Skip to main content
Log in

Production of fungal antibiotics using polymeric solid supports in solid-state and liquid fermentation

  • Original Paper
  • Published:
Journal of Industrial Microbiology and Biotechnology

Abstract

The use of inert absorbent polymeric supports for cellular attachment in solid-state fungal fermentation influenced growth, morphology, and production of bioactive secondary metabolites. Two filamentous fungi exemplified the utility of this approach to facilitate the discovery of new antimicrobial compounds. Cylindrocarpon sp. LL-Cyan426 produced pyrrocidines A and B and Acremonium sp. LL-Cyan416 produced acremonidins A–E when grown on agar bearing moist polyester–cellulose paper and generated distinctly different metabolite profiles than the conventional shaken or stationary liquid fermentations. Differences were also apparent when tenfold concentrated methanol extracts from these fermentations were tested against antibiotic-susceptible and antibiotic-resistant Gram-positive bacteria, and zones of inhibition were compared. Shaken broth cultures of Acremonium sp. or Cylindrocarpon sp. showed complex HPLC patterns, lower levels of target compounds, and high levels of unwanted compounds and medium components, while agar/solid support cultures showed significantly increased yields of pyrrocidines A and B and acremonidins A–E, respectively. This method, mixed-phase fermentation (fermentation with an inert solid support bearing liquid medium), exploited the increase in surface area available for fungal growth on the supports and the tendency of some microorganisms to adhere to solid surfaces, possibly mimicking their natural growth habits. The production of dimeric anthraquinones by Penicillium sp. LL-WF159 was investigated in liquid fermentation using various inert polymeric immobilization supports composed of polypropylene, polypropylene cellulose, polyester–cellulose, or polyurethane. This culture produced rugulosin, skyrin, flavomannin, and a new bisanthracene, WF159-A, after fermentation in the presence and absence of polymeric supports for mycelial attachment. The physical nature of the different support systems influenced culture morphology and relative metabolite yields, as determined by HPLC analysis and measurement of antimicrobial activity. The application of such immobilized-cell fermentation methods under solid and liquid conditions facilitated the discovery of new antibiotic compounds, and offers new approaches to fungal fermentation for natural product discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aidoo KE, Hendry R, Wood BJB (1982) Solid substrate fermentation. Adv Appl Microbiol 28:201–237

    CAS  Google Scholar 

  2. Allen EA, Hazen BE, Hoch HC, Kwon Y, Leinhos GME (1991) Appressorium formation in response to topographical signals by 27 rust species. Phytopathology 81:323–331

    Article  Google Scholar 

  3. Allen EA, Hoch HC, Stavely JR, Steadman JR (1991) Uniformity among races of Uromyces appendiculatus in response to topographic signaling for appressorium formation. Phytopathology 81:883–887

    Article  Google Scholar 

  4. Auria R, Morales M, Villegas E, Revah S (1993) Influence of mold growth on the pressure drop in aerated solid state fermentors. Biotechnol Bioeng 41:1007–1013

    Article  CAS  Google Scholar 

  5. Balakrishnan K, Pandey A (1996) Production of biologically active secondary metabolites in solid state fermentation. J Sci Ind Res 55:365–372

    CAS  Google Scholar 

  6. Barrios-Gonzales J, Mejia A (1996) Production of secondary metabolites by solid-state fermentation. Biotechnol Annu Rev 2:85–121

    Google Scholar 

  7. Bennett JW, Bentley R (1989) What’s in a name?—microbial secondary metabolism. Adv Appl Microbiol 34:1–28

    Article  CAS  Google Scholar 

  8. Betina V (1995) Differentiation and secondary metabolism in some prokaryotes and fungi. Folia Microbiol 40:51–67

    Article  CAS  Google Scholar 

  9. Beuchat LR (ed) (1987) Food and beverage mycology, 2nd edn. Van Nostrand Reinhold, New York

    Google Scholar 

  10. Bigelis R (1991) Fungal metabolites in food processing. In: Arora DK, Mukerji KG, Marth EH (eds) Handbook of applied mycology, vol 3. Foods and feeds. Dekker, New York, pp 415–443

  11. Bigelis R (1991) Fungal enzymes in food processing. In: Arora DK, Mukerji KG, Marth EH (eds) Handbook of applied mycology, vol 3. Foods and feeds. Dekker, New York, pp 445–498

  12. Bigelis R (1999) Industrial fungal fermentation. In: Encyclopedia of life sciences. Nature Publishing Group, London, pp 1–10

  13. Braun EJ, Howard RJ (1994) Adhesion of Cochliobolus heterostrophus conidia and germlings to leaves and artificial surfaces. Exp Mycol 18:211–220

    Article  Google Scholar 

  14. Bull AT, Ward AC, Goodfellow M (2000) Search and discovery strategies for biotechnology: the paradigm shift. Microbiol Mol Biol Rev 64:573–606

    Article  CAS  Google Scholar 

  15. Calvo AM, Wilson RA, Bok JW, Keller NP (2002) Relationship between secondary metabolism and fungal development. Microbiol Mol Biol Rev 66:447–459

    Article  CAS  Google Scholar 

  16. Cannel E, Moo-Young M (1980) Solid-state fermentation systems. Process Biochem 15:2–7

    CAS  Google Scholar 

  17. Choudhary MI, Rahman A, Thomsen WJ (2001) Bioassay techniques for drug development. Harwood Academic Publisher, Amsterdam

    Google Scholar 

  18. Cole RJ, Jarvis BB, Schweikert MA (2003) Handbook of secondary fungal metabolites, vols 1–3. Academic, London

  19. Culberson CF, Armaleo D (1992) Induction of a complete secondary-product pathway in a cultured lichen fungus. Exp Mycol 16:52–63

    Article  CAS  Google Scholar 

  20. Demain AL (1981) Industrial microbiology. Science 214:987–995

    Article  CAS  Google Scholar 

  21. Demain AL (1999) Pharmaceutically active secondary metabolites of microorganisms. Appl Microbiol Biotechnol 52:455–463

    Article  CAS  Google Scholar 

  22. Demain AL, Fang A (2000) The natural functions of secondary metabolites. Adv Biochem Eng Biotechnol 69:1–39

    CAS  Google Scholar 

  23. El Zoeiby A, Sanschagrin F, Levesque RC (2003) Structure and function of the Mur enzymes: development of novel inhibitors. Mol Microbiol 47:1–12

    Article  CAS  Google Scholar 

  24. Elliot MA, Talbot NJ (2004) Building filaments in the air: aerial morphogenesis in bacteria and fungi. Curr Opin Microbiol 7:594–601

    Article  CAS  Google Scholar 

  25. Endo I, Nagamune T, Kato N, Nishimura M, Kobayashi T (1988) A new cultivation method of fungi or mycelia. Bioprocess Eng 3:63–68

    Article  CAS  Google Scholar 

  26. Gervais P, Molin P, Grajek W, Bensoussan M (1988) Influence of the water activity of a solid substrate on the growth rate and sporogenesis of filamentous fungi. Biotechnol Bioeng 31:457–463

    Article  CAS  Google Scholar 

  27. Hawksworth DL (2001) The magnitude of fungal diversity: the 1.5 million species estimate revisited. Mycol Res 105:1422–1432

    Article  Google Scholar 

  28. He H, Yang HY, Bigelis R, Solum EH, Greenstein MG, Carter GT (2002) Pyrrocidines A and B, new antibiotics produced by a filamentous fungus. Tetrahedron Lett 43:1633–1636

    Article  CAS  Google Scholar 

  29. He H, Bigelis R, Solum EH, Greenstein MG, Carter GT (2003) Acremonidins, new polyketide-derived antibiotics produced by Acremonium sp., LL-Cyan 416. J Antibiot 43:1633–1636

    Google Scholar 

  30. Hesseltine CW (1972) Biotechnology report: solid-state fermentation. Biotechnol Bioeng 14:517–532

    Article  CAS  Google Scholar 

  31. Hoch H, Staples RC, Whitehead B, Comeau J, Wolf ED (1987) Signaling for growth orientation and cell differentiation by surface topography in Uromyces. Science 235:1659–1662

    Article  Google Scholar 

  32. Hoch HC, Bojko RJ, Comeau GL, Lilienfeld DA (1995) Microfabricated surfaces in signaling for cell growth and differentiation in fungi. In: Hoch HC, Jelinski LW, Craighead H (eds) Nanofabrication and biosystems: integrating materials science, engineering, and biology. Cambridge University Press, Cambridge, pp 315–334

    Google Scholar 

  33. Holker U, Hofer M, Lenz J (2004) Biotechnological advantages of laboratory-scale solid-state fermentation with fungi. Appl Microbiol Biotechnol 64:175–186

    Article  CAS  Google Scholar 

  34. Hyde KD (2001) Where are the missing fungi? Does Hong Kong have any answers? Mycol Res 105:1514–1518

    Article  Google Scholar 

  35. Krishna C (2005) Solid-state fermentation systems—an overview. Crit Rev Biotechnol 25:1–30

    Article  CAS  Google Scholar 

  36. Kutney JP, Berset J-D, Hewitt GM, Singh M (1988) Biotransformation of dehydroabietic, abietic, and isopimaric acids by Mortierella isabellina immobilized in polyurethane foam. Appl Environ Microbiol 54:1015–1022

    CAS  Google Scholar 

  37. Larroche D (1996) Microbial growth and sporulation behaviour in solid state fermentation. J Sci Ind Res 55:408–423

    CAS  Google Scholar 

  38. Lee Y-H, Dean RA (1994) Hydrophobicity of contact surfaces induces appressorium formation in Magnaporthe grisea. FEMS Microbiol Lett 115:71–76

    Article  Google Scholar 

  39. Lonsane BK, Ghildyal NP, Budiatman S, Ramakrishna SV (1985) Engineering aspects of solid-state fermentation. Enzyme Microb Technol 7:258–265

    Article  CAS  Google Scholar 

  40. Maheshwari R, Hildebrandt AC, Allen PJ (1967) Cytology of infection structure development in urediospore germ tubes of Uromyces phaseoli var. typica (Pers.) Wint. Can J Bot 45:447–450

    Article  Google Scholar 

  41. Mitchell DA, Krieger N, Stuart DM, Pandey A (2000) New developments in solid state fermentation. II. Rational approaches to the design, operation and scale-up of bioreactors. Process Biochem 35:1211–1225

    Article  CAS  Google Scholar 

  42. Moo-Young M, Moriera AR, Tengerdy RP (1983) Principles of solid state fermentation. In: Smith JE, Berry DR, Kristiansen B (eds) The filamentous fungi, vol 4. Fungal biotechnology. Edward Arnold Publishers, London, pp 117–144

  43. Morton AG (1961) The induction of sporulation in mould fungi. Proc R Soc Lond Biol Sci 153:548–569

    Article  CAS  Google Scholar 

  44. Mulvany JG (1969) Membrane filter techniques in microbiology. In: Norris JR, Ribbons DW (eds) Methods in microbiology. Academic, London, pp 205–253

    Chapter  Google Scholar 

  45. Nicholson RL, Epstein L (1991) Adhesion of fungi to the plant surface: prerequisite for pathogenesis. In: Cole GT, Hoch HC (eds) The fungal spore and disease initiation in plants and animals. Plenum, New York, pp 3–23

    Google Scholar 

  46. Nigam P, Singh D (1994) Solid-state (substrate) fermentation systems and their applications in biotechnology. J Basic Microbiol 6:405–423

    Article  Google Scholar 

  47. Norton S, Vuillemard JC (1994) Food bioconversions and metabolite production using immobilized cell technology. Crit Rev Biotechnol 14:193–224

    Article  CAS  Google Scholar 

  48. Oliver E, Crittenden PD, Beckett A, Brown DH (1989) Growth of lichen-forming fungi on membrane filters. Lichenologist 21:387–392

    Article  Google Scholar 

  49. Ooijkaas LP, Weber FJ, Buitelaar RM, Tramper J, Rinzema A (2000) Defined media and inert supports: their potential as solid-state fermentation production systems. Trends Biotechnol 18:356–360

    Article  CAS  Google Scholar 

  50. Oriol E, Schettino B, Viniegra-Gonzales G (1988) Solid-state culture of Aspergillus niger on support. J Ferment Technol 66:57–62

    Article  CAS  Google Scholar 

  51. Pandey A, Soccol CR, Mitchell D (2000) New developments in solid state fermentation. I. Bioprocesses and products. Process Biochem 35:1153–1169

    Article  CAS  Google Scholar 

  52. Raimbault M (1998) General and microbiological aspects of solid substrate fermentation. Electron J Biotechnol 1:1–15

    Article  Google Scholar 

  53. Raimbault M, Alazard D (1980) Culture method to study fungal growth in solid fermentation. Eur J Appl Microbiol Biotechnol 9:199–202

    Article  CAS  Google Scholar 

  54. Ramakrishnan V, Prakasham RS (1999) Microbial fermentations with immobilized cells. Curr Sci 77:87–100

    Google Scholar 

  55. Robinson T, Singh D, Nigam P (2001) Solid-state fermentation: a promising microbial technology for secondary metabolite production. Appl Microbiol Biotechnol 55:284–289

    Article  CAS  Google Scholar 

  56. Roncal T, Ugalde U (2003) Conidiation induction in Penicillium. Res Microbiol 154:539–546

    Article  CAS  Google Scholar 

  57. Smits THM, Wick LY, Harms H, Keel C (2003) Characterization of the surface hydrophobicity of filamentous fungi. Environ Microbiol 5:85–91

    Article  Google Scholar 

  58. Soccol CR (1996) Biotechnology products from cassava root by solid state fermentation. J Sci Ind Res 55:358–364

    CAS  Google Scholar 

  59. Suryanarayan S (2003) Current industrial practice in solid state fermentations for secondary metabolite production: the Biocon India experience. Biochem Eng J 13:189–195

    Article  CAS  Google Scholar 

  60. Talbot NJ (1997) Fungal biology: growing into the air. Curr Biol 7:78–81

    Article  Google Scholar 

  61. Talbot NJ (2003) Aerial morphogenesis: enter the chaplins. Curr Biol 13:696–698

    Article  CAS  Google Scholar 

  62. Tanaka A, Nakajima H (1990) Application of immobilized growing cells. Adv Biochem Eng Biotechnol 42:97–131

    CAS  Google Scholar 

  63. Terhune BT, Hoch HC (1993) Substrate hydrophobicity and adhesion of Uromyces. Exp Mycol 17:241–252

    Article  CAS  Google Scholar 

  64. Tucker SL, Talbot NJ (2001) Surface attachment and pre-penetration stage development by plant pathogenic fungi. Annu Rev Phytopathol 39:385–417

    Article  CAS  Google Scholar 

  65. Verstrepen KJ, Reynolds TB, Fink GR (2004) Origins of variation in the fungal cell surface. Nat Rev Microbiol 2:533–540

    Article  CAS  Google Scholar 

  66. Webb C (1989) The role of cell immobilization in fermentation technology. Aust J Biotechnol 35:50–55

    Google Scholar 

  67. Webb C, Dervakos G (1996) Studies in viable cell immobilization. Academic, London

    Google Scholar 

  68. Wessels JGH, de Vries OMH, Asgeirdottir SA, Schuren FHJ (1991) Hydrophobin genes involved in formation of aerial hyphae and fruit bodies in Schizophyllum. Plant Cell 3:793–799

    Article  CAS  Google Scholar 

  69. Wicklow DT, Roth S, Deyrup ST, Gloer JB (2005) A protective endophyte of maize: Acremonium zeae antibiotics inhibitory to Aspergillus flavus and Fusarium verticillioides. Mycol Res 109:610–618

    Article  CAS  Google Scholar 

  70. Wosten HAB, van Wetter MA, Lugones LG, van der Mei HC, Busscher HJ, Wessels JGH (1999) How a fungus escapes the water to grow into the air. Curr Biol 9:85–88

    Article  CAS  Google Scholar 

  71. Wynn WK (1976) Appressorium formation over stomates by the bean rust fungus: response to a surface contact stimulus. Phytopathology 66:136–146

    Google Scholar 

  72. Wynn WK, Staples RC (1981) Tropisms of fungi in host recognition. In: Staples RC, Toenniessen GH (eds) Plant disease control: resistance and susceptibility. Wiley Interscience, New York, pp 45–69

    Google Scholar 

  73. Zhu Y, Smits JP, Knol W, Bol J (1994) A novel solid-state fermentation system using polyurethane foam as inert carrier. Biotechnol Lett 16:643–648

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the assistance Jeff Janso with antimicrobial assays and Eric Solum with fermentation work. We are grateful to Dr Maya P. Singh for providing antimicrobial test organisms and protocols.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramunas Bigelis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bigelis, R., He, H., Yang, H.Y. et al. Production of fungal antibiotics using polymeric solid supports in solid-state and liquid fermentation. J IND MICROBIOL BIOTECHNOL 33, 815–826 (2006). https://doi.org/10.1007/s10295-006-0126-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-006-0126-z

Keywords

Navigation