Skip to main content
Log in

Relationship of wild and cultivated forms of Pisum L. as inferred from an analysis of three markers, of the plastid, mitochondrial and nuclear genomes

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Eighty-nine accessions of wild and cultivated peas (12 Pisum fulvum Sibth. et Smith., 7 P. abyssinicum A. Br., 31 wild and 42 cultivated forms of P. sativum L.) were analysed for presence of the variants of three functionally unrelated polymorphic markers referring to different cellular genomes. The plastid gene rbcL either contains or not the recognition site for restriction endonuclease AspLEI (rbcL+ vs. rbcL−); the mitochondrial gene cox1 either contains or not the recognition site for restriction endonuclease PsiI (cox1+ vs. cox1−); the nuclear encoded seed albumin SCA is represented by slow (SCAS) or fast (SCAF) variant. Most of the accessions possessed either of two marker combinations: 24 had SCAF cox1+ rbcL+ (combination A) and 49 accessions had SCAS cox1rbcL− (combination B), 16 accessions represented 5 of the rest 6 possible combinations. All accessions of P. fulvum and P. abyssinicum had combination A, the overwhelming majority of cultivated forms of P. sativum had combination B while wild representatives of P. sativum had both combinations A and B, as well as rare combinations. This pattern indicates that combination A is the ancestral state in the genus Pisum L., inherited by P. fulvum and P. abyssinicum, while combination B seems to have arisen in some lineage of wild P. sativum which rapidly fixed mutational transitions of the three markers studied, most probably via a bottleneck effect during the Pleistocene. Then this ‘lineage B’ spread over Mediterranean and also gave rise to cultivated forms of P. sativum. Rare combinations may have resulted from occasional crosses between ‘lineage A’ and ‘lineage B’ in nature or during cultivation, or represent intermediate evolutionary lineages. The latter explanation seems relevant for an Egyptian cultivated form ‘Pisum jomardii Schrank’ (SCAF cox1rbcL−) which is here given a subspecies rank. Wild representatives of P. sativum could be subdivided in two subspecies corresponding to ‘lineage A’ and ‘lineage B’ but all available subspecies names seem to belong to lineage B only. Presently all wild forms would better be considered within a fuzzy paraphyletic subspecies P. sativum subsp. elatius (Bieb.) Schmalh. s. l.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alefeld F (1866) Landwirtschaftliche Flora. VIII. Berlin. 364 s

  • Ascherson P, Graebner P (1910) Synopsis der mitteleuropäischen Flora Bd 6, Abt 2, IV. Leipzig 1093 S

  • Ben-Ze’ev N, Zohary D (1973) Species relationship in the genus Pisum L. Israel J Bot 22:73–91

    Google Scholar 

  • Berger A (1928) Systematic botany of peas and their allies. In: Hedrick U (ed) The vegetable of New York. Albany 1:10–18

  • Bieberstein M (1808) Flora taurico-caucasica exhibens stirpes phaenogamas, in Chersoneso Taurica et regionibus caucasicis sponte crescentes. Bde 2 Charkouiae, Typ Akad 477 S

  • Bogdanova VS (2007) Inheritance of organelle DNA markers in a pea cross associated with nuclear-cytoplasmic incompatibility. Theor Appl Genet 114(2):333–339

    Article  PubMed  CAS  Google Scholar 

  • Bogdanova VS, Berdnikov VA (2000) A study of potential ability for cross-pollination in pea originating from different parts of the world. Pisum Genet 32:16–17

    Google Scholar 

  • Bogdanova VS, Berdnikov VA (2001) Observation of a phenomenon resembling hybrid dysgenesis, in a wild pea subspecies Pisum sativum ssp. elatius. Pisum Genet 33:5–8

    Google Scholar 

  • Bogdanova VS, Kosterin OE (2006) A case of anomalous chloroplast inheritance in crosses of garden pea involving an accession of a wild subspecies. Dokl Biol Sci 406:44–46

    Article  PubMed  CAS  Google Scholar 

  • Boissier E (1856) Diagnoses plantarum orientalum novarum. Lipsie, ser 2, v 3, N 2, 125 pp

  • Braun A (1841) Bemerkungen über die Flora von Abyssinien. Flora oder allgemeine botanische Zeitung 1(17):257–288

    Google Scholar 

  • Chefranova ZV (1987) Rod Gorokh – Pisum [Genus Pisum]. In: Fedorov A (ed) Flora Partis Europeae URSS. T. VI. Magnoliophyta (=Angiospermae), Magnoliopsida (=Dicotyledones). Nauka, Leningrad, pp 172–173 (in Russian)

  • Davis H (1969) Materials for a flora of Turkey: XIX. Leguminosae: Vicieae. Notes Roy Bot Garden Edinburgh 29(3):311–320

    Google Scholar 

  • Davis H (1970) Flora of Turkey and the East Aegean Islands, vol 3. Edinburgh

  • Ellis THN, Poyser SJ, Knox MR, Vershinin AY, Ambrose MJ (1998) Polymorphism of insertion sites of Ty1-copia class retrotransposons and its use for linkage and diversity analysis in pea. Mol Gen Genet 260:9–19

    PubMed  CAS  Google Scholar 

  • Govorov LI (1928) Gorokh Afganistana (K probleme proiskhozhdeniya kul’turnogo gorokha) [Pea of Afghanistan (on the problem of the origin of the cultivated pea)]. Bull App Bot Genet Plant Breeding 19:497–522 (in Russian)

    Google Scholar 

  • Govorov LI (1937) Gorokh [Pea]. In: Wulf EV (ed) Kul’turnaya flora SSSR [Cultivated Flora of the USSR], vol 4. Leningrad, Moscow, pp 229–336 (in Russian)

    Google Scholar 

  • Hoey BK, Crowe KR, Jones VM, Polans NO (1996) A phylogenetic analysis of Pisum based on morphological characters, and allozyme and RAPD markers. Theor Appl Genet 92:92–100

    Article  CAS  Google Scholar 

  • Kosterin OE, Bogdanova VS, Gorel FL, Rozov SM, Trusov YA, Berdnikov VA (1994) Histone H1 of the garden pea (Pisum sativum L.): composition, developmental changes, allelic polymorphism and inheritance. Plant Sci 101:189–202

    Article  CAS  Google Scholar 

  • Lamprecht H (1963) Zur Kenntnis von Pisum arvense L. oect. abyssinicum Braun, mit genetischen und zytologischen Ergebnissen. Agri Hort Genet 21:35–55

    Google Scholar 

  • Lehmann C (1954) Das morphologische System der Saaterbsen. Der Züchter 24(11/12):316–337

    Article  Google Scholar 

  • Lehmann ChrO, Blixt S (1984) Artificial infraspecific classification in relation to phenotypic manifestation of certain genes in Pisum. Agri Hort Genet 42:48–74

    Google Scholar 

  • Loenning W-E (1984) Cross fertilization in peas under different ecological conditions. Pisum Newsl 16:38–40

    Google Scholar 

  • Lu J, Knox MR, Ambrose MJ, Brown JKM, Ellis THN (1996) Comparative analysis of genetic diversity in pea assessed by RFLP- and PCR-based methods. Theor Appl Genet 93:1103–1111

    Article  CAS  Google Scholar 

  • Makasheva RKh (1979) Gorokh [Pea]. In: Korovina ON (ed) Kul’turnaya flora SSSR [Cultivated Flora of the USSR], vol 4. Leningrad, pp 1–324 (in Russian)

  • Meyer D (1980) Numerisch-taxonomische Untersuchungen an Pisum sativum L. Die Kulturpflanze 28:285–340

    Article  Google Scholar 

  • Muehlbauer FJ, Kaiser WJ, Kutlu Z, Sperling CR (1990) Collection of Pisum germplasm in Turkey in 1985 and 1989. Pisum Newsl 22:97–98

    Google Scholar 

  • Palmer JD, Jorgensen RA, Thompson WF (1985) Chloroplast DNA variation and evolution in Pisum: patterns of change and phylogenetic analysis. Genetics 109:195–213

    PubMed  CAS  Google Scholar 

  • Panyim S, Chalkley R (1969) High resolution in acrylamide gel electrophoresis of histones. Arch Biochem Biphys 130:337–346

    Article  CAS  Google Scholar 

  • Rosen D (1944) Artkeuzungen in der Gattung Pisum. Insbesondere zwischen P. sativum L. und P. abyssinicum Braun. Hereditas 30(3):261–392

    Article  Google Scholar 

  • Saar DE, Polans NO (2000) ITS sequence variation in selected taxa of Pisum. Pisum Genetics 32:42–45

    Google Scholar 

  • Schmalhausen I (1895) Flora Srednei i Yuzhnoi Rossii, Kryma i Severnogo Kavkaza [Flora of Central and Southern Russia, Crimea and North Caucasus], vol 1, 468 pp

  • Schrank F (1818) Flora Monacensis. t. 4. Monachii, 400 pp

  • Smirnova OG, Rozov SM, Kosterin OE, Berdnikov VA (1992) Perchloric acid extractable low-Mr albumins SCA and SAA from cotyledons and seed axes of pea (Pisum sativum L.). Plant Sci 82:1–13

    Article  CAS  Google Scholar 

  • Townsend C (1968) Contribution to the flora of Iraq V. Notes on Leguminosales. Kew Bull Roy Bot Gard 21(3):435–358

    Google Scholar 

  • Trusov Y, Bogdanova VS, Berdnikov VA (2004) Evolution of regular zone of histone H1 in Fabaceae plants. J Mol Evol 59:546–555

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Drs. R. Kh. Makasheva, K. A. Belekhova and O. I. Romanova (St. Petersburg, USSR), Drs. S. Blixt and B. Lund (Landskrona, Sweden), Dr. N. Weeden (Boseman, USA) and Dr. N. Polans (DeKalb, USA) for providing the germplasm investigated, to Drs. Mr. M. Ambrose (Norwich, UK), N. Weeden, W. Swiecicki (Poznan, Poland), C. Coyne (Pullman, USA) for information on the origin of accessions, to Dr. K. S. Baikov (Novosibirsk, Russia) for consultations on the rules of botanical nomenclature. The work was supported by the project ‘Biosphere origin and evolution’ of the Russian Academy of Sciences, and Russian Foundation for Fundamental Research, grant 07-04-00111-a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg E. Kosterin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kosterin, O.E., Bogdanova, V.S. Relationship of wild and cultivated forms of Pisum L. as inferred from an analysis of three markers, of the plastid, mitochondrial and nuclear genomes. Genet Resour Crop Evol 55, 735–755 (2008). https://doi.org/10.1007/s10722-007-9281-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-007-9281-y

Keywords

Navigation