesicular glutamate transporter 3 suggests novel modes of signaling by glutamate. Proc Natl Acad Sci USA 2002;99:14488–93.

    Article  CAS  PubMed  Google Scholar 

  433. Varoqui H, Schafer MK, Zhu H, Weihe E, Erickson JD. Identification of the differentiation-associated Na+/PI transporter as a novel vesicular glutamate transporter expressed in a distinct set of glutamatergic synapses. J Neurosci 2002;22:142–55.

    CAS  PubMed  Google Scholar 

  434. Hayashi M, Morimoto R, Yamamoto A, Moriyama Y. Expression and localization of vesicular glutamate transporters in pancreatic islets, upper gastrointestinal tract, and testis. J Histochem Cytochem 2003;51:1375–90.

    CAS  PubMed  Google Scholar 

  435. Gleason KK, Dondeti VR, Hsia HL, Cochran ER, Gumulak-Smith J, Saha MS. The vesicular glutamate transporter 1 (xVGlut1) is expressed in discrete regions of the developing Xenopus laevis nervous system. Gene Expr Patterns 2003;3:503–7.

    Article  CAS  PubMed  Google Scholar 

  436. Fremeau RT, Troyer MD, Pahner I, et al. The expression of vesicular glutamate transporters defines two classes of excitatory synapse. Neuron 2001;31:247–60.

    Article  CAS  PubMed  Google Scholar 

  437. Varoqui H, Schafer MKH, Zhu HM, Weihe E, Erickson JD. Identification of the differentiation-associated Na+/P-I transporter as a novel vesicular glutamate transporter expressed in a distinct set of glutamatergic synapses. J Neurosci 2002;22:142–55.

    CAS  PubMed  Google Scholar 

  438. Boll M, Foltz M, Anderson CM, et al. Substrate recognition by the mammalian proton-dependent amino acid transporter PAT1. Mol Membr Biol 2003;20:261–9.

    Article  CAS  PubMed  Google Scholar 

  439. Sagne C, Agulhon C, Ravassard P, et al. Identification and characterization of a lysosomal transporter for small neutral amino acids. Proc Natl Acad Sci USA 2001;98:7206–11.

    Article  CAS  PubMed  Google Scholar 

  440. Boll M, Foltz M, Rubio-Aliaga I, Kottra G, Daniel H. Functional characterization of two novel mammalian electrogenic proton-dependent amino acid cotransporters. J Biol Chem 2002;277:22966–73.

    Article  CAS  PubMed  Google Scholar 

  441. Boll M, Foltz M, Rubio-Aliaga I, Daniel H. A cluster of proton/amino acid transporter genes in the human and mouse genomes. Genomics 2003b;82:47–56.

    Article  CAS  PubMed  Google Scholar 

  442. Agulhon C, Rostaing P, Ravassard P, Sagne C, Triller A, Giros B. Lysosomal amino acid transporter LYAAT-1 in the rat central nervous system: an in situ hybridization and immunohistochemical study. J Comp Neurol 2003;462:71–89.

    Article  CAS  PubMed  Google Scholar 

  443. Chen Z, Fei YJ, Anderson CM, et al. Structure, function and immunolocalization of a proton-coupled amino acid transporter (hPAT1) in the human intestinal cell line Caco-2. J Physiol 2003b;546:349–61.

    Article  CAS  PubMed  Google Scholar 

  444. Gasnier B. The SLC32 transporter, a key protein for the synaptic release of inhibitory amino acids. Pflugers Arch 2003;16:16.

    Google Scholar 

  445. Mackenzie B, Erickson JD. Sodium-coupled neutral amino acid (System N/A) transporters of the SLC38 gene family. Pflugers Arch 2003;4:4.

    Google Scholar 

  446. Chaudhry FA, Krizaj D, Larsson P, et al. Coupled and uncoupled proton movement by amino acid transport system N. Embo J 2001;20:7041–51.

    Article  CAS  PubMed  Google Scholar 

  447. Broer A, Albers A, Setiawan I, et al. Regulation of the glutamine transporter SN1 by extracellular pH and intracellular sodium ions. J Physiol Lond 2002;539:3–14.

    Article  CAS  PubMed  Google Scholar 

  448. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–25.

    CAS  PubMed  Google Scholar 

  449. Zuckerkandl E, Pauling L. Evolutionary divergence and convergence in proteins. In: Vogel VBaHJ, ed. Evolving Genes and Proteins. New York.: Academic Press, 1965:97–166.

    Google Scholar 

  450. Tamura K, Dudley J, Nei M, Kumar S. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 2007;24:1596–9.

    Article  CAS  PubMed  Google Scholar 

  451. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997;25:4876–82.

    Article  CAS  PubMed  Google Scholar 

  452. Felsenstein J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 1985;39:783–91.

    Article  Google Scholar 

  453. Meleshkevitch EA, Robinson M, Popova LB, M.M. M, W.R. H, D.Y. B. Cloning and functional expression of the eukaryotic sodium-tryptophan symporter. JEB 2009;in press.

    Google Scholar 

  454. Neidhardt FC, Ingraham JL, Schaechter M. Physiology of the bacterial cell : a molecular approach. Sunderland, Mass., U.S.A.: Sinauer Associates; 1990.

    Google Scholar 

  455. Stryer L. Molecular design of life. New York: W.H. Freeman and Co.; 1989.

    Google Scholar 

  456. Ugawa S, Sunouchi Y, Ueda T, Takahashi E, Saishin Y, Shimada S. Characterization of a mouse colonic system B0+ amino acid transporter related to amino acid absorption in colon. Am J Physiol Gastrointest Liver Physiol 2001;281:G365–G70.

    CAS  PubMed  Google Scholar 

  457. Eiden LE, Schafer MK, Weihe E, Schutz B. The vesicular amine transporter family (SLC18): amine/proton antiporters required for vesicular accumulation and regulated exocytotic secretion of monoamines and acetylcholine. Pflugers Arch 2003;24:24.

    Google Scholar 

  458. Boll M, Daniel H, Gasnier B. The SLC36 family: proton-coupled transporters for the absorption of selected amino acids from extracellular and intracellular proteolysis. Pflugers Arch 2004;447:776–9.

    Article  CAS  PubMed  Google Scholar 

  459. Bodoy S, Martin L, Zorzano A, Palacin M, Estevez R, Bertran J. Identification of LAT4, a novel amino acid transporter with system L activity. J Biol Chem 2005;280:12002–11.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH Research grant R01 AI-30464.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitri Y. Boudko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Boudko, D.Y. (2010). Molecular Ontology of Amino Acid Transport. In: Gerencser, G. (eds) Epithelial Transport Physiology. Humana Press. https://doi.org/10.1007/978-1-60327-229-2_16

Download citation

Publish with us

Policies and ethics