Skip to main content

Solid-State Fermentation of Agricultural Residues for the Production of Antibiotics

  • Chapter
  • First Online:
Biotransformation of Waste Biomass into High Value Biochemicals

Abstract

The increasing demand in pharmaceutical products for human welfare has encouraged remarkable attempts towards the development of biotechnological processes for the production of antibiotics using readily available agricultural residues. Immense availability and cost-effectiveness of agricultural residues compared to sugars offer greater advantages in commercial usage. However, these constituents are currently underutilised. Productions of antibiotics have been carried out by both solid-state fermentation (SSF) and submerged fermentation (SmF) using wide range of microorganisms. The advancement in the field of SSF and its advantage over SmF has opened its application for production of antibiotics utilising low carbon and energy sources. This chapter gives an insight on various approaches that are being carried out for antibiotic production using SSF. The biotechnological potential of lignocellulosic biomass, factors affecting the production and yield of antibiotics from specific microorganisms are accounted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adinarayana K, Prabhakar T, Srinivasulu V, Anitha Rao M, Jhansi Lakshmi P, Ellaiah P (2003) Optimization of process parameters for cephalosporin C production under solid state fermentation from Acremonium chrysogenum. Process Biochem 39:171–177

    Article  CAS  Google Scholar 

  • Ahamad MZ, Panda BP, Javed S, Ali M (2006) Production of mevastatin by solid state fermentation using wheat bran as substrate. Res J Microbiol 1(5):443–447

    Article  CAS  Google Scholar 

  • Arakawa K, Mochizuki S, Yamada K, Noma T, Kinashi H (2007) γ-Butyrolactone autoregulator-receptor system involved in lankacidin and lankamycin production and morphological differentiation in Streptomyces rochei. Microbiology 153(6):1817–1827

    Article  CAS  Google Scholar 

  • Asagbra AE, Sanni AI, Oyewole OB (2005a) Solid-state fermentation production of tetracycline by Streptomyces strains using some agricultural wastes as substrate. World J Microbiol Biotechnol 21(2):107–114

    Article  CAS  Google Scholar 

  • Asagbra AE, Oyewole OB, Odunfa SA (2005b) Production of oxytetracycline from agricultural wastes using Streptomyces species. Niger Food J 23:174–182

    Google Scholar 

  • Asanza TML, Gontier E, Bienaime C, Nava Saucedo JE, Barbotin JN (1997) Response surface analysis of chlortetracycline and tetracycline production with K-carrageenan immobilized Streptomyces aureofaciens. Enzyme Microb Technol 21(5):314–320

    Article  Google Scholar 

  • Barrios-Gonzalez J, Mejia A (1996) Production of secondary metabolites by solid-state fermentation. Biotechnol Annu Rev 2:85–121

    Article  CAS  Google Scholar 

  • Barrios-Gonzalez J, Castillo TE, Mejia A (1993) Development of high penicillin producing strains for solid state fermentation. Biotechnol Adv 11(3):525–537

    Article  CAS  Google Scholar 

  • Barrios-Gonzalez J, Fernandez FJ, Tomasini A (2003) Microbial secondary metabolites production and strain improvement. Ind J Biotechnol 2:322–333

    CAS  Google Scholar 

  • Bate N, Butler AR, Smith IP, Cundliffe E (2000) The mycarose-biosynthetic genes of Streptomyces fradiae, producer of tylosin. Microbiology 146:139–146

    CAS  Google Scholar 

  • Behal V, Neuzil J, Hostalek Z (1983) Effect of tetracycline derivatives and some cations on the activity of anhydrotetracycline oxygenase. Biotechnol Lett 5:537–542

    Article  CAS  Google Scholar 

  • Bigelis R, He H, Yang HY, Chang LP, Greenstein M (2006) Production of fungal antibiotics using polymeric solid supports in solid-state and liquid fermentation. J Ind Microbiol Biotechnol 33(10):815–826

    Article  CAS  Google Scholar 

  • Brakhage AA, Schroeckh V (2011) Fungal secondary metabolites—strategies to activate silent gene clusters. Fungal Genet Biol 48:15–22

    Article  CAS  Google Scholar 

  • Brakhage AA, Thon M, Sprote P, Scharf DH, Al-Abdallah Q, Wolke SM, Hortschansky P (2009) Aspects on evolution of fungal β-lactam biosynthesis gene clusters and recruitment of trans-acting factors. Phytochemistry 70:1801–1811

    Article  CAS  Google Scholar 

  • Brautaset T, Sekurova ON, Sletta H, Ellingsen TE, Strom AR, Valla S, Zotchev SB (2000) Biosynthesis of the polyene antifungal antibiotic nystatin in Streptomyces noursei ATCC 11455: analysis of the gene cluster and deduction of the biosynthetic pathway. Chem Biol 7:395–403

    Article  CAS  Google Scholar 

  • Brodhagen M, Henkels MD, Loper JE (2004) Positive autoregulation and signaling properties of pyoluteorin, an antibiotic produced by the biological control organism Pseudomonas fluorescens Pf-5. Appl Environ Microbiol 70(3):1758–1766

    Article  CAS  Google Scholar 

  • Bussari B, Parag SS, Nikhil SS, Survase AS, Rekha SS (2008) Production of cephamycin C by Streptomyces clavuligerus NT4 using solid-state fermentation. J Ind Microbiol Biotechnol 35(1):49–58

    Article  CAS  Google Scholar 

  • Butler AR, Flint SA, Cundliffe E (2001) Feedback control of polyketide metabolism during tylosin production. Microbiology 147:795–801

    CAS  Google Scholar 

  • Chen W, Huang T, He X, Meng Q, You D, Bai L, Li J, Wu M, Li R, Xie Z, Zhou H, Zhou X, Tan H, Deng Z (2009) Characterization of the polyoxin biosynthetic gene cluster from Streptomyces cacaoi and engineered production of polyoxin H. J Biol Chem 284(16):10627–10638

    Article  CAS  Google Scholar 

  • Corre C, Song L, O’Rourke S, Chater KF, Challis GL (2008) 2-Alkyl-4-hydroxymethylfuran-3-carboxylic acids, antibiotic production inducers discovered by Streptomyces coelicolor genome mining. Proc Natl Acad Sci U S A 105:17510–17515

    Article  CAS  Google Scholar 

  • Cuadra T, Fernandez FJ, Tomasini A, Barrios-Gonzalez J (2008) Influence of pH regulation and nutrient content on cephalosporin C production in solid-state fermentation by Acremonium chrysogenum C10. Lett Appl Microbiol 46(2):216–220

    Article  CAS  Google Scholar 

  • Danesh A, Mamo G, Mattiasson B (2011) Production of haloduracin by Bacillus halodurans using solid-state fermentation. Biotechnol Lett 33(7):1339–1344

    Article  CAS  Google Scholar 

  • Devi S, Padma S (2000) Production of cephamycin C in repeated batch operations from immobilized Streptomyces clavuligerus. Process Biochem 36(3):225–231

    Article  CAS  Google Scholar 

  • Doull JL, Vining LC (1990) Nutritional control of actinorhodin production by Streptomyces coelicolor A3(2): suppressive effects of nitrogen and phosphate. Appl Microbiol Biotechnol 32(4):449–454

    Article  CAS  Google Scholar 

  • El-Enshasy HA, Mohamed NA, Farid MA, El-Diwany AI (2008) Improvement of erythromycin production by Saccharopolyspora erythraea in molasses based medium through cultivation medium optimization. Bioresour Technol 99(10):4263–4268

    Article  CAS  Google Scholar 

  • Elibol M (2004) Optimization of medium composition for actinorhodin production by Streptomyces coelicolor A3(2) with response surface methodology. Process Biochem 39(9):1057–1062

    Article  CAS  Google Scholar 

  • Ellaiah P, Premkumar J, Kanthachari PV, Adinarayana K (2002) Production and optimization studies of cephalosporin C by solid state fermentation. Hindustan Antibiot Bull 44(1–4):1–7

    CAS  Google Scholar 

  • Ellaiah P, Shrinivasulu B, Adinarayana K (2004) Optimization studies on neomycin production by a mutant strain of Streptomyces marinensis in solid-state fermentation. Process Biochem 39:529–534

    Article  CAS  Google Scholar 

  • El-Naggar MY, El-Assar SA, Abdul-Gawad SM (2009) Solid-state fermentation for the production of meroparamycin by Streptomyces sp. strain MAR01. J Microbiol Biotechnol 19(5):468–473

    Article  CAS  Google Scholar 

  • Epp JK, Burgett SG, Schoner BE (1987) Cloning and nucleotide sequence of a carbomycin-resistance gene from Streptomyces thermotolerans. Gene 53(1):73–83

    Article  CAS  Google Scholar 

  • Espeso EA, Fernandez-Canon JM, Penalva MA (1995) Carbon regulation of penicillin biosynthesis in Aspergillus nidulans: a minor effect of mutations in creB and creC. FEMS Microbiol Lett 126:63–68

    Article  CAS  Google Scholar 

  • Farzana K, Shah SN, Butt FB, Awan SB (2005) Biosynthesis of bacitracin in solid-state fermentation by Bacillus licheniformis using defatted oil seed cakes as substrate. Pak J Pharm Sci 18(1):55–57

    CAS  Google Scholar 

  • Froyshov O, Mathiesen A, Haavik HI (1980) Regulation of bacitracin synthetase by divalent metal ions in Bacillus licheniformis. J Gen Microbiol 117:163–167

    CAS  Google Scholar 

  • Gramajo HC, White J, Hutchinson CR, Bibb MJ (1991) Overproduction and localization of components of the polyketide synthase of Streptomyces glaucescens involved in the production of the antibiotic tetracenomycin C. J Bacteriol 173:6475–6483

    CAS  Google Scholar 

  • Graminha EBN, Goncalves AZL, Pirota RDPB, Balsalobre MAA, Da Silva R, Gomes E (2008) Enzyme production by solid-state fermentation: application to animal nutrition. Anim Feed Sci Technol 144(1–2):1–22

    Article  CAS  Google Scholar 

  • Gristwood T, Fineran PC, Everson L, Williamson NR, Salmond GP (2009) The PhoBR two-component system regulates antibiotic biosynthesis in Serratia in response to phosphate. BMC Microbiol 9:112–126

    Article  Google Scholar 

  • Gupte MD, Kulkarni PR (2002) A study of antifungal antibiotic production by Streptomyces chattanoogensis MTCC 3423 using full factorial design. Lett Appl Microbiol 35(1):22–26

    Article  CAS  Google Scholar 

  • Gutierrez S, Fierro F, Casqueiro J, Martin JF (1999) Gene organization and plasticity of the beta-lactam genes in different filamentous fungi. Antonie Van Leeuwenhoek 75:81–94

    Article  CAS  Google Scholar 

  • Haese A, Keller U (1988) Genetics of actinomycin C production in Streptomyces chrysomallus. J Bacteriol 170(3):1360–1368

    CAS  Google Scholar 

  • Haste NM, Perera VR, Maloney KN, Tran DN, Jensen P, Fenical W, Nizet V, Hensler ME (2010) Activity of the streptogramin antibiotic etamycin against methicillin-resistant Staphylococcus aureus. J Antibiot 63:219–224

    Article  CAS  Google Scholar 

  • Hyun C, Kim SS, Sohng JK, Hahn J, Kim J, Su J (2000) An efficient approach for cloning the dNDP-glucose synthase gene from actinomycetes and its application in Streptomyces spectabilis a spectinomycin producer. FEMS Microbiol Lett 183(1):183–189

    Article  CAS  Google Scholar 

  • Indu ST (2006) Environmental biotechnology: Basic concepts and applications. In: Antibiotic industry, 2nd edn. IK International Pvt Ltd, India, pp 435–443

    Google Scholar 

  • Jeanne MD, Craig AT (2009) Identification and characterization of NocR as a positive transcriptional regulator of the β-Lactam nocardicin A in Nocardia uniformis. J Bacteriol 191:1066–1077

    Article  Google Scholar 

  • Jekosch K, Kuck U (2000) Loss of glucose repression in an Acremonium chrysogenum β-lactam producer strain and its restoration by multiple copies of the cre1 gene. Appl Microbiol Biotechnol 54:556–563

    Article  CAS  Google Scholar 

  • Juan FM (2004) Phosphate control of the biosynthesis of antibiotics and other secondary metabolites is mediated by the PhoR–PhoP system: an unfinished story. J Bacteriol 186:5197–5201

    Article  Google Scholar 

  • Juan FM, Arnold LD (2002) Unraveling the methionine–cephalosporin puzzle in Acremonium chrysogenum. Trends Biotechnol 20(12):502–507

    Article  Google Scholar 

  • Kagliwal LD, Survase SA, Singhal RS (2009) A novel medium for the production of cephamycin C by Nocardia lactamdurans using solid-state fermentation. Bioresour Technol 100(9):2600–2606

    Article  CAS  Google Scholar 

  • Karray F, Darbon E, Oestreicher N, Dominguez H, Tuphile K, Gagnat J, Blondelet-Rouault MH, Gerbaud C, Pernodet JL (2007) Organization of the biosynthetic gene cluster for the macrolide antibiotic spiramycin in Streptomyces ambofaciens. Microbiology 153(12):4111–4122

    Article  CAS  Google Scholar 

  • Karray F, Darbon E, Nguyen HC, Gagnat J, Pernodet JL (2010) Regulation of the biosynthesis of the macrolide antibiotic spiramycin in Streptomyces ambofaciens. J Bacteriol 192:5813–5821

    Article  CAS  Google Scholar 

  • Kawaguchi T, Azuma M, Horinouchi S, Beppu T (1988) Effect of B-factor and its analogues on rifamycin biosynthesis in Nocardia sp.. J Antibiot 41:360–365

    Article  CAS  Google Scholar 

  • Keller U, Lang M, Crnovcic I, Pfennig F, Schauwecker F (2010) The actinomycin biosynthetic gene cluster of Streptomyces chrysomallus: a genetic hall of mirrors for synthesis of a molecule with mirror symmetry. J Bacteriol 192(10):2583–2595

    Article  CAS  Google Scholar 

  • Khaliq S, Rashid N, Akhtar K, Ghauri MA (2009) Production of tylosin in solid-state fermentation by Streptomyces fradiae NRRL-2702 and its gamma-irradiated mutant (γ-1). Lett Appl Microbiol 49(5):635–640

    Article  CAS  Google Scholar 

  • Kleerebezem M, Quadri LEN, Kupers OP, De Vos WM (1997) Quorum sensing by peptide pheromones and two-component signal-transduction systems in Gram-positive bacteria. Mol Microbiol 24:895–904

    Article  CAS  Google Scholar 

  • Koonin EV, Wolf YI, Aravind L (2001) Prediction of the archaeal exosome and its connections with the proteasome and the translation and transcription machineries by a comparative-genomic approach. Genome Res 11:240–252

    Article  CAS  Google Scholar 

  • Kota KP, Sridhar P (1999) Solid state cultivation of Streptomyces clavuligerus for cephamycin C production. Process Biochem 34:325–328

    Article  CAS  Google Scholar 

  • Kumar M, Srivastava S (2011) Effect of calcium and magnesium on the antimicrobial action of enterocin LR/6 produced by Enterococcus faecium LR/6. Int J Antimicrob Agents 37(6):572–575

    Article  CAS  Google Scholar 

  • Laich F, Fierro F, Cardoza RE, Martín JF (1999) Organization of the gene cluster for biosynthesis of penicillin in Penicillium nalgiovense and antibiotic production in cured dry sausages. Appl Environ Microbiol 65:1236–1240

    CAS  Google Scholar 

  • Lopez-Calleja AC, Cuadra T, Barrios-Gonzalez J, Fierro F, Fernandez FJ (2012) Solid-state and submerged fermentations show different gene expression profiles in cephalosporin C production by Acremonium chrysogenum. J Mol Microbiol Biotechnol 22(2):126–134

    Article  CAS  Google Scholar 

  • Lotfy WA (2007) Production of cephalosporin C by Acremonium chrysogenum grown on beet molasses: optimization of process parameters through statistical experimental designs. Res J Microbiol 2:1–12

    Article  CAS  Google Scholar 

  • Mahalaxmi Y, Sathish T, Subba Rao C, Prakasham RS (2010) Corn husk as a novel substrate for the production of rifamycin B by isolated Amycolatopsis sp. RSP3 under SSF. Process Biochem 45(1):47–53

    Article  CAS  Google Scholar 

  • Malik VS (1979) Genetics of applied microbiology. Adv Genet 20:37–126

    Article  CAS  Google Scholar 

  • Marinelli F, Marcone GL (2011) Microbial secondary metabolites. In: Comprehensive biotechnology, 2nd edn. Elsevier, Netherlands, pp 285–297

    Google Scholar 

  • Martin J, Garcia-Estrada C, Rumbero A, Recio E, Albillos SM, Ullan RV, Martin JF (2011) Characterization of an autoinducer of penicillin biosynthesis in Penicillium chrysogenum. Appl Environ Microbiol 77(16):5688

    Article  CAS  Google Scholar 

  • Mehmood N, Olmos E, Goergen JL, Blanchard F, Marchal P, Klockner W, Buchs J, Delaunay S (2012) Decoupling of oxygen transfer and power dissipation for the study of the production of pristinamycins by Streptomyces pristinaespiralis in shaking flasks. Biochem Eng J 68:25–33

    Article  CAS  Google Scholar 

  • Miyake K, Kuzuyama T, Horinouchi S, Beppu T (1990) The A-factor-binding protein of Streptomyces griseus negatively controls streptomycin production and sporulation. J Bacteriol 172:3003–3008

    CAS  Google Scholar 

  • Mizumoto S, Hirai M, Shoda M (2006) Production of lipopeptide antibiotic iturin A using soybean curd residue cultivated with Bacillus subtilis in solid-state fermentation. Appl Microbiol Biotechnol 72:869–875

    Article  CAS  Google Scholar 

  • Murthy MVR, Mohan EVS, Sadhukhan AK (1999) Cyclosporin A production by Tolypocladium inflatum using solid state fermentation. Process Biochem 34:269–280

    Article  CAS  Google Scholar 

  • Nguyen KT, Nguyen LT, Behal V (1995) The induction of valine dehydrogenase activity from Streptomyces by l-valine is not repressed by ammonium. Biotechnol Lett 17:31–34

    Article  CAS  Google Scholar 

  • Obanye AIC, Hobbs G, Gardner DCJ, Oliver SG (1996) Correlation between carbon flux through the pentose phosphate pathway and production of the antibiotic methylenomycin in Streptomyces coelicolor A3(2). Microbiology 142:133–137

    Article  CAS  Google Scholar 

  • Ohno A, Ano T, Shoda M (1995) Production of a lipopeptide antibiotic, surfactin, by recombinant Bacillus subtilis in solid state fermentation. Biotechnol Bioeng 47(2):209–214

    Article  CAS  Google Scholar 

  • Otten SL, Ferguson J, Hutchinson CR (1995) Regulation of daunorubicin production in Streptomyces peucetius by the dnrR2 locus. J Bacteriol 177(5):1216–1224

    CAS  Google Scholar 

  • Pandey A, Soccol CR, Mitchell D (2000) New developments in solid state fermentation: 1-bioprocess and products. Process Biochem 35(10):1153–1169

    Article  CAS  Google Scholar 

  • Poonam Singh N, Pandey A (2009) Biotechnology for agro-industrial residues utilisation. Utilisation of agro-residues, vol XVIII. Springer, New York, p 466

    Google Scholar 

  • Quirs LM, Salas JA (1995) Biosynthesis of the macrolide oleandomycin by Streptomyces antibioticus. Purification and kinetic characterization of an oleandomycin glucosyltransferase. J Biol Chem 270:18234–18239

    Article  Google Scholar 

  • Recio E, Aparicio JF, Rumbero A, Martin JF (2006) Glycerol, ethylene glycol and propanediol elicit pimaricin biosynthesis in the PI-factor-defective strain Streptomyces natalensis npi287 and increase polyene production in several wild-type actinomycetes. Microbiology 152:3147–3156

    Article  CAS  Google Scholar 

  • Rius N, Maeda K, Demain AL (1996) Induction of l-lysine ε-aminotransferase by l-lysine in Streptomyces clavuligerus, producer of cephalosporins. FEMS Microbiol Lett 144:207–211

    CAS  Google Scholar 

  • Saykhedkar SS, Singhal RS (2004) Solid-state fermentation for production of griseofulvin on rice bran using Penicillium griseofulvum. Biotechnol Prog 20(4):1280–1284

    Article  CAS  Google Scholar 

  • Scherlach K, Hertweck C (2009) Triggering cryptic natural product biosynthesis in microorganisms. Org Biomol Chem 7(9):1753–1760

    Article  CAS  Google Scholar 

  • Sekar C, Rajasekar VW, Balaraman K (1997) Production of Cyclosporin A by solid state fermentation. Bioprocess Biosyst Eng 17:257–259

    Article  CAS  Google Scholar 

  • Shaligram NS, Singh SK, Singhal RS, Szakacs G, Pandey A (2009) Effect of precultural and nutritional parameters on compactin production by solid-state fermentation. J Microbiol Biotechnol 19(7):690–697

    Google Scholar 

  • Shapiro S (1989) Nitrogen assimilation in Actinomycetes and the influence of nitrogen nutrition on Actinomycete secondary metabolism. In: Shapiro S (ed) Regulation of secondary metabolism in actinomycetes. CRC Press, Boca Raton, FL, pp 135-212

    Google Scholar 

  • Shih IL, Kuo CY, Hsieh FC, Kao SS, Hsieh C (2008) Use of surface response methodology to optimize culture conditions for iturin A production by Bacillus subtilis in solid-state fermentation. J Chin Ins Chem Eng 39(6):635–643

    Article  CAS  Google Scholar 

  • Sircar A, Sridhar P, Das PK (1998) Optimization of solid state medium for the production of clavulanic acid by Streptomyces clavuligerus. Process Biochem 33(3):283–289

    Article  CAS  Google Scholar 

  • Sohn YS, Nam DH, Ryu DD (2001) Biosynthetic pathway of cephabacins in Lysobacter lactamgenus: molecular and biochemical characterization of the upstream region of the gene clusters for engineering of novel antibiotics. Metab Eng 3(4):380–392

    Article  CAS  Google Scholar 

  • Survase SA, Shaligram NS, Pansuriya RC, Annapure US, Singhal RS (2009) A novel medium for the enhanced production of cyclosporin A by Tolypocladium inflatum MTCC 557 using solid state fermentation. J Microbiol Biotechnol 19(5):462–467

    Article  CAS  Google Scholar 

  • Takano E (2006) γ-butyrolactones: Streptomyces signalling molecules regulating antibiotic production and differentiation. Curr Opin Microbiol 9(3):287–294

    Article  CAS  Google Scholar 

  • Teijeira F, Ullan RV, Fernandez-Aguado M, Martin JF (2011) CefR modulates transporters of beta-lactam intermediates preventing the loss of penicillins to the broth and increases cephalosporin production in Acremonium chrysogenum. Metab Eng 13(5):532–543

    Article  CAS  Google Scholar 

  • Tercero JA, Espinosa JC, Lacalle RA, Jimenez A (1996) The biosynthetic pathway of the aminonucleoside antibiotic puromycin as deduced from the molecular analysis of the pur cluster of Streptomyces alboniger. J Biol Chem 271:1579–1590

    Article  CAS  Google Scholar 

  • Vastrad BM, Neelagund SE (2011) Optimization and production of neomycin from different agro industrial wastes in solid state fermentation. Int J Pharm Sci Drug Res 3(2):104–111

    CAS  Google Scholar 

  • Vastrad BM, Neelagund SE (2012) Optimization of process parameters for rifamycin b production under solid state fermentation from Amycolatopsis mediterranean MTCC14. Int J Curr Pharm Res 4(2):101–108

    CAS  Google Scholar 

  • Venkateswarlu G, Murali Krishna PS, Pandey A, Venkateshwar Rao L (2000) Evaluation of Amycolatopsis mediterranei VA18 for production of rifamycin-B. Process Biochem 36(4):305–309

    Article  CAS  Google Scholar 

  • Voelker F, Altaba S (2001) Nitrogen source governs the patterns of growth and pristinamycin production in ‘Streptomyces pristinaespiralis’. Microbiology 147(9):2447–2459

    CAS  Google Scholar 

  • Wei YH, Lai CC, Chang JS (2007) Using Taguchi experimental design methods to optimize trace element composition for enhanced surfactin production by Bacillus subtilis ATCC 21332. Process Biochem 42(1):40–45

    Article  CAS  Google Scholar 

  • Xue Y, Zhao L, Liu HW, Sherman DH (1998) A gene cluster for macrolide antibiotic biosynthesis in Streptomyces venezuelae: architecture of metabolic diversity. Proc Natl Acad Sci U S A 95(21):12111–12116

    Article  CAS  Google Scholar 

  • Yang SS, Kao CY (1991) Oxytetracycline production in solid state and submerged fermentation by protoplast fusants of Streptomyces rimosus. Proc Natl Sci Counc Repub China B 15(1):20–27

    CAS  Google Scholar 

  • Yang SS, Ling MY (1989) Tetracycline production with sweet potato residue by solid state fermentation. Biotechnol Bioeng 33:1021–1028

    Article  CAS  Google Scholar 

  • Yang SS, Swei WJ (1996) Cultural condition and oxytetracycline production by Streptomyces rimosus in solid state fermentation of corncob. World J Microbiol Biotechnol 12:43–46

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support given by the Earth System Science Organization, Ministry of Earth Sciences, Government of India. The authors are thankful to the Director, National Institute of Ocean Technology (NIOT), Ministry of Earth Sciences, Govt. of India, for his constant support and encouragement for preparation of this chapter. The authors are also thankful to all the scientific and supporting staffs of Marine Biotechnology, NIOT, Chennai, for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ganesh Kumar Arumugam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Arumugam, G.K., Selvaraj, V., Gopal, D., Ramalingam, K. (2014). Solid-State Fermentation of Agricultural Residues for the Production of Antibiotics. In: Brar, S., Dhillon, G., Soccol, C. (eds) Biotransformation of Waste Biomass into High Value Biochemicals. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8005-1_7

Download citation

Publish with us

Policies and ethics