Skip to main content

Pea

  • Chapter
  • First Online:
Grain Legumes

Abstract

Pea (?Pisum sativum L.) is one of the first domesticated crops and was the model crop for foundational genetic studies by Gregor Mendel. It is currently grown in most temperate regions of the world with annual production over the past decade of approximately 10?×?106 t of dry pea and 15?×?106 t of vegetable pea. Pea belongs to the Leguminosae plant family and consists of two species, P. fulvum and P. sativum. The centre of pea genetic diversity is the broad area of the Fertile Crescent with Ethiopia postulated as a secondary centre of diversity. Pea genetic resources are extensive with ex situ germplasm holdings of >?70,000 accessions in 28 plus national and international collections. Most pea-breeding activities are currently conducted in public institutions in Canada, the USA, Australia, Europe, India and China, with smaller programmes in Africa and South America, and private breeding in companies in Europe, the USA and New Zealand. Through these efforts, pea yields have been improved by approximately 2?% per year over the past 15 years. In addition, substantial progress has been made in improving lodging resistance, disease resistance (fungal, bacterial and viral), seed visual quality and modest improvements in abiotic (heat, frost, salinity and herbicide resistance) stress resistance. Pea-breeding methods include pedigree, single-seed descent and F2-derived family methods, followed by multi-location yield trials and breeder seed development. Varieties are released by various mechanisms including tender release, release through a previously established partner, or direct release by companies. Many biotechnological approaches have been developed or are currently under developed to improve breeding efficiency in pea, particularly the development of various molecular markers. A genome sequencing effort was recently initiated by an international consortium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbo S, Zezak I, Schwartz E et al (2008) Experimental harvesting of wild peas in Israel: implications for the origins of Near East farming. J Archaeol Sci 5:922–929

    Article  Google Scholar 

  • Abbo S, Lev-Yadun S, Gopher A (2010) Agricultural origins: centers and noncenters; a Near Eastern reappraisal. Crit Rev Plant Sci 29:317–328

    Article  Google Scholar 

  • Abbo S, Lev-Yadun S, Heun M et al (2013) On the ‘lost’crops of the neolithic Near East. J Expt Biol 64:815–822

    CAS  Google Scholar 

  • Ahmad S, Singh M, Lamb-Palmer ND et al (2012) Assessment of genetic diversity in 35 Pisum sativum accessions using microsatellite markers. Can J Plant Sci 92:1075–1081

    Article  CAS  Google Scholar 

  • Ali Z, Qureshi AS, Ali W et al (2007) Evaluation of genetic diversity present in pea (Pisum sativum L.) germplasm based on morphological traits, resistance to powdery mildew and molecular characteristics. Pak J Bot 39:2739–2747

    Google Scholar 

  • Ambrose MJ, Coyne CJ (2009) Formal collaboration between John Innes Pisum Collection and USDA-ARS Collection over Pisum genetic stocks. Pisum Genet 40:27

    Google Scholar 

  • Amurrio JM, De Ron AM, Escribano MR (1992) Evaluation of Pisum sativum landraces from the northwest of the Iberian peninsula and their breeding value. Euphytica 66:1–10

    Article  Google Scholar 

  • Amurrio JM, De Ron AM, Zeven AC (1995) Numerical taxonomy of Iberian pea landraces based on quantitative and qualitative characters. Euphytica 82:195–205

    Article  Google Scholar 

  • Andrade M, Sato M, Uyeda I (2006) Two resistance modes to Clover yellow vein virus in pea characteried by a green fluorescent protein-tagged virus. Phytopathol 97:544–550

    Article  CAS  Google Scholar 

  • Annicchiarico P, Iannucci A (2008) Adaptation strategy, germplasm type and adaptive traits for field pea improvement in Italy based on variety responses across climatically contrasting environments. Field Crops Res 108:133–142

    Article  Google Scholar 

  • Anonymous (2006) Genetically modified mush (editorial). Nat Biotechnol 24:2

    Article  CAS  Google Scholar 

  • Aryamanesh N, Byrne O, Hardie DC et al (2012) Large-scale density-based screening for pea weevil resistance in advanced backcross lines derived from cultivated field pea (Pisum sativum) and Pisum fulvum. Crop Pasture Sci 63:612–618

    Article  Google Scholar 

  • Aubert, G, Morin J, Jacquin F et al (2006) Functional mapping in pea as an aid to the candidate gene selection and for investigating synteny with the model legume Medicago truncatula. Theor Appl Genet 112:1024–1041

    Article  CAS  PubMed  Google Scholar 

  • Azmat MA, Ali Khan A, Asif S et al (2012) Screening pea germplasm against Erysiphe polygoni for disease severity and latent period. Int J Veg Sci 18:153–160

    Article  Google Scholar 

  • Bagheri A, Paull JG, Rathjen AJ (1994) The response of Pisum sativum L. germplasm to high concentrations of soil boron. Euphytica 75:9–17

    Article  CAS  Google Scholar 

  • Baldev B (1988) Origin, distribution, taxonomy, and morphology. In: Baldev B, Ramanujam S, Jain HK (eds) Pulse crops. Oxford & IBH Publishing, New Delhi pp 3–51

    Google Scholar 

  • Bani M, Rubiales D, Rispail N (2012) A detailed evaluation method to identify sources of quantitative resistance to Fusarium oxysporum f. sp. pisi race 2 within a Pisum spp. germplasm collection. Plant Pathol 61:532–542

    Article  Google Scholar 

  • Baranger A, Aubert G, Arnau G et al (2004) Genetic diversity within Pisum sativum using protein-and PCR-based markers. Theor Appl Genet 108:1309–1321

    Article  CAS  PubMed  Google Scholar 

  • Baranger A, Pilet-Nayel ML, Lecomte C et al (2010) Quel impact des innovations génétiques pour lever les facteurs limitant la production du prois protéagineux. Innovations Agron 11:59–78

    Google Scholar 

  • Barilli E, Sillero JC, Moral A, Rubiales, D et al (2009) Characterization of resistance response of pea (Pisum spp.) against rust (Uromyces pisi). Plant Breeding 128:665–670

    Article  Google Scholar 

  • Barilli E, Satovic Z, Rubiales D et al (2010) Mapping of quantitative trait loci controlling partial resistance against rust incited by Uromyces pisi (Pers.) Wint. in a Pisum fulvum L. intraspecific cross. Euphytica 175:151–159

    Article  CAS  Google Scholar 

  • Beeck CP, Wroth JM, Falk DE et al (2008) Two cycles of recurrent selection lead to simultaneous improvement in black spot resistance and stem strength in field pea. Crop Sci 48:2235–2244

    Article  Google Scholar 

  • Ben-Ze’ev N, Zohary D (1973) Species relationships in the genus Pisum L. Israel J Bot 22:73–91

    Google Scholar 

  • Berdnikov VA, Trusov YA, Bogdanova VS et al (1992) The neoplastic pod gene (Np) may be a factor for resistance to the pest Bruchus pisorum L. Pisum Genet 24:37–39

    Google Scholar 

  • Bisby FA, Buckingham J, Harborne JB (eds) (1994) Phytochemical dictionary of the Leguminosae Vol. 1: plants and their constituents. Chapman and Hall, London

    Google Scholar 

  • Blixt S, Williams JT (1982) The pea model. IBPGR, Rome

    Google Scholar 

  • Bordat A, Savois V, Nicolas M et al (2011) Translational genomics in legumes allowed placing in silico 5460 unigenes on the pea functional map and identified candidate genes in Pisum sativum L. Genes, Genomes, Genetics 1:93–103

    CAS  Google Scholar 

  • Brachi B, Morris GP, Borevitz JO (2011) Genome-wide association studies in plants: the missing heritability is in the field. Genome Biol 12:232

    Article  PubMed Central  PubMed  Google Scholar 

  • Burstin J, Marget P, Huart M et al (2007) Developmental genes have pleiotropic effects on plant morphology and source capacity, eventually impacting on seed protein content and productivity in pea. Plant Physiol 144:768–781

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Byrne OM, Hardie DC, Khan TN et al (2008) Genetic analysis of pod and seed resistance to pea weevil in a Pisum sativum × P. fulvum interspecific cross. Crop Pasture Sci 59:854–862

    Article  CAS  Google Scholar 

  • Chinoy C, Welham T, Turner L et al (2011) The genetic control of seed quality traits: effects of allelic variation at the Tri and Vc-2 genetic loci in Pisum sativum L. Euphytica 180:107–122

    Article  Google Scholar 

  • Chimwamurombe PM, Khulbe RK (2011) Domestication. In: Pratap A, Kumar J (eds) Biology and breeding of food legumes. CABI, Massachusetts, pp 19–34

    Chapter  Google Scholar 

  • Clement SL, Hardie DC, Elberson LR (2002) Variation among accessions of Pisum fulvum for resistance to pea weevil. Crop Sci 42:2167–2173

    Article  Google Scholar 

  • Clement SL, McPhee KE, Elberson LR et al (2009) Pea weevil, Bruchus pisorum L. (Coleoptera: Bruchidae) resistance in Pisum sativum × Pisum fulvum interspecific crosses. Plant Breed 128:478–485

    Article  Google Scholar 

  • Clemow SR, Clairmont L, Madsen LH et al (2011) Reproducible hairy root transformation and spot-inoculation methods to study root symbioses of pea. Plant Methods 7:46

    Article  PubMed Central  PubMed  Google Scholar 

  • Coyne CJ, Razai L, Baik B-K et al (2005) Variation for pea seed protein concentration in USDA Pisum core collection. Pisum Genet 37:7–11

    Google Scholar 

  • Dalmais M, Schmidt J, Le Signor C et al (2008) UTILLdb, a Pisum sativum in silico forward and reverse genetics tool. Genome Biol 9:R43

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Davidson JA, Krysinska-Kaczmarek M, Kimber RBE et al (2004) Screening field pea germplasm for resistance to downy mildew (Peronospora viciae) and powdery mildew (Erysiphe pisi). Austral Plant Pathol 33:413–417

    Article  Google Scholar 

  • Davidson JA, Krysinska-Kaczmarek M, Leonforte A et al (2011) Resistance to downy mildew (Peronospora viciae) in Australian field pea germplasm (Pisum sativum). Austral Plant Pathol 40:575–582

    Article  Google Scholar 

  • Davis PH (1970) Pisum L. In: Davis PH (ed) Flora of Turkey and East Aegean Islands, vol 3. Edinburg University Press, Edinburgh, pp 370–373

    Google Scholar 

  • De Beukelaer H, Smykal P, Davenport GF et al (2012) Core Hunter II: fast core subset selection based on multiple genetic diversity measures using Mixed Replica search. BMC Bioinformatics 13:312

    Google Scholar 

  • De Caire J, Coyne CJ, Brumet S et al (2012) Additional pea EST-SSR markers for comparative mapping in pea (Pisum sativum L.). Plant Breed 131:222–226

    Article  CAS  Google Scholar 

  • De Candolle A (2007) Origin of cultivated plants. Kesinger Publishing, Montana

    Google Scholar 

  • Deulvot CH, Charrel A, Marty F et al (2010) High-multiplexed SNP genotyping for genetic mapping and germplasm diversity studies in pea. BMC Genomics 11:468

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Dita MA, Rispail N, Prats E et al (2006) Biotechnology approaches to overcome biotic and abiotic stress constraints in legumes. Euphytica 147:1–24

    Article  Google Scholar 

  • Domoney C, Knox M, Moreau C et al (2013) Exploiting a fast neutron mutant genetic resource in Pisum sativum L. (pea) for functional genomics. Funct Plant Biol 40:1261–1270

    Article  CAS  Google Scholar 

  • Dostálová R, Seidenglanz M, Griga M (2005) Simulation and assessment of possible environmental risks associated with release of genetically modified peas (Pisum sativum L.) into environment in Central Europe. Czech J Genet Plant Breed 41:51–63

    Google Scholar 

  • Doyle JJ, Doyle JL, Ballenger JA et al (1997) A phylogeny of the chloroplast gene RbcL in the Leguminosae: taxonomic correlations and insights into the evolution of nodulation. Am J Bot 84:541–554

    Article  CAS  Google Scholar 

  • Duarte J, Rivière N, Baranger A et al (2014) Transcriptome sequencing for high throughput SNP development and genetic mapping in pea. BMC Genomics 15:126–141

    Article  PubMed Central  PubMed  Google Scholar 

  • Dumont E, Fontaine V, Vuylsteker C et al (2009) Association of sugar content QTL and PQL with physiological traits relevant to frost damage resistance in pea under field and controlled conditions. Theor Appl Genet 118:1561–1571

    Article  CAS  PubMed  Google Scholar 

  • Ellis, THN (2011) Pisum. In: Kole C (ed) Wild crop relatives: genomic and breeding resources. Springer, Heidelberg, pp 237–248

    Chapter  Google Scholar 

  • Ellis THN, Poyser SJ, Knox MR et al (1998) Polymorphism of insertion sites of Ty1-copia class retrotransposons and its use for linkage and diversity analysis in pea. Mol Gen Genet 260:9–19

    CAS  PubMed  Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q et al (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PloS ONE 6:e19379

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Elvira-Recuenco M, Bevan JR, Taylor JD (2003) Differential responses to pea bacterial blight in stems, leaves and pods under glasshouse and field conditions. Eur J Plant Pathol 109:555–564

    Article  CAS  Google Scholar 

  • Esposito MA, Martin EA, Cravero VP et al (2007) Characterization of pea accessions by SRAPs markers. Sci Hortic-Amst 113:329–335

    Article  CAS  Google Scholar 

  • Esposito MA, Almiron P, Gatti I et al (2012) A rapid method to increase the number of F-1 plants in pea (Pisum sativum) breeding programs. Genet Mol Res 11:2729–2732

    Article  CAS  PubMed  Google Scholar 

  • FAOSTAT (2013) http://faostat3.fao.org/faostat-gateway/go/to/download/Q/*/E. Accessed 13 Dec 2013

  • Fondevilla S, Åvila CM, Cubero JI et al (2005) Response to Mycosphaerella pinodes in a germplasm collection of Pisum spp. Plant Breed 124:313–315

    Article  Google Scholar 

  • Fondevilla S, Cubero JI, Rubiales D (2007a) Inheritance of resistance to Mycosphaerella pinodes in two wild accessions of Pisum. Eur J Plant Pathol 119:53–538

    Article  Google Scholar 

  • Fondevilla S, Torres AM, Moreno MT et al (2007b) Identification of a new gene for resistance to powdery mildew in Pisum fulvum, a wild relative of pea. Breed Sci 57:181–184

    Article  Google Scholar 

  • Fondevilla S, Rubiales D, Moreno MT et al (2008) Identification and validation of RAPD and SCAR markers linked to the gene Er3 conferring resistance to Erysiphe pisi DC in pea. Mol Breed 22:193–200

    Article  CAS  Google Scholar 

  • Ford R, Le Roux K, Itman C et al (2002) Diversity analysis and genotyping in Pisum with sequence tagged microsatellite site (STMS) primers. Euphytica 124:397–405

    Article  CAS  Google Scholar 

  • Franssen SU, Shrestha RP, Bräutigam A et al (2011) Comprehensive transcriptome analysis of the highly complex Pisum sativum genome using next generation sequencing. BMC Genomics 12:227

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Furman BJ, Ambrose M, Coyne CJ et al (2006) Formation of Pea GRIC: an international consortium to co-ordinate and utilize the genetic diversity and agro ecological distribution of major collections of Pisum. Pisum Genet 38:32–34

    Google Scholar 

  • Glaszmann JC, Kilian B, Upadhyaya HD et al (2010) Accessing genetic diversity for crop improvement. Curr Opin Plant Biol 13:167–173

    Article  CAS  PubMed  Google Scholar 

  • Gonzales MD, Archuleta E, Farmer A et al (2005) The legume information system (LIS): an integrated information resource for comparative legume biology. Nucleic Acids Res 33 (Suppl 1):D660–D665

    PubMed Central  CAS  PubMed  Google Scholar 

  • Govorov LI (1937) Pisum. In: Vavilov NI, Wulff EV (eds) Flora of cultivated plants IV: grain Leguminosae. State Agricultural Publishing Company, Moscow, pp 231–336

    Google Scholar 

  • Green FN (2008) Classification of Pisum sativum subsp. sativum cultivars into groups and subgroups using simply inherited characters. Acta Hortic 799:155–62

    Article  Google Scholar 

  • Grunwald NJ, Coffman VA, Kraft JM (2003) Sources of partial resistance to Fusarium root rot in the Pisum core collection. Plant Dis 87:1197–1200

    Article  Google Scholar 

  • Grusak MA, Burgett CL, Knewtson SJ et al (2004) Novel approaches to improve legume seed mineral nutrition. Proceedings of the 5th AEP-2nd ICLGG conference, European Association for Grain Legume Research, Paris, France, 7–11 June 2004, pp 37–38

    Google Scholar 

  • Hamon C, Baranger A, Coyne CJ et al (2011) New consistent QTL in pea associated with partial resistance to Aphanomyces euteiches in multiple field and controlled environments from France and the United States. Theor Appl Genet 123:261–281

    Article  PubMed  Google Scholar 

  • Hancock JF (2012) Plant evolution and the origin of crop species. CABI, Wallingford

    Book  Google Scholar 

  • Hanocq E, Jeuffroy MH, Lejuene-Henault I et al (2009) Construire des idéotypes pour des systèmes de culture varies en pois d’iver. Innovations Agron 7:14–28

    Google Scholar 

  • Harborne JB (1971) Distribution of flavonoids in the Leguminosae. In: Harborne JB, Boulter D, Turner BL (eds) Chemotaxonomy of the Leguminosae. Academic Press, London, pp 31–71

    Google Scholar 

  • Harland, SC (1948) Inheritance of immunity to mildew in Peruvian forms of Pisum sativum. Hered 2:263–269

    Article  CAS  Google Scholar 

  • Hawthorne W (2007) A summary of pulse management options to minimize frost damage. Pulse Australia Bulletin 02

    Google Scholar 

  • Hochman M, Dostalova R (2010) Pea breeding programs in the Czech Republic. Tag Ver Pflanzenzüchter Saatgutkaufleute Österr 61:95–96.

    Google Scholar 

  • Hoey BK, Crowe KR, Jones VM et al (1996) A phylogenetic analysis of Pisum based on morphological characters, allozyme and RAPD markers. Theor Appl Genet 92:92–100

    Article  CAS  PubMed  Google Scholar 

  • Hofer J, Turner L, Moreau C et al (2009) Tendril-less regulates tendril formation in pea leaves. The Plant Cell 21:420–428

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hollaway GJ, Bretag TW (1995) Occurrence and distribution of races of Pseudomonas syringae pv. pisi in Australia and their specificity towards various field pea (Pisum sativum) cultivars. Aust J Expt Agr 1995;35:629–32.

    Article  Google Scholar 

  • Islam N, Campbell PM, Higgins TJ et al (2009) Transgenic peas expressing an α-amylase inhibitor gene from beans show altered expression and modification of endogenous proteins. Electrophoresis 30:1863–1868

    Article  CAS  PubMed  Google Scholar 

  • Jermyn WA, Slinkard AE (1977) Variability of percent protein and its relationship to seed yield and seed shape in peas. Legume Res 1:33–37

    Google Scholar 

  • Jha AB, Arganosa G, Tar’an B et al (2013) Characterization of 169 diverse pea germplasm accessions for agronomic performance, Mycosphaerella blight resistance and nutritional profile. Genet Resour Crop Evol 60:747–761

    Article  Google Scholar 

  • Jing R, Knox MR, Lee JM et al (2005) Insertional polymorphism and antiquity of PDR1 retrotransposon insertions in a Pisum species. Genetics 171:741–752

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jing R, Johnson R, Seres A, Kiss G, Ambrose MJ, Knox MR, et al (2007) Gene-based sequence diversity analysis of field pea (Pisum). Genet 177:2263–2275

    Article  CAS  Google Scholar 

  • Jing R, Vershinin A, Grzebyta J et al (2010) The genetic diversity and evolution of field pea (Pisum) studied by high throughput retrotransposon based insertion polymorphism (RBIP) marker analysis. BMC Evol Biol 10:44

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Jing R, Ambrose MA, Knox MR et al (2012) Genetic diversity in European Pisum germplasm collections. Theor Appl Genet 125:367–380

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jones AL, Johansen IE, Bean SJ et al (1998) Specificity of resistance to pea seed-borne mosaic potyvirus in transgenic peas expressing the viral replicase (NIb) gene. J Gen Virol 79:3129–3137

    Article  CAS  PubMed  Google Scholar 

  • Kabir AH, Paltridge NG, Roessner U et al (2012) Mechanisms associated with Fe-deficiency tolerance and signaling in shoots of Pisum sativum. Physiol Plant 147:381–395

    Article  PubMed  CAS  Google Scholar 

  • Katoch V, Sharma S, Pathania S et al (2010) Molecular mapping of pea powdery mildew resistance gene er2 to pea linkage group III. Mol Breed 25:229–237

    Article  CAS  Google Scholar 

  • Kaya Z, Kun E, Guner A (1988) National plan for in situ conservation of plant genetic diversity in Turkey. In: Zencirci N, Kaya Z, Anikster Y et al (eds) Proceedings of international symposium on In Situ Conservation Of Plant Genetic Diversity. Central Research Institute for Field Crops, Ankara, Turkey, pp 33–47

    Google Scholar 

  • Kaur S, Pembleton LW, Cogan NO et al (2012) Transcriptome sequencing of field pea and faba bean for discovery and validation of SSR genetic markers. BMC Genomics 13:104

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Khan TN, Timmerman-Vaughan GM, Rubiales D et al (2013) Didymella pinodes and its management in field pea: challenges and opportunities. Field Crops Res 148:61–77

    Article  Google Scholar 

  • Kloz J, Turkova V (1963) Legumin, vicilin and proteins similar to them in the seeds of some species of the Vicieae tribe (a comparative serological study). Biol Plant 5:29–40

    Article  CAS  Google Scholar 

  • Kosterin OE, Bogdanova VS (2008) Relationship of wild and cultivated forms of Pisum L. as inferred from an analysis of three markers, of the plastid, mitochondrial and nuclear genomes. Genet Resour Crop Evol 55:735–755

    Article  CAS  Google Scholar 

  • Kosterin OE, Zaytseva OO, Bogdanova VS et al (2010) New data on three molecular markers from different cellular genomes in Mediterranean accessions reveal new insights into phylogeography of Pisum sativum L. sbsp. elatius (Bieb.) Schmalh. Genet Resour Crop Evol 57:733–739

    Article  CAS  Google Scholar 

  • Kraft JM, Dunne B, Goulden D et al (1998) A search for resistance in peas to Mycosphaerella pinodes. Plant Dis 82:251–253

    Article  Google Scholar 

  • Kupicha FK (1981). Vicieae (Adans.) DC. (1825) nom conserv prop. In: Polhill RM, Raven PH, (eds) Advances in legume systematics, vol 1. Royal Botanical Gardens, Kew, pp 377–381

    Google Scholar 

  • Kwon S-J, Brown AF, Hu J et al (2012) Population genetic sub-structure within the USDA-ARS Pisum core collection and its potential as a platform for association mapping. Genes Genomics 34:305–320

    Article  CAS  Google Scholar 

  • Lamarck JB (1778) Flore françoise. Impr Royale, Paris

    Google Scholar 

  • Lamprecht H (1953) Ein gen für schmale hülsen bei Pisum und seine koppelung. Agr Hort Genet 11:15–27

    Google Scholar 

  • Lamprecht H (1954) Weitere studien über die vererbung der hülsenbreite von Pisum. Agr Hort Genet 12:202–210

    Google Scholar 

  • Lamprecht H (1957a) The gene map of chromosome II of Pisum. Agr Hort Genet 15:12–47

    Google Scholar 

  • Lamprecht H (1957b) Über die vererbung der hülsenbreite bei Pisum. Agr Hort Genet 15:105–114

    Google Scholar 

  • Lamprecht H (1960). Weitere studien zur genenkarte von chromosom V von Pisum. Agr Hort Genet 18:23–56

    Google Scholar 

  • Lamprecht H (1963) Zur vererbung der hülsenlänge bei Pisum sowie über ein neues gen für die reduktion der stipel. Agr Hort Genet 21:25–34

    Google Scholar 

  • Lavin M, Herendeen PS, Wojciechowski M (2005) Evolutionary rates analysis of Leguminosae implicates a rapid diversification of lineages during the Tertiary. Syst Biol 54:575–594

    Article  PubMed  Google Scholar 

  • Lee JM, Davenport GF, Marshall D et al (2005) GERMINATE. A generic database for integrating genotypic and phenotypic information for plant genetic resource collections. Plant Physiol 139:619–631

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lehmann C (1954). Das morphologische System der Saaterbsen (Pisum sativum L. sensu lato Gov. subsp. sativum). Der Züchter 24:316–337

    Google Scholar 

  • Lejeune-Hénaut I, Hanocq E, Béthencourt L et al (2008). The flowering locus Hr colocalizes with a major QTL affecting winter frost tolerance in Pisum sativum L. Theor Appl Genet 116:1105–1116

    Article  PubMed  CAS  Google Scholar 

  • Le May C, Schoeny A, Tiroli B et al (2005) Improvement and validation of a pea crop growth model to simulate the growth of cultivars infected with Ascochyta blight. Eur J Plant Pathol 112:1–12

    Article  Google Scholar 

  • Leonforte A, Brouwer JB (1999) Expanding the adaptation of field pea. In: Langridge P, Barr A, Auricht G (eds) Proceedings of the 11th Australian plant breeding conference, CRC for Molecular Plant Breeding, Adelaide, Australia, pp 73–74

    Google Scholar 

  • Leonforte A, Bretag T, Armstrong E et al (2004) Improving resistance to Septoria blotch (Septoria pisi) in field pea. Proceedings of the 5th European conference on Grain Legumes Research and 2nd International Conference on Legume Genetics and Genetics, Dijon, France, 7–11 June 2004, p 331

    Google Scholar 

  • Leonforte T, Armstrong E, McMurray L et al (2006) Breeding reliable and lodging resistant semi-dwarf field peas for Australia. Proceedings of the 13th Australasian Plant Breeding conference. Christchurch, New Zealand, 18–21 April 2006

    Google Scholar 

  • Leonforte A, Noy D, Redden R et al (2009) Improving boron and salinity tolerance in field pea (Pisum sativum L.). Proceedings of the 14th Australasian Plant Breeding Conference, Cairns, Australia

    Google Scholar 

  • Leonforte A, Forster JW, Redden RJ et al (2013) Sources of high tolerance to salinity in pea (Pisum sativum L.). Euphytica 189:203–216

    Article  CAS  Google Scholar 

  • Lewis G, Schrirer B, Mackinder B et al (eds) (2005) Legumes of the world. Royal Botanical Gardens, Kew

    Google Scholar 

  • Li L, Redden RJ, Zong X et al (2013) Ecogeographic analysis of pea collection sites from China to determine potential sites with abiotic stresses. Genet Resources Crop Evol 60:1801–1815

    Article  Google Scholar 

  • Lie TA, Goktan D, Engin M et al (1987) Co-evolution of the legume-Rhizobium association. Plant Soil 100:171–181

    Article  Google Scholar 

  • Linnaeus C (1753) Species plantarum, vol 2. Laurentius Salvius, Stokholm

    Google Scholar 

  • Loridon K, McPhee KE, Morin J et al (2005) Microsatellite marker polymorphism and mapping in pea (Pisum sativum L.). Theor Appl Genet 111:1022–1031

    Article  CAS  PubMed  Google Scholar 

  • Lucau-Danila A, Toitot C, Goulas E et al (2012) Transcriptome analysis in pea allows to distinguish chilling and acclimation mechanisms. Plant Physiol Bioch 58:236–244

    Article  CAS  Google Scholar 

  • Lulsdorf MM, Croser JS, Ochatt S (2011) Androgenesis and doubled-haploid production in food legumes. In: Pratap A, Kumar J (eds) Biology and breeding of food legumes. CABI International, Oxford, pp 159–177

    Chapter  Google Scholar 

  • Main D, Cheng C-H, Ficklin SP et al (2013) The cool season food legume database: an integrated resource for basic, translational and applied research. Proceedings of the Plant and Animal Genome XXI conference, Meeting Abstract, San Diego, USA, 12–16 January 2013, p W212

    Google Scholar 

  • Majeed M, Safdar W, Ali B et al (2012) Genetic assessment of the genus Pisum L. based on sequence specific amplification polymorphism data. J Med Plants Res 6:959–967

    Google Scholar 

  • Makasheva RK (1979). Gorokh (pea). In: Korovina ON (ed) Kulturnaya flora SSR. Kolos Publishers, Leningrad, pp 1–324

    Google Scholar 

  • Malvick DK, Percich JA (1999) Identification of Pisum sativum germplasm with resistance to root rot caused by multiple strains of Aphanomyces euteiches. Plant Dis 83:51–54

    Article  Google Scholar 

  • Martin-Sanz A, Caminero C, Jing R et al (2011) Genetic diversity among Spanish pea (Pisum sativum L.) landraces, pea cultivars and the world Pisum sp. core collection assessed by retrotransposon-based insertion polymorphisms. Span J Agric Res 9:166–178

    Article  Google Scholar 

  • Martín-Sanz A, Pérez de la Vega M, Caminero C (2012) Resistance to Pseudomonas syringae in a collection of pea germplasm under field and controlled conditions. Plant Pathol 61:375–387

    Article  Google Scholar 

  • Matthews P, Ambrose MJ (1994) Development and use of a ‘core’ collection for the John Innes Pisum collection. In: Balfourier F, Perretant MR (eds) Evaluation and exploitation of genetic resources, Proceedings of the genetic resources section meeting of EUCARPIA. Clermont Ferrand, France, pp 99–107

    Google Scholar 

  • Maxted N, Ambrose M (2001) Peas (Pisum L.). In: Maxted N, Bennett SJ (eds) Plant genetic resources of legumes in the Mediterranean. Kluwer, Dordrecht, pp 181–190

    Chapter  Google Scholar 

  • Maxted N, Bennett SJ (eds) (2001) Plant genetic resources of legumes in the Mediterranean. Springer Science + Business Media, Dordrecht

    Book  Google Scholar 

  • Maxted N, Kell SP (2009) Establishment of a global network for the in situ conservation of crop wild relatives: status and needs. FAO Consultancy Report, FAO, Rome, Italy, pp 1–265

    Google Scholar 

  • McCouch S, Baute GJ, Bradeen J et al (2013) Agriculture: feeding the future. Nature 499:23–24

    Article  CAS  PubMed  Google Scholar 

  • McGee RJ (2012a) Genomics-assisted breeding for cool season food legumes: from gene discovery to application. Proceedings of Plant and Animal Genome XX conference, San Diego, USA, 15–17 January 2012, p W205

    Google Scholar 

  • McGee RJ (2012b) Mendel’s legacy: an international pea sequencing project. Pisum Genet 44:13–14

    Google Scholar 

  • McMurray LS, Davidson JA, Lines MD et al (2011) Combining management and breeding advances to improve field pea (Pisum sativum L.) grain yields under changing climatic conditions in south-eastern Australia. Euphytica 180:69–88

    Article  Google Scholar 

  • McPhee K (2005) Variation for seedling root architecture in the core collection of pea germplasm. Crop Sci 45:1758–1763

    Article  Google Scholar 

  • McPhee KE, Muehlbauer FJ (2001) Biomass production and related characters in the core collection of Pisum germplasm. Genet Resour Crop Evol 48:195–203

    Article  Google Scholar 

  • McPhee KE, Tullu A, Kraft JM et al (1999) Resistance to Fusarium wilt race 2 in the Pisum core collection. J Am Soc Hort Sci 124:28–31

    Google Scholar 

  • Mikič A, Mihailovic V, Dimitrijevic M, et al (2012) Evaluation of seed yield and seed yield components in red–yellow (Pisum fulvum) and Ethiopian (Pisum abyssinicum) peas. Genet Resour Crop Evol 60:629–638

    Article  Google Scholar 

  • Mikič A, Smykal P. Kenicer GJ et al (2013) The bicentenary of the research on ‘beautiful’ vavilovia (Vavilovia formosa), a legume crop wild relative with taxonomic and agronomic potential. Bot J Linn Soc 172:524–531

    Article  Google Scholar 

  • Mikschofsky H, Broer I (2012) Feasibility of Pisum sativum as an expression system for pharmaceuticals. Transgenic Res 21:715–724

    Article  CAS  PubMed  Google Scholar 

  • Mikschofsky H, Schirrmeier H, Keil GM et al (2009) Pea-derived vaccines demonstrate high immunogenicity and protection in rabbits against rabbit haemorrhagic disease virus. Plant Biotechnol J 7:537–549

    Article  CAS  PubMed  Google Scholar 

  • Mishra RK, Gangadhar BH, Nookaraju A et al (2012) Development of EST-derived SSR markers in pea (Pisum sativum) and their potential utility for genetic mapping and transferability. Plant Breed 131:118–124

    Article  CAS  Google Scholar 

  • Mittal V, Ujagir U (2005) Field screening of pea, Pisum sativum L. germplasm for resistance against major insect pests. J Plant Protect Environ 2:50–58

    Google Scholar 

  • Morton RL, Schroeder HE, Bateman KS et al (2000) Bean α-amylase inhibitor 1 in transgenic peas (Pisum sativum) provides complete protection from pea weevil (Bruchus pisorum) under field conditions. Proc Natl Acad Sci U S A 97: 3820–3825

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Murfet IC (1973) Flowering in Pisum. Hr, a gene for high response to photoperiod. Heredity 31:157–164

    Article  Google Scholar 

  • Murfet IC, Reid JB (1993) Developmental mutants. In: Casey R, Davies DR (eds) Peas: genetics, molecular biology and biotechnology. CAB International, Wallingford, pp 165–216

    Google Scholar 

  • Nasiri J, Haghnazari A, Saba J (2010) Genetic diversity among varieties and wild species accessions of pea (Pisum sativum L.) based on SSR markers. African J Biotechnol 15 3405–3417

    Google Scholar 

  • Nelson RL (2011) Managing self-pollinated germplasm collections to maximize utilization. Plant Genet Resour 9:123–133

    Article  Google Scholar 

  • Ondrej M, Dostalova R, Hybl M et al (2003) Utilization of afila types of pea (Pisum sativum L.) resistant to powdery mildew (Erysiphe pisi DC.) in the breeding programs. Plant Soil Environ 49:481–485

    Article  Google Scholar 

  • Page D, Aubert G, Duc G et al (2002) Combinatorial variation in coding and promoter sequences of genes at the Tri locus in Pisum sativum accounts for variation in trypsin inhibitor activity in seeds. Mol Genet Genomics 267:359–369

    Article  CAS  PubMed  Google Scholar 

  • Palmer JD, Jorgensen RA, Thompson WF (1985) Chloroplast DNA variation and evolution in Pisum: patterns of change and phylogenetic analysis. Genet 109:195–213

    CAS  Google Scholar 

  • Pearce SR, Knox M, Ellis TH et al (2000) Pea Ty1-copia group retrotransposons: transpositional activity and use as markers to study genetic diversity in Pisum. Mol Gen Genet 263:898–907

    Article  CAS  PubMed  Google Scholar 

  • Petkova C, Nikolova V, Kalapchieva SH et al (2009) Physiological response and pollen viability of Pisum sativum genotypes under higher temperature influence. Acta Hortic 830:665–672

    Article  Google Scholar 

  • Pilet-Nayel ML, Muehlbauer FJ, McGee RJ et al (2002) Quantitative trait loci for partial resistance to Aphanomyces root rot in pea. Theor Appl Genet 106:28–39

    CAS  PubMed  Google Scholar 

  • Pilet-Nayel ML, Muehlbauer FJ, McGee RJ et al (2005) Consistent quantitative trait loci in pea for partial resistance to Aphanomyces euteiches isolates from the United States and France. Phytopathol 95:1287–1293

    Article  CAS  Google Scholar 

  • Porter LD, Hoheisel G, Coffman VA (2009) Resistance of peas to Sclerotinia sclerotiorum in the Pisum core collection. Plant Pathol 58:52–60

    Article  Google Scholar 

  • Priliouk L, Vavilov NI, Robertson L et al (1999) Genetic diversity in pea germplasm from Vavilov Institute and ICARDA collections for black spot resistance and agronomic merit. Pisum Genet 31:53

    Google Scholar 

  • Prusinski J (2007) Degree of success of legume cultivars registered by the Center for Cultivar Testing over the period of market economy. Acta Sci Pol Agric 6:3–16

    Google Scholar 

  • Rafalski JA (2010) Association genetics in crop improvement. Curr Opin Plant Biol 13:174–180

    Article  CAS  PubMed  Google Scholar 

  • Rahi P, Kapoor R, Young JP et al (2012) A genetic discontinuity in root-nodulating bacteria of cultivated pea in the Indian trans-Himalayas. Mol Ecol 21:145–159

    Article  PubMed  Google Scholar 

  • Rai R, Singh AK, Singh BD et al (2011) Molecular mapping for resistance to pea rust caused by Uromyces fabae (Pers.) de-Bary. Theor Appl Genet 123:803–813

    Article  PubMed  Google Scholar 

  • Rajput V, Singh NP (2010) Studies on in vitro regeneration and direct organogenesis in pea (Pisum sativum L.). Indian J Plant Physiol 15:246–249

    CAS  Google Scholar 

  • Reeves PA, Panella LW, Richards CM (2012) Retention of agronomically important variation in germplasm core collections: implications for allele mining. Theor Appl Genet 124:1155–1171

    Article  PubMed  Google Scholar 

  • Riehl S, Zeidi M, Conard NJ (2013) Emergence of agriculture in the foothills of the Zagros mountains of Iran. Science 341:65–67

    Article  CAS  PubMed  Google Scholar 

  • Saar DE, Polans NO (2000) ITS sequence variation in selected taxa of Pisum. Pisum Genet 32:42–45

    Google Scholar 

  • Sadras VO, Lake L, Chenu K et al (2012) Water and thermal regimes for field pea in Australia and their implications for breeding. Crop Pasture Sci 63:33–44

    Article  Google Scholar 

  • Sanchez EA, Mosquera T (2006) Establishing a methodology for inducing the regeneration of pea (Pisum sativum L.) explants ‘Santa Isabel’ variety. Agron Colomb 24:17–27

    Google Scholar 

  • Sanderson L, Krilow C, Vandenberg A et al (2011) KnowPulse: a breeder-focused web portal that integrates genetics and genomics of pulse crops with model genomes. Pisum Genet 43:46–47

    Google Scholar 

  • Sarıkamış G, Yanmaz R, Ermis S et al (2010) Genetic characterization of pea (Pisum sativum) germplasm from Turkey using morphological and SSR markers. Genet Mol Res 9:591–600

    Article  PubMed  CAS  Google Scholar 

  • Schaefer H, Hechenleitner P, Santos-Guerra A et al (2012) Systematics, biogeography, and character evolution of the legume tribe Fabeae with special focus on the middle-Atlantic island lineages. BMC Evol Biol 12:250

    Article  PubMed Central  PubMed  Google Scholar 

  • Schneider A, Walker SA, Poyser S et al (1999) Genetic mapping and functional analysis of a nodulation-defective mutant (sym19) of pea (Pisum sativum L.). Mol Gen Genet 262:1–11

    Article  CAS  PubMed  Google Scholar 

  • Schroeder HM, Gollasch S, Moore A et al (1995) Bean α-amylase inhibitor confers resistance to the pea weevil (Bruchus pisorum) in transgenic peas (Pisum sativum). Plant Physiol 107:1233–1239

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shafiq S, Mather DE, Ahmad M et al (2012) Variation in tolerance to radiant frost at reproductive stages in field pea germplasm. Euphytica 186:831–845

    Article  CAS  Google Scholar 

  • Simioniuc D, Uptmoor R, Friedt W et al (2002) Genetic diversity and relationships among pea cultivars revealed by RAPDs and AFLPs. Plant Breeding 121:429–35

    Article  CAS  Google Scholar 

  • Sindhu A, Ramsay L, Sanderson LA et al (2014) Gene-based SNP discovery and genetic mapping in pea. Theor Appl Genet 127:2225–2241

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Smartt J (1990) Grain legumes: evolution and genetic resources. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Smýkal P (2006) Development of an efficient retrotransposon-based fingerprinting method for rapid pea variety identification. J Appl Genet 47:221–230

    Article  PubMed  Google Scholar 

  • Smýkal P, Coyne CJ, Ford R et al (2008a) Effort towards a world pea (Pisum sativum L.) germplasm core collection: the case for common markers and data compatibility. Pisum Genet 40:11–14

    Google Scholar 

  • Smýkal P, Hybl M, Corander J et al (2008b) Genetic diversity and population structure of pea (Pisum sativum L.) varieties derived from combined retrotransposon, microsatellite and morphological marker analysis. Theor Appl Genet 117:413–424

    Article  PubMed  CAS  Google Scholar 

  • Smýkal P, Kalendar R, Ford R et al (2009) Evolutionary conserved lineage of Angela-family retrotransposons as a genome-wide microsatellite repeat dispersal agent. Heredity 103:157–167

    Article  PubMed  CAS  Google Scholar 

  • Smýkal P, Kenicer G, Flavell AJ et al (2011) Phylogeny, phylogeography and genetic diversity of the Pisum genus. Plant Genet Resources 9:4–18

    Article  Google Scholar 

  • Smýkal P, Aubert G, Burstin J et al (2012) Pea (Pisum sativum L.) in the genomic era. Agron J 2:74–115.

    Article  Google Scholar 

  • Smýkal P, Coyne CJ, Redden RJ et al (2013) Peas. In: Singh M, Bisht IS (eds) Genetic and genomic resources for grain legume improvement. Elsevier Insights, London, pp 41–80

    Chapter  Google Scholar 

  • Steele KP, Wojciechowski MF (2003) Phylogenetic analyses of tribes Trifoleae and Vicieae based on sequences of the plastid gene matK (Papilionoideae: Leguminosae). In: Klitgaard BB, Bruneau A (eds) Advances in legume systematics, part 10. Royal Botanic Gardens, Kew, pp 355–370

    Google Scholar 

  • Swiecicki WK, Timmerman-Vaughan G (2005) Localization of important traits: the example of pea. In: Nagata T, Lorz H, Widholm JM et al (eds) Molecular marker systems in plant breeding and crop improvement: biotechnology in agriculture and forestry, vol 55. Springer, Berlin, pp 155–169

    Chapter  Google Scholar 

  • Swiecicki W, Swiecicki WK, Wiatr K (1997) History and present achievements and prospectives of legume plants breeding in Poland. Zesz Probl Postęp Nauk Roliniczych 446:15–32

    Google Scholar 

  • Swiecicki WK, Wolko B, Apisitwanich S et al (2000) An analysis of isozymic loci polymorphism in the core collection of the Polish Pisum genebank. Genet Resour Crop Evol 47:583–590

    Article  Google Scholar 

  • Tar’an B, Zhang C, Warkentin T, Tullu A et al (2005) Genetic diversity among varieties and wild species accessions of pea (Pisum sativum L.) based on molecular markers, and morphological and physiological characters. Genome 48:257–272

    Article  PubMed  Google Scholar 

  • Taylor JD, Bevan JR, Crute IR et al (1989) Genetic relationship between races of Pseudomonas syringae pv. pisi and cultivars of Pisum sativum. Plant Pathol 38:364–375

    Article  Google Scholar 

  • Tedford EC, Inglis DA (1999) Evaluation of legumes common to the Pacific Northwest as hosts for the pea cyst nematode (Heterodera goettingiana). J Nematol 31:155–163

    PubMed Central  CAS  PubMed  Google Scholar 

  • Timmerman-Vaughan GM, McCallum JA, Frew TJ et al (1996) Linkage mapping of quantitative trait loci controlling seed weight in pea (Pisum sativum L.). Theor Appl Genet 93:431–439

    Article  CAS  PubMed  Google Scholar 

  • van der Maesen LJ (1998) Wild plants as genetic resources for crop improvement. In: Mathew P, Sivadasan M (eds) Diversity and taxonomy of tropical flowering plants. Mentor Books, Calicut, pp 93–112

    Google Scholar 

  • van Leur JA, Aftab M, Leonforte A et al (2007) Control of pea seedborne mosaic virus in field pea through resistance breeding. Proceedings of the 16th biennial conference of the Australasian Plant Path Society, Adelaide, Australia, 24–27 September 2007, p 154

    Google Scholar 

  • Varshney RK, Close TJ, Singh NK et al (2009) Orphan legume crops enter the genomics era! Curr Opin Plant Biol 12:202–210

    Article  PubMed  Google Scholar 

  • Varshney RK, Song C, Saxena RK, Azam S et al (2013) Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat Biotechnol 31:240–246

    Article  CAS  PubMed  Google Scholar 

  • Vavilov NI (1950) The phytogeographic basis of plant breeding. In: Chester KS (translator) The origin, variation, immunity, and breeding of cultivated plants. Chronica Botanica, Massachusetts, pp 13–54

    Google Scholar 

  • Vershinin AV, Allnutt TR, Knox MR et al (2003) Transposable elements reveal the impact of introgression, rather than transposition, in Pisum diversity, evolution, and domestication. Mol Biol Evol 20:2067–2075

    Article  CAS  PubMed  Google Scholar 

  • Vigeolas H, Chinoy C, Zuther E et al (2008) Combined metabolomic and genetic approaches reveal a link between the polyamine pathway and albumin 2 in developing pea seeds. Plant Physiol 146:74–82

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Waines JG (1975) The biosystematics and domestication of peas (Pisum L.). Bull Torrey Bot Club. 102:385–395

    Article  Google Scholar 

  • Weeden NF (2007) Genetic changes accompanying the domestication of Pisum sativum: is there a common genetic basis to the ‘domestication syndrome’ for legumes? Ann Bot 100:1017–1025

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Weeden NF, Porter L (2007) The genetic basis of Fusarium root rot tolerance in the ‘Afghanistan’ pea. Pisum Genet 39:35–36

    Google Scholar 

  • Weeden NF, Wolko B (2001) Allozyme analysis of Pisum sativum spp. abyssinicum and the development of genotypic definition for this subspecies. Pisum Genet 33:21–25

    Google Scholar 

  • Weeden, NF, Brauner, S, Przyborowski, JA (2002) Genetic analysis of pod dehiscence in pea (Pisum sativum L.). Cell Mol Biol Lett 7:657–663

    CAS  PubMed  Google Scholar 

  • Weigelt K, Kuster H, Rutten T et al (2009) ADP-glucose pyrophosphorylase-deficient pea embryos reveal specific transcriptional and metabolic changes of carbon-nitrogen metabolism and stress responses. Plant Physiol 149:395–411

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Welham T, Domoney C (2000) Temporal and spatial activity of a promoter from a pea enzyme inhibitor gene and its exploitation for seed quality improvement. Plant Sci 159:289–299

    Article  CAS  PubMed  Google Scholar 

  • Weller JL, Hecht V, Liew LC et al (2009) Update on the genetic control of flowering in garden pea. J Expt Biol 60:2493–2499

    CAS  Google Scholar 

  • Weller JL Liew LC, Hecht VFG et al (2012) A conserved molecular basis for photoperiod adaptation in two temperate legumes. Proc Natl Acad Sci U S A 109:21158

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wheeler T, von Braun J (2013) Climate change impacts on global food security. Science 341:508–513

    Article  CAS  PubMed  Google Scholar 

  • White Ö (1917) Studies of inheritance in Pisum II. The present state of knowledge of heredity and variation in peas. Proc Am Philos Soc 56:487–588

    Google Scholar 

  • Xu X, Liu X, Ge S et al (2011) Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes. Nat Biotechnol 30:105–111

    Article  CAS  PubMed  Google Scholar 

  • Yarnell SH (1962) Cytogenetics of the vegetable crops. III. Legumes. Garden peas (Pisum sativum L.) Bot Rev 28:465–537

    Article  Google Scholar 

  • Young JPW, Matthews P (1982) A distinct class of peas (Pisum sativum L.) from Afghanistan that show strain specificity for symbiotic Rhizobium. Heredity 48:203–210

    Article  Google Scholar 

  • Zaytseva OO, Bogdanova VS, Kosterin OE (2012) Phylogenetic reconstruction at the species and intraspecies levels in the genus Pisum (L.) (peas) using a histone H1 gene. Gene 504:192–202

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Tar’an B, Warkentin T et al (2006a) Selection for lodging resistance in early generations of field pea by molecular markers. Crop Sci 46:321–329

    Article  Google Scholar 

  • Zhang R, Hwang SF, Chang KF et al (2006b) Genetic resistance to Mycosphaerella pinodes in 558 field pea accessions. Crop Sci 46:2409–2414

    Article  Google Scholar 

  • Zhuang X, McPhee KE, Coram TE et al (2012) Rapid transcriptome characterization and parsing of sequences in a non-model host-pathogen interaction; pea-Sclerotinia sclerotiorum. BMC Genomics 13:668

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zohary D, Hopf M (2000) Domestication of plants in the old world. Oxford University Press, Oxford

    Google Scholar 

  • Zong X, Guan JP, Wang SM et al (2008) Genetic diversity and core collection of alien Pisum sativum L. germplasm. Acta Agron Sin 34:1518–1528

    Article  CAS  Google Scholar 

  • Zong X, Redden R, Liu Q et al (2009) Analysis of a diverse Pisum sp. collection and development of a Chinese P. sativum core collection based on microsatellite markers. Theor Appl Genet 118:193–204

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Appreciation is expressed to Devini DeSilva for critically reviewing the references section of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas D. Warkentin Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Warkentin, T. et al. (2015). Pea. In: De Ron, A. (eds) Grain Legumes. Handbook of Plant Breeding, vol 10. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2797-5_2

Download citation

Publish with us

Policies and ethics