Skip to main content
Log in

Molecular mapping for resistance to pea rust caused by Uromyces fabae (Pers.) de-Bary

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Pea rust caused by Uromyces fabae (Pers.) de-Bary is a major problem in warm humid regions causing huge economic losses. A mapping population of 136 F6:7 recombinant inbred lines (RILs) derived from the cross between pea genotypes, HUVP 1 (susceptible) and FC 1 (resistant) was evaluated in polyhouse as well as under field conditions during two consecutive years. Infection frequency (IF) and area under disease progress curve (AUDPC) were used for evaluation of rust reaction of the RILs. A linkage map was constructed with 57 polymorphic loci selected from 148 simple sequence repeats (SSRs), 3 sequence tagged sites (STS), and 2 random amplified polymorphic (RAPD) markers covering 634 cM of genetic distance on the seven linkage groups of pea with an average interval length of 11.3 cM. Composite interval mapping (CIM) revealed one major (Qruf) and one minor (Qruf1) QTL for rust resistance on LGVII. The LOD (5.2–15.8) peak for Qruf was flanked by SSR markers, AA505 and AA446 (10.8 cM), explaining 22.2–42.4% and 23.5–58.8% of the total phenotypic variation for IF and AUDPC, respectively. The minor QTL was environment-specific, and it was detected only in the polyhouse (LOD values 4.2 and 4.8). It was flanked by SSR markers, AD146 and AA416 (7.3 cM), and explained 11.2–12.4% of the total phenotypic variation. The major QTL Qruf was consistently identified across all the four environments. Therefore, the SSR markers flanking Qruf would be useful for marker-assisted selection for pea rust (U. fabae) resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Arthur JC (1934) Manual of the rusts in United States and Canada. Purdue Research Foundation, Lafayette

    Google Scholar 

  • Aubert G, Morin J, Jacquin F, Loridon K, Quillet MC, Petit A, Rameau C, Lejeune-He′naut I, Huguet T, Burstin J (2006) Functional mapping in pea, as an aid to the candidate gene selection and for investigating synteny with the model legume Medicago truncatula. Theor Appl Genet 112:1024–1041

    Article  PubMed  CAS  Google Scholar 

  • Avila CM, Sillero JC, Rubiales DM, Moreno T, Torres AM (2003) Identification of RAPD markers linked to the Ufv-1 genen conferring hypersensitive resistance against rust (Uromyces viciae-fabae) in Vicia faba L. Theor Appl Genet 107:353–358

    Article  PubMed  CAS  Google Scholar 

  • Barilli, E, Satovic, Z, Sillero, JC, Rubiales, D, Torres, AM (2006) Estudio filogenetico de royas de leguminosas (Uromyces spp.) mediante ITS (Internal Transcribed Spacer). In: de los Mozos Pascual M, Gime′nez Alvear MJ, Rodrı′guez Conde MF, Sa′nchez Vioque R (eds) Proceedings of the 4th conference of AEL. Consejerı′a de Agricultura de Castilla-La Mancha, Toledo, Spain, pp 331–338

  • Barilli E, Sillero JC, Fernandez-Aparicio M, Rubiales D, Torres AM (2009a) Identification of resistance to Uromyces pisi (Pers.) Wint. In Pisum spp. germplasm. Field Crop Res 114:198–203

    Article  Google Scholar 

  • Barilli E, Sillero JC, Moral A, Rubiales D (2009b) Characterization of resistance response of pea (Pisum spp.) against rust (Uromyces pisi). Plant Breed 128:665–670

    Article  Google Scholar 

  • Barilli E, Sillero JC, Serrano A, Rubiales D (2009c) Differential response of pea (Pisum sativum) to rusts incited by Uromyces fabae and U. Pisi. Crop Prot 28:980–986

    Article  Google Scholar 

  • Barilli E, Satovic Z, Rubiales D, Torres AM (2010) Mapping of quantitative trait loci controlling partial resistance against rust incited by Uromyces pisi (Pers.) Wint. In a Pisum fulvum L. intraspecific cross. Euphytica 175:151–159

    Article  CAS  Google Scholar 

  • Burnham KD, Dorrance AE, VanToai TT, Martin SK (2003) Quantitative trait loci for partial resistance to Phytophthora sojae in soybean. Crop Sci 43:1610–1617

    Article  CAS  Google Scholar 

  • Burstin J, Deniot G, Potier J, Weinachter C, Aubert G, Baranger A (2001) Microsatellite polymorphism in Pisum sativum. Plant Breed 120:311–317

    Article  CAS  Google Scholar 

  • Chahota PK, Gupta VP, Sharma SK (2002) Inheritance of rust resistance in lentil. Indian J Genet Plant Breed 62:226–227

    Google Scholar 

  • Chand R, Srivastava CP, Sarode SB (2004) Screening technique for pea (Pisum sativum) genotypes against rust disease (Uromyces fabae). Indian J Agric Sci 74:166–167

    Google Scholar 

  • Chand R, Srivastava CP, Singh BD, Sarode SB (2006) Identification and characterization of slow resistance components in pea (Pisum sativum). Genet Resourc Crop Evol 53:219–224

    Article  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    PubMed  CAS  Google Scholar 

  • Cobos MJ, Winter P, Kharrat M, Cubero JI, Gil J, Millan T, Rubio J (2009) Genetic analysis of agronomic traits in a wide cross of chickpea. Field Crops Res 111:130–136

    Article  Google Scholar 

  • Conner RL, Bernier CC (1982) Host range of Uromyces viciae-fabae. Phytopathology 72:687–689

    Article  Google Scholar 

  • Cummins GB (1987) Rust fungi on legumes and composites in North America. The University of Arizona Press, Tucson

  • Dwivedi SL, Pande S, Rao JN, Nigam SN (2002) Components of resistance to late leaf spot and rust among interspecific derivatives and their significance in a foliar disease resistance breeding in groundnut (Arachis hypogaea L.). Euphytica 125:81–88

    Article  CAS  Google Scholar 

  • Emeran AA, Sillero JC, Niks RE, Rubiales D (2005) Infection structures of host specialized isolates of Uromyces viciae-fabae and of other Uromyces infecting leguminous crops. Plant Dis 89:17–22

    Article  Google Scholar 

  • Emeran AA, Roma′ n B, Sillero JC, Satovic Z, Rubiales D (2008) Genetic variation among and within Uromyces species infecting legumes. J Phytopathol 156:419–424

    Article  CAS  Google Scholar 

  • EPPO (2009) EPPO Standards Pea http://archives.eppo.org/EPPOStandards/PP2GPP/pp2-14-e.doc. Accessed 08 December 2009

  • Fondevilla S, Satovic Z, Rubiales D, Moreno MT, Torres AM (2008) Mapping of quantitative trait loci for resistance to Mycosphaerella pinodes in Pisum sativum subsp. syriacum. Mol Breed 21:439–454

    Article  CAS  Google Scholar 

  • Gutiérrez MV, Vaz Patto MC, Huguet T, Cubero JI, Moreno MT, Torres AM (2005) Cross-species amplification of Medicago truncatula microsatellites across three major pulse crops. Theor Appl Genet 110:1210–1217

    Article  PubMed  Google Scholar 

  • Haldane JBS (1919) The combination of linkage values, and the calculation of distance between the loci of linked factors. J Genet 8:299–309

    Article  Google Scholar 

  • Hallauer AR, Miranda Filho JB (1981) Quantitative genetics in maize breeding. Iowa State University Press, Ames

    Google Scholar 

  • Jeger MJ, Viljanen-Rollinson SLH (2001) The use of area under disease progress curve (AUDPC) to assess quantitative disease resistance in crop cultivars. Theor Appl Genet 102:32–40

    Article  Google Scholar 

  • Katiyar RP, Ram RS (1987) Genetics of rust resistance in pea. Indian J Genet 47:46–48

    Google Scholar 

  • Khedikar YP, Gowda MVC, Sarvamangala C, Patgar KV, Upadhyaya HD, Varshney RK (2010) A QTL study on late leaf spot and rust revealed one major QTL for molecular breeding for rust resistance in groundnut (Arachis hypogaea L.). Theor Appl Genet 121:971–984

    Article  PubMed  CAS  Google Scholar 

  • Kover PX, Caicedo AL (2001) The genetic architecture of disease resistance in plants and the maintenance of recombination by parasites. Mol Ecol 10:1–16

    Article  PubMed  CAS  Google Scholar 

  • Kumar TBA, Rangaswamy KT, Ravi K (1994) Assessment of tall field pea genotypes for slow rusting resistance. Legume Res 17:79–82

    Google Scholar 

  • Kumar V, Singh BM, Singh S (1997) Genetics of lentil resistance to rust. Lens Newslett 24:21–22

    Google Scholar 

  • Kumar R, Mishra SK, Sharma B (2001) Genetics of rust resistance in lentil. Indian J Genet. 61:238–241

    CAS  Google Scholar 

  • Kushwaha C, Chand R, Srivastava CP (2006) Role of aeciospores in outbreaks of pea (Pisum sativum) rust (Uromyces fabae). Eur J Plant Pathol 115:323–330

    Article  Google Scholar 

  • Kushwaha C, Srivastava CP, Chand R, Singh BD (2007) Identification and evaluation of a critical time for assessment of slow rusting in pea against Uromyces fabae. Field Crops Res 103:1–4

    Article  Google Scholar 

  • Li S (2009) Reaction of soybean rust-resistant lines identified in Paraguay to Mississippi isolates of Phakopsora pachyrhizi. Crop Sci 49:887–894

    Article  Google Scholar 

  • Lincoln SE, Daly MJ, Lander ES (1993) Constructing genetic linkage maps with MAPMAKER/EXP version 3.0: a tutorial and reference manual. A Whitehead Institute for Biomedical Research Technical Report. http://www.mapmaker@genome.wi.mit.edu

  • Loridon K, McPhee K, Morin J, Dubreuil P, Pilet-Nayel ML, Aubert G, Rameau C, Baranger A, Coyne C, Lejeune-He`naut I, Burstin J (2005) Microsatellite marker polymorphism and mapping in pea (Pisum sativum L.). Theor Appl Genet 111:1022–1031

    Article  PubMed  CAS  Google Scholar 

  • Madrid E, Rubiales D, Moral A, Moreno MT, Millán T, Gil J, Rubio J (2008) Mechanism and molecular markers associated with rust resistance in a chickpea interspecific cross (Cicer arietinum × Cicer reticulatum). Eur J Plant Pathol 121:43–53

    Article  CAS  Google Scholar 

  • Melchinger AE, Utz HF, Schon CC (1998) Quantitative trait locus (QTL) mapping using different tester and independent population samples in maize revels low power of QTL detection and large bias in estimates of QTL effects. Genetics 149:383–403

    PubMed  CAS  Google Scholar 

  • Motagi (2001) Genetic analysis of resistance to late leaf spot and rust vis-à-vis productivity in groundnut (Arachis hypogaea L.). Dissertation, University of Agriculture Sciences, Dharwad, India

  • Negussie T, Pretorius ZA, Bender CM (2005) Components of rust resistance in lentil. Euphytica 142:55–64

    Article  Google Scholar 

  • Pal AB, Sohi HS, Rawal RD (1979) Studies on resistance to rust (Uromyces fabae (Pers.) de-Bary) on peas. SABRAO J 11:101–103

    Google Scholar 

  • Pal AB, Brahmappa HS, Rawal RD, Ullasa BA (1980) Field resistance of pea germplasm to powdery mildew (Erysiphe polygoni) and rust (Uromyces fabae). Plant Dis 64:1085–1086

    Article  Google Scholar 

  • Paterson AH, Damon S, Hewitt JD, Zamir D, Rabinowitch HD, Lincoln SE, Lander ES, Tanksley SD (1991) Mendelian factors underlying quantitative traits in tomato: Comparison across species, generations, and environments. Genetics 127:181–197

    PubMed  CAS  Google Scholar 

  • Pfunder M, Roy B (2000) Pollinator-mediated interactions between a pathogenic fungus, Uromyces pisi (Pucciniaceae), and its host plant, Euphorbia cyparrissias (Euphorbiaceae). Am J Bot 87:48–55

    Article  PubMed  CAS  Google Scholar 

  • Pilet-Nayel ML, Muehlbauer FJ, McGee RJ, Kraft JM, Baranger A, Coyne CJ (2002) Quantitative trait loci for partial resistance to Aphanomyces root rot in pea. Theor Appl Genet 106:28–39

    PubMed  CAS  Google Scholar 

  • Rashid KY, Bernier CC (1986) Selection for slow rusting in faba bean (Vicia faba L.) to Uromyces viciae-fabae. Crop Prot 5:218–224

    Article  Google Scholar 

  • Saha GC, Sarker A, Chen W, Vandemark GJ, Muehlbauer FJ (2010) Identification of markers associated with genes for rust resistance in Lens culinaris Medik. Euphytica 175:261–265

    Article  CAS  Google Scholar 

  • Sanger RBS, Singh VK (1994) Effect of showing dates and pea variety on severity of rust and powdery mildew. Indian J Agric Sci 74:166–167

    Google Scholar 

  • Shaner G, Finney RE (1977) The effect of nitrogen fertilization on the expression of slow-mildewing resistance in Knox wheat. Phytopathology 67:1051–1056

    Article  CAS  Google Scholar 

  • Sillero JC, Moreno MT, Rubiales D (2000) Charecterization of new sources of resistance to Uromyces viciae-fabae in a germplasm collection of Vicia faba L. Theor Appl Genet 107:226–227

    Google Scholar 

  • Sillero JC, Fondevilla S, Davidson J, Vaz Patto MC, Warketin TD, Thomas J, Rubiales D (2006) Screening techniques and sources of resistance to rusts and mildews in grain legumes. Euphytica 147:255–272

    Article  Google Scholar 

  • Singh RS (1998) Plant Diseases (7th edn) Oxford and IBH, New Delhi

  • Singh RM, Srivastava CP (1985) Evaluation, classification and usefulness of pea germplasm for quantitative characters. Legume Res 8:68–73

    Google Scholar 

  • Singh VK, Sanger RBS, Singh RN (1996) Effect of varieties and showing dates on disease incidence and productivity of field pea (Pisum sativum L). Indian J Agron 4:451–453

    Google Scholar 

  • Statler GD, McVey MA (1987) Partial resistance to Uromyces appendiculatus in dry edible beans. Phytopathology 77:1101–1103

    Article  Google Scholar 

  • Stavely JR, Steadman JR, McMillan RT (1989) New pathogenic variability in Uromyces appendiculatus in North America. Plant Dis 73:428–432

    Article  Google Scholar 

  • Upadhayay AL, Singh VK (1994) Performance of pea varieties/lines against powdery mildew and rust. Indian J Pulses Res 7:92–93

    Google Scholar 

  • Valderrama MR, Roman B, Satovic Z, Rubiales D, Cubero JI, Torres AM (2004) Locating quantitative trait loci associated with Orobanche crenata resistance in pea. Weed Res 44:323–328

    Article  CAS  Google Scholar 

  • Vijayalakshmi S, Yadav K, Kushwaha C, Sarode SB, Srivastava CP, Chand R, Singh BD (2005) Identification of RAPD markers linked to the rust (Uromyces fabae) resistance gene in pea (Pisum sativum). Euphytica 144:265–274

    Article  CAS  Google Scholar 

  • Wang, S, Basten, CJ, Gaffney, P, Zeng, ZB (2005) Windows QTL Cartographer version 2.5. Statistical Genetics, North Carolina State University, Raleigh, NC http://statgen9.ncsu.edu/qtlcart/WQTLcart.htm

  • Winter P, Pfaff T, Udupa SM, Hüttel B, Sharma PC, Sahi S, Arreguin-Espinoza R, Weigand F, Muehlbauer FJ, Kahl G (1999) Characterization and mapping of sequence-tagged microsatellite sites in the chickpea (Cicer arietinum L.) genome. Mol Gen Genet 262:90–101

    Article  PubMed  CAS  Google Scholar 

  • Wu X, Blake S, Sleper DA, Shannon JG, Cregan P, Nguyen HT (2009) QTL, additive and epistatic for effects for SCN resistance in PI 437654. Theor Appl Genet 118:1093–1105

    Article  PubMed  CAS  Google Scholar 

  • Xue AG, Warkentin TD (2002) Reaction of field pea varieties to three isolates of Uromyces fabae. Can J Plant Sci 82:253–255

    Article  Google Scholar 

  • Young ND (1996) QTL mapping and quantitative disease resistance in plants Annu Rev Phytopathol 34:479–501

    CAS  Google Scholar 

  • Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Sundeep Sharma, National Bureau of Plant Genetic Resources, Indian Council of Agricultural Research, New Delhi 110012, India, and Dr. Uttam Kumar, The Energy and Resources Institute, Darbari Seth Block, IHC Complex, Lodhi Road, New Delhi 110003, India, for their help during the development of this manuscript. The first author (RR) is thankful to University Grants Commission (UGC) for financial support in the form of Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brahma Deo Singh.

Additional information

Communicated by R. Varshney.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rai, R., Singh, A.K., Singh, B.D. et al. Molecular mapping for resistance to pea rust caused by Uromyces fabae (Pers.) de-Bary. Theor Appl Genet 123, 803–813 (2011). https://doi.org/10.1007/s00122-011-1628-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-011-1628-2

Keywords

Navigation