Skip to main content
Log in

Insect octopamine receptors: a new classification scheme based on studies of cloned Drosophila G-protein coupled receptors

  • Review
  • Published:
Invertebrate Neuroscience

Summary

Insect octopamine receptors are G-protein coupled receptors. They can be coupled to second messenger pathways to mediate either increases or decreases in intracellular cyclic AMP levels or the generation of intracellular calcium signals. Insect octopamine receptors were originally classified on the basis of second messenger changes induced in a variety of intact tissue preparations. Such a classification system is problematic if more than one receptor subtype is present in the same tissue preparation. Recent progress on the cloning and characterization in heterologous cell systems of octopamine receptors from Drosophila and other insects is reviewed. A new classification system for insect octopamine receptors into “α-adrenergic-like octopamine receptors (OctαRs)”, “β-adrenergic-like octopamine receptors (OctβRs)” and “octopamine/tyramine (or tyraminergic) receptors” is proposed based on their similarities in structure and in signalling properties with vertebrate adrenergic receptors. In future studies on the molecular basis of octopamine signalling in individual tissues it will be essential to identify the relative expression levels of the different classes of octopamine receptor present. In addition, it will be essential to identify if co-expression of such receptors in the same cells results in the formation of oligomeric receptors with specific emergent pharmacological and signalling properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alkema MJ, Hunter-Ensor M, Ringstad N, Horvitz HR (2005) Tyramine functions independently of octopamine in the Caenorhabditis elegans nervous system. Neuron 46:247–260

    Article  PubMed  Google Scholar 

  • Arakawa S, Gocayne JD, McCombie WR, Urquhart DA, Hall LM, Fraser CM, Venter JC (1990) Cloning, localization, and permanent expression of a Drosophila octopamine receptor. Neuron 4:343–354

    Article  PubMed  Google Scholar 

  • Balfanz S, Strünker T, Frings S, Baumann A (2005) A family of octapamine receptors that specifically induce cyclic AMP production or Ca2+ release in Drosophila melanogaster. J Neurochem 93:440–451

    Article  PubMed  Google Scholar 

  • Bischof LJ, Enan EE (2004) Cloning, expression and functional analysis of an octopamine receptor from Periplaneta americana. Insect Biochem Mol. Biol. 34:511–521

    Article  PubMed  Google Scholar 

  • Blenau W, Baumann A (2001) Molecular and pharmacological properties of insect biogenic amine receptors. Lessons from Drosophila melanogaster and Apis mellifera. Arch Insect Biochem Physiol 48:13–38

    Article  PubMed  Google Scholar 

  • Blenau W, Balfanz S, Baumann A (2000) Am tyr1. Characterization of a gene from honeybee (Apis mellifera) brain encoding a functional tyramine receptor. J Neurochem 74:900–908

    Article  PubMed  Google Scholar 

  • Brody T, Cravchik A. (2000) Drosophila melanogaster G protein-coupled receptors. J Cell Biol 150:F83–F88

    Article  PubMed  Google Scholar 

  • Chang DJ, Li XC, Lee YS et al (2000) Activation of a heterologously expressed octopamine receptor coupled only to adenylyl cyclase produces all the features of presynaptic facilitation in Aplysia sensory neurons. Proc Natl Acad Sci USA 97:1829–1834

    Article  PubMed  Google Scholar 

  • Cole SH, Carney GE, McClung CA, Willard SS, Taylor BJ, Hirsh J. (2005) Two functional but non-complementing Drosophila tyrosine decarboxylase genes: distinct roles for neural tyramine and octopamine in female fertility. J Biol Chem 280:14948–14955

    Article  PubMed  Google Scholar 

  • David JC, Coulon JF (1985) Octopamine in invertebrates and vertebrates. A review. Prog Neurobiol 24:141–185

    Article  Google Scholar 

  • Davis RL (1996) Physiology and biochemistry of Drosophila learning mutants. Physiol Rev 76:299–317

    PubMed  Google Scholar 

  • Dudai Y, Zvi S (1984) High-affinity [3H] octopamine-binding sites in Drosophila melanogaster: interactions with ligands and relationship to octopamine receptors. Comp Biochem C 77:145–151

    Article  Google Scholar 

  • Eddy SR (1998) Profile hidden Markov models. Bioinformatics 14:755–763

    Article  PubMed  Google Scholar 

  • Ehlert JE, Addison CA, Burdick MD, Kunkel SL, Strieter RM (2004) Identification and partial characterization of a variant of human CXCR3 generated by posttranscriptional exon skipping. J Immunology 173:6234–6240

    Google Scholar 

  • Evans PD (1980) Biogenic amines in the insect nervous system. Adv Insect Physiol 15:317–473

    Google Scholar 

  • Evans PD (1981) Multiple receptor types for octopamine in the locust. J Physiol (Lond) 318:99–122

    Google Scholar 

  • Evans PD (1984a) Studies on the mode of action of octopamine, 5–hydroxytryptamine and proctolin on a myogenic rhythm in the locust. J Exp Biol 110:231–251

    Google Scholar 

  • Evans PD (1984b) A modulatory octopaminergic neurone increases cyclic nucleotide levels in locust skeletal muscle. J Physiol (Lond) 348:307–324

    Google Scholar 

  • Evans PD (1984c) The role of cyclic nucleotides and calcium in the mediation of the modulatory effects of octopamine on locust skeletal muscle. J Physiol (Lond) 348:325–340

    Google Scholar 

  • Evans PD (1987) Phenyliminoimidazolidine derivatives activate both OCTOPAMINE1 and OCTOPAMINE2 receptor subtypes in locust skeletal muscle. J Exp Biol 129:239–250

    Google Scholar 

  • Evans PD (1993) Molecular studies on insect octopamine receptors. In: Pichon Y (eds) Comparative molecular neurobiology. Birkhauser Verlag, Basel, pp 286–296

    Google Scholar 

  • Evans PD, Robb S (1993) Octopamine receptor subtypes and their modes of action. Neurochem Res 18:869–874

    Article  PubMed  Google Scholar 

  • Evans PD, Robb, S, Cheek TR, Reale V, Hannan, FL, Swales LS, Hall M, Midgley JM (1995) Agonist-specific coupling of G-protein coupled receptors to second messenger systems. Prog Brain Res 106:259–268

    PubMed  Google Scholar 

  • Grosmaitre X, Marion-Poll F, Renou M (2001) Mamestra brassicae putative octopamine receptor (OAR) mRNA, complete cds. Available from http://www.ncbi.nlm.nih.gov/entrez/query.fcgi.

  • Han KA, Millar NS, Davis RL (1998) A novel octopamine receptor with preferential expression in Drosophila mushroom bodies. J Neurosci 18:3650–3658

    PubMed  Google Scholar 

  • Hannan F, Hall LM (1996) Temporal and spatial expression patterns of two G-protein coupled receptors in Drosophila melanogaster. Invert Neurosci 2:71–83

    PubMed  Google Scholar 

  • Kenakin T (1995) Agonist-receptor efficacy II: agonist trafficking of receptor signals. Trends Pharmacol Sci 16:232–238

    Article  PubMed  Google Scholar 

  • Kutsukake M, Komatsu A, Yamamoto D, Ishiwa-Chigusa S (2000) A tyramine receptor gene mutation causes a defective olfactory behaviour in Drosophila melanogaster. Gene 245:31–42

    Article  PubMed  Google Scholar 

  • Lee HG, Seong CS, Kim YC, Davis RL, Han KA (2003) Octopamine receptor OAMB is required for ovulation in Drosophila melanogaster. Dev Biol 264:179–190

    Article  PubMed  Google Scholar 

  • Maqueira B, Chatwin H, Evans PD (2004) Cloning and expression of a novel family of octopamine G-protein coupled receptors from Drosophila. Soc Neurosci Abst 30:274.8

    Google Scholar 

  • Maqueira B, Chatwin H, Evans PD (2005) Identification and characterization of a novel family of Drosophila β-adrenergic-like octopamine G-protein coupled receptors. J Neurochem 94:547–560

    Article  PubMed  Google Scholar 

  • Monastirioti M, Linn CE, White K (1996) Characterization of Drosophila β-hydroxylase gene and isolation of mutant flies lacking octopamine. J Neurosci 16:3900–3911

    PubMed  Google Scholar 

  • Nagaya Y, Kutsukake M, Chigusa SI, Komatsu A (2002) A trace amine, tyramine, functions as a neuromodulator in Drosophila melanogaster. Neurosci Lett 329:324–328

    Article  PubMed  Google Scholar 

  • Ohata H, Utsumi T, Ozoe Y (2003) B96Bom encodes a Bombyx mori tyramine receptor negatively coupled to adenylate cyclase. Insect Mol Biol 12:217–223

    Article  PubMed  Google Scholar 

  • Ono H, Yoshikawa H (2004) Identification of amine receptors from a swallowtail butterfly, Papilio xuthus L.: cloning and mRNA localization in foreleg chemosensory organ for recognition of host plants. Insect Biochem Mol Biol 34:1247–1256

    Article  PubMed  Google Scholar 

  • Pierce KL, Premont RT, Lefkowitz RJ (2002) Seven-transmembrane receptors. Nat Rev Mol Cell Biol 3:639–650

    Article  PubMed  Google Scholar 

  • Robb S, Cheek TR, Hannan FL, Hall LM, Midgley JM, Evans PD (1994) Agonist-specific coupling of a cloned Drosophila octopamine/tyramine receptor to multiple second messenger systems. EMBO J 13:1325–1330

    PubMed  Google Scholar 

  • Roeder T (1992) A new octopamine receptor class in locust nervous tissue, the octopamine 3 (OA3) receptor. Life Sci 50:21–28

    Article  PubMed  Google Scholar 

  • Roeder T (1994) Biogenic amines and their receptors in insects. Comp Biochem Physiol 107C:1–12

    Google Scholar 

  • Roeder T (1999) Octopamine in invertebrates. Prog. Neurobiol. 59:533–561

    Article  PubMed  Google Scholar 

  • Roeder T (2005) Tyramine and octopamine: ruling behaviour and metabolism. Ann Rev Entomol 50:447–477

    Article  Google Scholar 

  • Roeder T, Nathanson JA (1993) Characterization of insect neuronal octopamine receptors (OA3 receptors). Neurochem Res 18:921–925

    Article  PubMed  Google Scholar 

  • Roeder T, Degen J, Dyczkowski C, Gewecke M (1995) Pharmacology and molecular biology of octopamine receptors from different insect species. Prog Brain Res 106:249–258

    PubMed  Google Scholar 

  • Roeder T, Seifert M, Kahler C, Gewecke M (2003) Tyramine and octopamine: antagonistic modulators of behaviour and metabolism. Arch Insect Biochem Physiol 54:1–13

    Article  PubMed  Google Scholar 

  • Saraswati S, Fox LE, Soll DR, Wu C-F (2003) Tyramine and octopamine have opposite effects on the locomotion of Drosophila larvae. J Neurobiol 58:425–441

    Article  Google Scholar 

  • Sarmiento JM, Anazco CC, Campos DM, Prado GN, Navarro J, Gonzalez CB (2004) Novel down-regulatory mechanism of the surface expression of the vasopressin V2 receptor by an alternative splice receptor variant. J Biol Chem 279:47017–47023

    Article  PubMed  Google Scholar 

  • Saudou F, Amlaiky N, Plassat JL, Borrelli E, Hen R (1990) Cloning and characterization of a Drosophila tyramine receptor. EMBO J 9:3611–3617

    PubMed  Google Scholar 

  • Srivastava D, Yu E, Kennedy K, Chatwin H, Reale V, Hammon M, Smith T, Evans PD (2004) Steroids and catecholamines differentially activate a novel Drosophila G-protein coupled receptor. Soc Neurosci Abstr 30:395.1

    Google Scholar 

  • Srivastava DP, Yu EJ, Kennedy K, Chatwin H, Reale V, Hamon M, Smith T, Evans PD (2005) Rapid, nongenomic responses to ecdysteroids and catecholamines mediated by a novel Drosophila G-protein-coupled receptor. J Neuroscience 25:6145–6155

    Article  Google Scholar 

  • The FlyBase Consortium (2003) The FlyBase database of the Drosophila genome projects and community literature. Nucleic Acids Res 31:172–175

    Google Scholar 

  • Thummel CS, Chory J (2002) Steroid signalling in plants and insects—common themes, different pathways. Gen Dev 16:3113–3129

    Article  PubMed  Google Scholar 

  • Tomaschko K-H (1999) Nongenomic effects of ecdysteroids. Arch Insect Biochem Physiol 41:89–98

    Article  Google Scholar 

  • Vanden Broeck J (2001) Insect G protein coupled receptors and signal transduction. Arch Insect Biochem Physiol 48:1–12

    Article  PubMed  Google Scholar 

  • Vanden Broeck I, Vulsteke V, Huybrechts R, DeLoof A (1995) Characterization of a cloned locust tyramine receptor cDNA by functional expression in permanently transformed Drosophila S2 cells. J Neurochem 64:2387–2395

    PubMed  Google Scholar 

  • Von Nickisch-Rosenegk E, Krieger J, Kubick S, et al (1996) Cloning of biogenic amine receptors from moths (Bombyx mori and Heliothis virescens). Insect Biochem Mol Biol 26:817–827

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the BBSRC through The Babraham Institute. B. M. was additionally supported by the María L. de Sánchez Scholarship (Academia de Ciencias Físicas, Matemáticas y Naturales, Venezuela/Girton College, Cambridge, UK.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter D. Evans.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evans, P.D., Maqueira, B. Insect octopamine receptors: a new classification scheme based on studies of cloned Drosophila G-protein coupled receptors. Invert Neurosci 5, 111–118 (2005). https://doi.org/10.1007/s10158-005-0001-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10158-005-0001-z

Keywords

Navigation