Skip to main content
Log in

Selection on Synthesis Cost Affects Interprotein Amino Acid Usage in All Three Domains of Life

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Most investigations of the forces shaping protein evolution have focussed on protein function. However, cells are typically 50%–75% protein by dry weight, with protein expression levels distributed over five orders of magnitude. Cells may, therefore, be under considerable selection pressure to incorporate amino acids that are cheap to synthesize into proteins that are highly expressed. Such selection pressure has been demonstrated to alter amino acid usage in a few organisms, but whether “cost selection” is a general phenomenon remains unknown. One reason for this is that reliable protein expression level data is not available for most organisms. Accordingly, I have developed a new method for detecting cost selection. This method depends solely on interprotein gradients in amino acid usage. Applying it to an analysis of 43 whole genomes from all three domains of life, I show that selection on the synthesis cost of amino acids is a pervasive force in shaping the composition of proteins. Moreover, some amino acids have different price tags for different organisms—the cost of amino acids is changed for organisms living in hydrothermal vents compared with those living at the sea surface or for organisms that have difficulty acquiring elements such as nitrogen compared with those that do not—so I also investigated whether differences between organisms in amino acid usage might reflect differences in synthesis or acquisition costs. The results suggest that organisms evolve to alter amino acid usage in response to environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  • Abbott A (1999) A post-genomic challenge: learning to read patterns of protein synthesis. Nature 402:715–720

    Article  PubMed  CAS  Google Scholar 

  • Agrafioti I, Swire J, Abbott J, Huntley D, Butcher S, Stumpf MPH (2005) Comparative analysis of the Saccharomyces cerevisiae and Caenorhabditis elegans protein interaction networks. BMC Evol Biol 5(1):article 23

    Article  Google Scholar 

  • Aguinaldo AMA, Turbeville JM, Linford LS, Rivera MC, Garey JR, Raff RA, Lake JA (1997) Evidence for a clade of nematodes, arthropods and other moulting animals. Nature 387:489–492

    Article  PubMed  CAS  Google Scholar 

  • Akashi H, Gojobori T (2002) Metabolic efficiency and amino acid composition in the proteomes of Escherichia coli and Bacillus subtilis. Proc Natl Acad Sci USA 99:3695–3700

    Article  PubMed  CAS  Google Scholar 

  • Amend JP, Helgeson HC (1997) Calculation of the standard molal thermodynamic properties of aqueous biomolecules at elevated temperatures and pressures. Part 1. Amino acids. J Chem Soc 93:1927–1941

    CAS  Google Scholar 

  • Amend JP, Shock EL (1998) Energetics of amino acid synthesis in hydrothermal ecosystems. Science 281:1659–1662

    Article  PubMed  CAS  Google Scholar 

  • Bennetzen J, Hall B (1982) Codon selection in yeast. J Biol Chem 257:3026–3031

    PubMed  CAS  Google Scholar 

  • Burt A (1989) Comparative methods using phylogenetically independent contrasts. In: Harvey PH, Partridge L (eds) Oxford surveys in evolutionary biology. Oxford University Press, Oxford, pp 33–53

    Google Scholar 

  • Cambillau C, Claverie J-M (2000) Structural and genomic correlates of hyperthermostability. J Biol Chem 275:32383–32386

    Article  PubMed  CAS  Google Scholar 

  • Chanda I, Pan A, Dutta C (2005) Proteome composition in Plasmodium falciparum: higher usage of GC-rich nonsynonymous codons in highly expressed genes. J Mol Evol 61:513–523

    Article  PubMed  CAS  Google Scholar 

  • Craig CL, Weber RS (1998) Selection costs of amino acid substitutions in ColE1 and ColIa gene clusters harbored by Escherichia coli. Mol Biol Evol 15:774–776

    PubMed  CAS  Google Scholar 

  • Das S, Ghosh S, Pan A, Dutta C (2005) Compositional variation in bacterial genes and proteins with potential expression level. FEBS Lett 579:5205–5210

    Article  PubMed  CAS  Google Scholar 

  • Drummond DA, Bloom JD, Adami C, Wilke CO, Arnold FH (2005) Why highly expressed proteins evolve slowly. Proc Natl Acad Sci USA 102:14338–14343

    Article  PubMed  CAS  Google Scholar 

  • Francino MP, Ochman H (1997) Strand asymmetries in DNA evolution. Trends Genet 13:240–245

    Article  PubMed  CAS  Google Scholar 

  • Garat B, Musto H (2000) Trends of amino acid usage in the proteins from the unicellular parasite Giardia lamblia. Biochem Biophys Res Commun 279:996–1000

    Article  PubMed  CAS  Google Scholar 

  • Ghaemmaghami S, Huh W-K, Bower K, Howson RW, Belle A, Dephoure N, O’Shea EK, Weissman JS (2003) Global analysis of protein expression in yeast. Nature 425:737–741

    Article  PubMed  CAS  Google Scholar 

  • Gu X, Hewett-Emmett D, Li W-H (1998) Directional mutational pressure affects the amino acid composition and hydrophobicity of proteins in bacteria. Genetica 103:383–391

    Article  Google Scholar 

  • Haney PJ, Badger JH, Buldak GL, Reich CI, Woese CR, Olsen GJ (1999) Thermal adaptation analyzed by comparison of protein sequences from mesophilic and extremely thermophilic Methanococcus species. Proc Natl Acad Sci USA 96:3578–3583

    Article  PubMed  CAS  Google Scholar 

  • Harvey P, Pagel M (1991) The comparative method in evolutionary biology. Oxford University Press, Oxford

    Google Scholar 

  • Heizer EMJ, Raiford DW, Raymer ML, Doom TE, Miller RV, Krane DE (2006) Amino acid cost and codon-usage biases in 6 prokaryotic genomes: a whole-genome analysis. Mol Biol Evol 23:1670–1680

    Article  PubMed  CAS  Google Scholar 

  • Ikemura T (1982) Correlation between the abundance of yeast transfer RNAs and the occurrence of the respective codons in protein genes. J Mol Biol 158:573–597

    Article  PubMed  CAS  Google Scholar 

  • Jansen R, Gerstein M (2000) Analysis of the yeast transcriptome with structural and functional categories: characterizing highly expressed proteins. Nucleic Acids Res 28:1481–1488

    Article  PubMed  CAS  Google Scholar 

  • King JL, Jukes TH (1969) Non-Darwinian evolution. Science 164:788–798

    Article  PubMed  CAS  Google Scholar 

  • Kreil DP, Ouzounis CA (2001) Identification of thermophilic species by the amino acid compositions deduced from their genomes. Nucleic Acids Res 29:1608–1615

    Article  PubMed  CAS  Google Scholar 

  • Lobry JR (1996) Asymmetric substitution patterns in the two DNA strands of bacteria. Mol Biol Evol 13:660–665

    PubMed  CAS  Google Scholar 

  • Lobry JR (1997) Influence of genomic G + C content on average amino-acid composition of proteins from 59 bacterial species. Gene 205:309–316

    Article  PubMed  CAS  Google Scholar 

  • Lobry JR, Gautier C (1994) Hydrophobicity, expressivity and aromaticity are the major trends of amino-acid usage in 999 Escherichia-coli chromosome-encoded genes. Nucleic Acids Res 22:3174–3180

    Article  PubMed  CAS  Google Scholar 

  • Madigan MT, Oren A (1999) Thermophilic and halophilic extremophiles. Curr Opin Microbiol 2:265–269

    Article  PubMed  CAS  Google Scholar 

  • Madigan MT, Martinko JM, Parker J (1997) Biol of microorganisms. Prentice-Hall, London

    Google Scholar 

  • McDonald JH (2001) Patterns of temperature adaptation in proteins from the bacteria Deinococcus radiodurans and Thermus thermophilus. Mol Biol Evol 18:741–749

    PubMed  CAS  Google Scholar 

  • McDonald JH, Grasso AM, Rejto LK (1999) Patterns of temperature adaptation in proteins from Methanococcus and Bacillus. Mol Biol Evol 16:1785–1790

    PubMed  CAS  Google Scholar 

  • Menendez-Arias L, Argos P (1989) Engineering protein thermal-stability—sequence statistics point to residue substitutions in alpha-helices. J Mol Biol 206:397–405

    Article  PubMed  CAS  Google Scholar 

  • Neidhardt FC, Ingraham JL, Schaechter M (1990) Physiology of the bacterial cell: a molecular approach. Sinauer, Sunderland, MA

    Google Scholar 

  • Nishizawa M, Nishizawa K (1998) Biased usages of arginines and lysines in proteins are correlated with local-scale fluctuations of the G + C content of DNA sequences. J Mol Evol 47:385–393

    Article  PubMed  CAS  Google Scholar 

  • Palacios C, Wernegreen JJ (2002) A strong effect of AT mutational bias on amino acid usage in Buchnera is mitigated at high-expression genes. Mol Biol Evol 19:1575–1584

    PubMed  CAS  Google Scholar 

  • Peixoto L, Fernandez V, Musto H (2004) The effect of expression levels on codon usage in Plasmodium falciparum. Parasitology 128:245–251

    Article  PubMed  CAS  Google Scholar 

  • Richmond RC (1970) Non-Darwinian evolution: a critique. Nature 225:1025–1028

    Article  PubMed  CAS  Google Scholar 

  • Sandberg WS, Terwilliger TC (1989) Influence of interior packing and hydrophobicity on the stability of a protein. Science 245:54–56

    Article  PubMed  CAS  Google Scholar 

  • Schaber J, Rispe C, Wernegreen J, Buness A, Delmotte F, Silva FJ, Moya A (2005) Gene expression levels influence amino acid usage and evolutionary rates in endosymbiotic bacteria. Gene 352:109–117

    Article  PubMed  CAS  Google Scholar 

  • Seligmann H (2003) Cost-minimization of amino acid usage. J Mol Evol 56:151–161

    Article  PubMed  CAS  Google Scholar 

  • Sharp P, Li W-H (1987) The rate of synonymous substitution in enterobacterial genes is inversely related to codon usage bias. Mol Biol Evol 4:222–230

    PubMed  CAS  Google Scholar 

  • Singer GAC, Hickey DA (2000) Nucleotide bias causes a genomewide bias in the amino acid composition of proteins. Mol Biol Evol 17:1581–1588

    PubMed  CAS  Google Scholar 

  • Sorensen MA, Pedersen S (1991) Absolute in vivo translation rates of individual codons in Escherichia coli—the 2 Glutamic acid codons GAA and GAG are translated with a threefold difference in rate. J Mol Biol 222:265–280

    Article  PubMed  CAS  Google Scholar 

  • Sorensen MA, Kurland CG, Pedersen S (1989) Codon usage determines translation rate in Escherichia coli. J Mol Biol 207:365–377

    Article  PubMed  CAS  Google Scholar 

  • Suckow J, Markiewicz P, Kleina LG, Miller J, Kisters-Woike B, Muller-Hill B (1996) Genetic studies of the lac repressor XV: 4000 single amino acid substitutions and analysis of the resulting phenotypes on the basis of the protein structure. J Mol Biol 261:509–523

    Article  PubMed  CAS  Google Scholar 

  • Sueoka N (1961) Correlation between base composition of DNA and the amino acid composition of protein. Proc Natl Acad Sci USA 47:1141–1149

    Article  PubMed  CAS  Google Scholar 

  • Swire J (2003) Selection on cost as a driver of molecular evolution. PhD thesis, Imperial College London

  • Swire J, Judson OP, Burt A (2005) Mitochondrial genetic codes evolve to match amino acid requirements of proteins. J Mol Evol 60:128–139

    Article  PubMed  CAS  Google Scholar 

  • Urrutia AO, Hurst LD (2003) The signature of selection mediated by expression on human genes. Genome Res 13:2260–2264

    Article  PubMed  CAS  Google Scholar 

  • Vogt G, Woell S, Argos P (1997) Protein thermal stability, hydrogen bonds, and ion pairs. J Mol Biol 269:631–643

    Article  PubMed  CAS  Google Scholar 

  • Wagner A (2005) Energy constraints on the evolution of gene expression. Mol Biol Evol 22:1365–1374

    Article  PubMed  CAS  Google Scholar 

  • Zavala A, Naya H, Romero H, Musto H (2002) Trends in codon and amino acid usage in Thermotoga maritima. J Mol Evol 54:563–568

    Article  PubMed  CAS  Google Scholar 

  • Zubay G (1988) Biochemistry. Macmillan, London

    Google Scholar 

Download references

Acknowledgments

Many thanks to Austin Burt, Olivia Judson, Eric de Silva, Michael Stumpf, and two anonymous reviewers for helpful comments, criticisms, and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Swire.

Additional information

[Reviewing Editor: Hector Musto]

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swire, J. Selection on Synthesis Cost Affects Interprotein Amino Acid Usage in All Three Domains of Life. J Mol Evol 64, 558–571 (2007). https://doi.org/10.1007/s00239-006-0206-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-006-0206-8

Keywords

Navigation