Skip to main content
Log in

Genetic diversity within Pisum sativum using protein- and PCR-based markers

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

A collection of 148 Pisum accessions, mostly from Western Europe, and including both primitive germplasm and cultivated types, was structured using 121 protein- and PCR-based markers. This molecular marker-based classification allowed us to trace back major lineages of pea breeding in Western Europe over the last decades, and to follow the main breeding objectives: increase of seed weight, introduction of the afila foliage type and white flowers, and improvement of frost tolerance for winter-sown peas. The classification was largely consistent with the available pedigree data, and clearly resolved the different main varietal types according to their end-uses (fodder, food and feed peas) from exotic types and wild forms. Fodder types were further separated into two sub-groups. Feed peas, corresponding to either spring-sown or winter-sown types, were also separated, with two apparently different gene pools for winter-sown peas. The garden pea group was the most difficult to structure, probably due to a continuum in breeding of feed peas from garden types. The classification also stressed the paradox between the narrowness of the genetic basis of recent cultivars and the very large diversity available within P. sativum. A sub-collection of 43 accessions representing 96% of the whole allelic variability is proposed as a starting point for the construction of a core collection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Arnau G, Lallemand J, Bourgoin M (2002) Fast and reliable strawberry cultivar identification using inter simple sequence repeat (ISSR) amplification. Euphytica 129:69–79

    Article  Google Scholar 

  • Auld DL, Murray GA, O’Keeffe LE, Campbell AR, Markarian D (1978) Registration of Melrose field pea. Crop Sci 18:913

    Google Scholar 

  • Bourgoin-Grenèche M, Lallemand J (1993) Electrophoresis and its application to the description of varieties: a presentation of the techniques used by GEVES. GEVES Editions, La Miniere

    Google Scholar 

  • Blixt S (1972) Mutations genetics in Pisum. Agric Hortic Genet 30:1–293

    Google Scholar 

  • Burstin J, Charcosset A (1997) Relationship between phenotypic and marker distances: theoretical and experimental investigations. Heredity 79:477–483

    Article  Google Scholar 

  • Burstin J, Deniot G, Potier J, Weinachter C, Aubert G, Baranger A (2001) Microsatellite polymorphism in Pisum sativum. Plant Breed 120:311–317

    Article  Google Scholar 

  • Christiansen MJ, Andersen SB, Ortiz R (2002) Diversity changes in an intensively bred wheat germplasm during the 20th century. Mol Breed 9:1–11

    Article  Google Scholar 

  • Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA micropreparation: version II. Plant Mol Biol Rep 1:19–21

    CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Dubreuil P, Charcosset A (1999) Relationships among maize inbred lines and populations from European and North American origins as estimated using RFLP markers. Theor Appl Genet 99:473–480

    CAS  Google Scholar 

  • Dubreuil P, Dillmann C, Warburton M, Crossa J, Franco J, Baril C (2003) User’s manual for the LCDMV software (calculation of molecular distances between varieties) for fingerprinting and genetic diversity studies http://www.cimmyt.org/abc/manual/controls.htm

  • Ellis THN, Poyser SJ, Knox MR, Vershinin AV, Ambrose MJ (1998) Polymorphism of insertion sites of Ty1-copia class retrotransposons and its use for linkage and diversity analysis in pea. Mol Gen Genet 260:9–19

    CAS  PubMed  Google Scholar 

  • Gilpin BJ, McCallum JA, Frew TJ, Timmerman-Vaughan GM (1997) A linkage map of the pea (Pisum sativum L.) genome containing cloned sequences of known function and expressed sequence tags (ESTs). Theor Appl Genet 95:1289–1299

    Article  Google Scholar 

  • Gouesnard B, Bataillon TM, Decoux G, Rozale C, Schoen DJ, David JL (2001) MSTRAT: an algorithm for building germplasm core collections by maximizing allelic or phenotypic richness. J Hered 9:93–94

    Article  Google Scholar 

  • Hodgkin T (1995) Some current issues in the conservation and use of plant genetic resources. In: Ayad WG, Hodgkin T, Jaradat A, Rao VR (eds) Molecular genetic techniques for plant genetic resources. Report of an IPGRI workshop, Rome, 9–11 October 1995

  • Hoey BK, Crowe KR, Jones VM, Polans MO (1996) A phylogenetic analysis of Pisum based on morphological characters, allozyme and RAPD markers. Theor Appl Genet 92:92–100

    Article  CAS  Google Scholar 

  • Innan I, Terauchi R, Miyashita NT (1997) Microsatellite polymorphism in natural populations of the wild plant Arabidopsis thaliana. Genetics 146:1441–1452

    CAS  PubMed  Google Scholar 

  • Jaccard P (1908) Nouvelles recherches sur la distribution florale. Bull Soc Vaudoise Sci Nat 44:223–270

    Google Scholar 

  • Koebner RMD, Donini P, Reeves JC, Cooke RJ, Law JR (2003) Temporal flux in the morphological and molecular diversity of UK barley. Theor Appl Genet 106:550–558

    CAS  PubMed  Google Scholar 

  • Lallemand J, Arnau G (2000) Marqueurs moléculaires (ISSR) pour l’identification des variétés de pois et la caractérisation des ressources génétiques: comparaison avec l’approche biochimique. In: Deuxièmes journées méthodologiques du GEVES, 24 November 2000, GEVES Editions, La Miniere, pp 21–22

  • Laucou V, Haurogné K, Ellis N, Rameau C (1998) Genetic mapping in pea. I. RAPD-based genetic linkage map of Pisum sativum. Theor Appl Genet 97:905–915

    Article  Google Scholar 

  • Lejeune-Hénaut I, Bourion V, Etévé G, Cunot E, Delhaye K, Desmyter C (1999) Floral initiation in field-grown forage peas is delayed to a greater extent by short photoperiods than in other types of European varieties. Euphytica 109:201–211

    Article  Google Scholar 

  • Lewis BG, Matthews P (1984) The world germplasm of Pisum sativum: could it be used more effectively to produce healthy crops ? In: Hebblethwaite PD, Heath MC, Dawkins TCK (eds) The pea crop, a basis for crop improvement. Butterworths, London, pp 215–229

  • Liu F, Sun GL, Salomon B, von Bothmer R (2001) Distribution of allozymic alleles and genetic diversity in the American Barley Core Collection. Theor Appl Genet 102:606–615

    CAS  Google Scholar 

  • Lu H, Bernardo R (2001) Molecular marker diversity among current and historical maize inbreds. Theor Appl Genet 103:613–617

    CAS  Google Scholar 

  • Lu J, Knox MR, Ambrose MJ, Brown JKM, Ellis THN (1996) Comparative analysis of genetic diversity in pea assessed by RFLP and PCR based methods. Theor Appl Genet 93:1103–1111

    Article  CAS  Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:311–335

    Google Scholar 

  • Métais I, Hamon B, Jalouzot R, Peltier D (2002) Structure and level of genetic diversity in various bean types evidenced with microsatellite markers isolated from a genomic enriched library. Theor Appl Genet 104:1346–1352

    Article  Google Scholar 

  • Narvel JM, Walter RF, Chu WC, Grant D, Shoemaker RC (2000) Simple sequence repeat diversity among soybean plant introductions and elite genotypes. Crop Sci 40:1452–1458

    CAS  Google Scholar 

  • Pilet-Nayel ML, Muehlbauer FJ, McGee RJ, Kraft JM, Baranger A, Coyne CJ (2002) Quantitative trait loci for partial resistance to Aphanomyces root rot in pea. Theor Appl Genet 106:28–39

    CAS  PubMed  Google Scholar 

  • Posvec Z, Griga M (2000) Utilisation of isozyme polymorphism for cultivar identification of 45 commercial peas (Pisum sativum L.). Euphytica 113:251–258

    CAS  Google Scholar 

  • Prasad M, Varshney RK, Roy JK, Balyan HS, Gupta PK (2000) The use of microsatellites for detecting DNA polymorphism, genotype identification and genetic diversity in wheat. Theor Appl Genet 100:584–592

    CAS  Google Scholar 

  • Prioul S, Onfroy C, Tivoli B, Baranger A (2002) Controlled environment assessment of partial resistance to Mycosphaerella pinodes in pea (Pisum sativum L.) seedlings. Euphytica 131:121–130

    Article  Google Scholar 

  • Rogers JS (1972) Measures of similarities and genetic distances. In: Studies in genetics VII. University of Texas Publication 7213:145–153

    Google Scholar 

  • Rongwen J, Akkaya MS, Bhagwat AA, Lavi U, Cregan PB (1995) The use of microsatellite DNA markers for soybean genotype identification. Theor Appl Genet 90:43–48

    CAS  Google Scholar 

  • Russell JR, Fuller JD, Young G, Thomas B, Taramino G, Macaulay M, Waugh R, Powell W (1997) Discriminating between barley genotypes using microsatellite markers. Genome 40:442–450

    CAS  PubMed  Google Scholar 

  • Russell JR, Ellis RP, Thomas WTB, Waugh R, Provan J, Booth A, Fuller J, Lawrence P, Young G, Powell W (2000) A retrospective analysis of spring barley germplasm development from ‘foundation genotypes’ to currently successful cultivars. Mol Breed 6:553–568

    Article  Google Scholar 

  • Samec P, Nasinec V (1995) Detection of DNA polymorphism among pea cultivars using RAPD technique. Biol Planta 37:321–327

    CAS  Google Scholar 

  • Santalla M, Power JB, Davey MR (1998) Genetic diversity in mung bean revealed by RAPD markers. Plant Breed 117:473-478

    Google Scholar 

  • SAS Institute (1988) SAS/STAT User’s Guide: release 603. SAS Institute, Cary, N.C.

  • Simioniuc D, Uptmoor R, Friedt W, Ordon F (2002) Genetic diversity and relationships among pea cultivars revealed by RAPDs and AFLPs. Plant Breed 121:429–435

    Article  CAS  Google Scholar 

  • Slinkard AE, Murray GA (1972) Registration of Fenn field pea. Crop Sci 12:127

    Google Scholar 

  • Smartt J (1984) Evolution of grain legumes. I. Mediterranean pulses. Exp Agric 20:275–296

    Google Scholar 

  • Smartt J (1990) Pulses of the classical world. In: Grain legumes: evolution and genetic resources. Cambridge University Press, Cambridge, p 176

  • Soleimani VD, Baum BR, Johnson DA (2002) AFLP and pedigree-based genetic diversity estimates in modern cultivars of durum wheat [Triticum turgidum L. subsp. durum (Desf.) Husn.]. Theor Appl Genet 104:350–357

    CAS  Google Scholar 

  • Steiger DL, Nagai C, Moore PH, Morden CW, Osgood RV, Ming R (2002) AFLP analysis of genetic diversity within and among Coffea arabica cultivars. Theor Appl Genet 105:209–215

    Article  Google Scholar 

  • Ward JH (1963) Hierarchical grouping to optimize an objective function. Am Stat Assoc J 56:236–244

    Google Scholar 

  • Weeden NF, Ellis THN, Timmerman-Vaughan GM, Swiecicki WK, Rozov SM, Berdnikov VA (1998) A consensus linkage map for Pisum sativum. Pisum Genet 30:1–4

    Google Scholar 

  • White S, Doebley J (1998) Of genes and genomes and the origin of maize. Trends Genet 14:327–332

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank M. Ambrose (John Innes Centre, Norwich), S. Anguelova (International Programme for Genetic Resources, Plovdiv), A. Burghoffer (Institut National pour la Recherche Agronomique, Versailles), C. Coyne (United States Department of Agriculture, Pullman), A. Ramos Monreal (University of Valladolid), M. Vishnyakova (NI Vavilov Research Institute of Plant Industry, St Petersburg), and X. Zong (Chinese Academy of Agricultural Sciences, Beijing) for providing accessions with related information. They also thank M. Duparque, P. Marget and G. Morin for the description of the accessions, T. Bataillon for his help with the MSTRAT analysis, P. Dubreuil, M. Manzanares, M.L. Pilet-Nayel, R. Thompson and M. Trottet for helpful comments on the manuscript. Finally, we are very grateful to R. Cousin for spending time in tracing back the history of pea breeding with us, and to M. Chauvet for sharing his knowledge on the history of pea and its uses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Baranger.

Additional information

Communicated by C. Möllers

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baranger, A., Aubert, G., Arnau, G. et al. Genetic diversity within Pisum sativum using protein- and PCR-based markers. Theor Appl Genet 108, 1309–1321 (2004). https://doi.org/10.1007/s00122-003-1540-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-003-1540-5

Keywords

Navigation