Skip to main content

Cellulosic Butanol Production from Agricultural Biomass and Residues: Recent Advances in Technology

  • Chapter
  • First Online:
Advanced Biofuels and Bioproducts

Abstract

This chapter details the recent advances made on bioconversion of lignocellulosic biomass to butanol, a superior biofuel that can be used in internal combustion engines or transportation industry. It should be noted that butanol producing cultures cannot tolerate or produce more than 20–30 g/L of acetone-butanol-ethanol (ABE) in batch reactors of which butanol is of the order of 13–18 g/L. This is due to toxicity of butanol to the culture. In order to overcome this challenge, two approaches have been applied: (1) developing more butanol tolerant strains using genetic engineering techniques and (2) employing process engineering approaches to simultaneously recover butanol from the fermentation broth thus not allowing butanol concentrations in the reactor to accumulate beyond culture’s tolerance. By the application of the first approach, a number of butanol producing strains have been developed; however, none of these accumulated greater than 1,200 mg/L (1.2 g/L) butanol, while using the second approach total ABE up to 461 g/L has been produced. Attempts to improve the newly developed strains are continuing. Lignocellulosic substrates have been used to produce butanol due to their abundant availability and economical prices usually in the range of $24–60/ton as opposed to corn prices which have been in the range of $153–218/ton during recent months. It should be noted that lignocellulosic substrates require separate hydrolysis prior to fermentation. In a more recent approach, hydrolysis and fermentation (and simultaneous recovery) have been integrated or combined to reduce the cost of butanol production from cellulosic substrates. Using such an approach, up to 192 g/L ABE was produced from 430 g/L cellulosic biomass/sugars. Additionally, this chapter provides details of process integration and simultaneous product recovery technologies for butanol production.

Mention of trade names or commercial products in this article is solely for the purpose of providing scientific information and does not imply recommendation or endorsement by the United States Department of Agriculture. USDA is an equal opportunity provider and employer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Afschar AS, Biebl H, Schaller K et al (1985) Production of acetone and butanol by Clostridium acetobutylicum in continuous culture with cell recycle. Appl Microbiol Biotechnol 22:394–398

    Article  CAS  Google Scholar 

  2. Alsaker KV, Spitzer TR, Papoutsakis ET (2004) Transcriptional analysis of spo0A overexpression in Clostridium acetobutylicum and its effect on the cell’s response to butanol stress. J Bacteriol 186:1959–1971

    Article  CAS  Google Scholar 

  3. Antoni D, Zverlov VV, Schwarz WH (2007) Biofuels from microbes. Appl Microbiol Biotechnol 77:23–35

    Article  CAS  Google Scholar 

  4. Atsumi S, Cann AF, Connor MR et al (2008) Metabolic engineering of Escherichia coli for 1-butanol production. Metab Eng 10:305–311

    Article  CAS  Google Scholar 

  5. Atsumi S, Taizo Hanai T, Liao JC (2008) Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451:86–90

    Article  CAS  Google Scholar 

  6. Baer SH, Blaschek HP, Smith TL (1987) Effect of butanol challenge and temperature on lipid composition and membrane fluidity of butanol-tolerant Clostridium acetobutylicum. Appl Environ Microbiol 53:2854–2861

    CAS  Google Scholar 

  7. Berezina OV, Zakharova NV, Brandt A et al (2010) Reconstructing the clostridial n-butanol metabolic pathway in Lactobacillus brevis. Appl Microbiol Biotechnol 87:635–646

    Article  CAS  Google Scholar 

  8. Borden JR, Papoutsakis ET (2007) Dynamics of genomic-library enrichment and identification of solvent tolerance genes for Clostridium acetobutylicum. Appl Environ Microbiol 73(9):3061–3068

    Article  CAS  Google Scholar 

  9. Bothast RJ, Nichols NN, Dien BS (1999) Fermentations with new recombinant organisms. Biotechnol Prog 15(5):867–875

    Article  CAS  Google Scholar 

  10. Boynton ZL, Bennett GN, Rudolph FB (1994) Intracellular concentrations of coenzyme A and its derivatives from Clostridium acetobutylicum ATCC 824 and their roles in enzyme regulation. Appl Environ Microbiol 60:39–44

    CAS  Google Scholar 

  11. Chen C-K, Blaschek HP (1999) Acetate enhances solvent production and prevents degeneration in Clostridium beijerinckii BA101. Appl Microbiol Biotechnol 52:170–173

    Article  CAS  Google Scholar 

  12. Ennis BM, Gutierrez NA, Maddox IS (1986) The acetone-butanol-ethanol fermentation: a current assessment. Proc Biochem 21:131–147

    CAS  Google Scholar 

  13. Ennis BM, Marshall CT, Maddox IS et al (1986) Continuous product recovery by in-situ gas stripping/condensation during solvent production from whey permeate using Clostridium acetobutylicum. Biotechnol Lett 8:725–730

    Article  CAS  Google Scholar 

  14. Ezeji TC, Blaschek HP (2007) Biofuel from butanol: advances in genetic and physiological manipulation of clostridia. BioWorld Eur 2:12–15

    Google Scholar 

  15. Ezeji TC, Blaschek HP (2008) Fermentation of dried distillers’ grains and soluble (DDGS) hydrolysates to solvents and value-added products by solventogenic clostridia. Bioresour Technol 99:5232–5242

    Article  CAS  Google Scholar 

  16. Ezeji TC, Milne C, Price ND et al (2010) Achievements and perspectives to overcome the poor solvent resistance in acetone and butanol-producing microorganisms. Appl Microbiol Biotechnol 85:1697–1712

    Article  CAS  Google Scholar 

  17. Ezeji TC, Qureshi N, Blaschek HP (2004) Acetone butanol ethanol (ABE) production from concentrated substrate: reduction in substrate inhibition by fed-batch technique and product inhibition by gas stripping. Appl Microbiol Biotechnol 63:653–658

    Article  CAS  Google Scholar 

  18. Ezeji TC, Qureshi N, Blaschek HP (2007) Butanol production from agricultural residues: impact of degradation products on Clostridium beijerinckii growth and butanol fermentation. Biotechnol Bioeng 97:1460–1469

    Article  CAS  Google Scholar 

  19. Ezeji TC, Qureshi N, Blaschek HP (2007) Bioproduction of butanol from biomass: from genes to bioreactors. Curr Opin Biotechnol 18:220–227

    Article  CAS  Google Scholar 

  20. Ezeji TC, Qureshi N, Blaschek HP (2012) Microbial production of a biofuel (acetone-butanol-ethanol) in a continuous bioreactor: Impact of bleed and simultaneous product recovery. Bioproc Biosyst Eng (In press)

    Google Scholar 

  21. Garcia A, Innotti EL, Fischer JL (1986) Butanol fermentation liquor production and separation by reverse osmosis. Biotechnol Bioeng 28:785–791

    Article  CAS  Google Scholar 

  22. Gottschalk G, Gottwald M (1985) Internal pH of Clostridium acetobutylicum and its effect on the shift from acid to solvent formation. Arch Microbiol 143:42–46

    Article  Google Scholar 

  23. Groot WJ, van der Lans RGJM, Luyben ChAM (1992) Technologies for butanol recovery integrated with fermentations. Proc Biochem 27:61–75

    Article  CAS  Google Scholar 

  24. Gu Y, Hu S, Chen J et al (2009) Ammonium acetate enhances solvent production by Clostridium acetobutylicum EA 2018 using cassava as a fermentation medium. J Ind Microbiol Biotechnol 36:1225–1232

    Article  CAS  Google Scholar 

  25. Harris LM, Welker NE, Papoutsakis ET (2002) Northern, morphological and fermentation analysis of spo0A inactivation and overexpression in Clostridium acetobutylicum ATCC 824. J Bacteriol 184:3586–3597

    Article  CAS  Google Scholar 

  26. Hermann M, Fayolle F, Marchal R et al (1985) Isolation and characterization of butanol-resistant mutants of Clostridium acetobutylicum. Appl Environ Microbiol 50:1238–1243

    CAS  Google Scholar 

  27. Huang W-C, Ramey DE, Yang S-T (2004) Continuous production of butanol by Clostridium acetobutylicum immobilized in a fibrous bed reactor. Appl Biochem Biotechnol 113–116: 887–898

    Article  Google Scholar 

  28. Hugenholtz J, Sybesma W, Groot MN et al (2002) Metabolic engineering of lactic acid bacteria for the production of nutraceuticals. Antonie Van Leeuwenhoek 82(1–4):217–235

    Article  CAS  Google Scholar 

  29. Husemann MH, Papoutsakis ET (1989) Enzymes limiting butanol and acetone formation in continuous and batch cultures of Clostridium acetobutylicum. Appl Microbiol Biotechnol 31: 435–444

    Article  Google Scholar 

  30. Inui M, Suda M, Kimura S et al (2008) Expression of Clostridium acetobutylicum butanol synthetic genes in Escherichia coli. Appl Microbiol Biotechnol 77:1305–1316

    Article  CAS  Google Scholar 

  31. Jones DT, Woods DR (1986) Acetone-butanol fermentation revisited. Microbiol Rev 50:484–524

    CAS  Google Scholar 

  32. Knoshaug EP, Zhang M (2008) Butanol tolerance in a selection of microorganisms. Appl Biochem Biotechnol 153:13–20

    Article  Google Scholar 

  33. Lienhardt J, Schripsema J, Qureshi N et al (2002) Butanol production by Clostridium beijerinckii BA101 in an immobilized cell biofilm reactor. Appl Biochem Biotechnol 98–100:591–598

    Article  Google Scholar 

  34. Lin YL, Blaschek HP (1983) Butanol production by a butanol-tolerant strain of Clostridium acetobutylicum in extruded corn broth. Appl Environ Microbiol 45:966–973

    CAS  Google Scholar 

  35. Liu S, Bischoff KM, Qureshi N et al (2010) Functional expression of the thiolase gene thl from Clostridium beijerinckii P260 in Lactococcus lactis and Lactobacillus buchneri. N Biotechnol 27:283–288

    Article  Google Scholar 

  36. Lonvaud-Funel A (1999) Lactic acid bacteria in the quality improvement and depreciation of wine. Antonie Van Leeuwenhoek 76(1–4):317–331

    Article  CAS  Google Scholar 

  37. Maddox IS (1989) The acetone-butanol-ethanol fermentation: recent progress in technology. Biotechnol Genet Eng Rev 7:189–220

    CAS  Google Scholar 

  38. Maddox IS, Qureshi N, Roberts-Thomson K (1995) Production of acetone-butanol from concentrated substrates using Clostridium acetobutylicum in an integrated fermentation-product removal process. Proc Biochem 30:209–215

    CAS  Google Scholar 

  39. Makarova K, Slesareva A, Wolf Y et al (2006) Comparative genomics of the lactic acid bacteria. Proc Natl Acad Sci 103:15611–15616

    Article  Google Scholar 

  40. Marchal R, Rebeller M, Vandecasteele JP (1984) Direct conversion of alkali-pretreated straw using simultaneous enzymatic hydrolysis and acetone-butanol fermentation. Biotechnol Lett 6:523–528

    Article  CAS  Google Scholar 

  41. Marchal R, Ropars M, Pourquie J et al (1992) Large-scale enzymatic hydrolysis of agricultural lignocellulosic biomass. Part 2: conversion into acetone-butanol. Bioresour Technol 42:205–217

    Article  CAS  Google Scholar 

  42. Ni Y, Sun Z (2009) Recent progress on industrial fermentative production of acetone-butanol-ethanol by Clostridium acetobutylicum in China. Appl Microbiol Biotechnol 83:415–423

    Article  CAS  Google Scholar 

  43. Nielsen DR, Leonard E, Yoon SH et al (2009) Engineering alternative butanol production platforms in heterologous bacteria. Metab Eng 11:262–273

    Article  CAS  Google Scholar 

  44. Nolling J, Breton G, Omelchenko MV et al (2001) Genome sequence and comparative analysis of the solvent-producing bacterium Clostridium acetobutylicum. J Bacteriol 183:4823–4838

    Article  CAS  Google Scholar 

  45. Parekh SR, Parekh RS, Wayman M (1988) Ethanol and butanol production by fermentation of enzymatically saccharified SO2-pretreated lignocellulosics. Enzyme Microb Technol 10:660–668

    Article  CAS  Google Scholar 

  46. Petersen DJ, Bennett GN (1991) Cloning of the Clostridium acetobutylicum ATCC 824 acetyl coenzyme A acetyltransferase (thiolase; EC 2.3.1.9) gene. Appl Environ Microbiol 57: 2735–2741

    CAS  Google Scholar 

  47. Pierrot P, Fick M, Engasser JM (1986) Continuous acetone-butanol fermentation with high productivity by cell ultrafiltration and recycling. Biotechnol Lett 8:253–256

    Article  CAS  Google Scholar 

  48. Qureshi N (2009) Solvent production. In: Schaechter M (ed) Encyclopedia of microbiology. Elsevier Ltd, Oxford, UK pp 512–528

    Google Scholar 

  49. Qureshi N, Ezeji TC, Ebener J et al (2008) Butanol production by Clostridium beijerinckii. Part I: use of acid and enzyme hydrolyzed corn fiber. Bioresour Technol 99:5915–5922

    Article  CAS  Google Scholar 

  50. Qureshi N, Hughes S, Maddox IS, Cotta MA (2005) Energy efficient recovery of butanol from fermentation broth by adsorption. Bioprocess Biosyst Eng 27:215–222

    Article  CAS  Google Scholar 

  51. Qureshi N, Li X-L, Hughes S, Saha BC et al (2006) Butanol production from corn fiber xylan using Clostridium acetobutylicum. Biotechnol Prog 22:673–680

    Article  CAS  Google Scholar 

  52. Qureshi N, Maddox IS (1991) Integration of continuous production and recovery of solvents from whey permeate: use of immobilized cells of Clostridium acetobutylicum in a fluidized bed reactor coupled with gas stripping. Bioproc Eng 6:63–69

    Article  Google Scholar 

  53. Qureshi N, Maddox IS (1995) Continuous production of acetone butanol ethanol using immobilized cells of Clostridium acetobutylicum and integration with product removal by liquid-liquid extraction. J Ferm Bioeng 80:185–189

    Article  CAS  Google Scholar 

  54. Qureshi N, Maddox IS (2005) Reduction in butanol inhibition by perstraction: utilization of concentrated lactose/whey permeate by Clostridium acetobutylicum to enhance butanol fermentation economics. Food Bioprod Proc C 83(C1):43–52

    Article  CAS  Google Scholar 

  55. Qureshi N, Maddox IS, Friedl A (1992) Application of continuous substrate feeding to the ABE fermentation: relief of product inhibition using extraction, perstraction, stripping, and pervaporation. Biotechnol Prog 8:382–390

    Article  CAS  Google Scholar 

  56. Qureshi N, Meagher MM, Hutkins RW (1999) Recovery of butanol from model solutions and fermentation broth using a silicalite/silicone membrane. J Membr Sci 158:115–125

    Article  CAS  Google Scholar 

  57. Qureshi N, Saha BC, Cotta MA (2007) Butanol production from wheat straw hydrolysate using Clostridium beijerinckii. Bioprocess Biosyst Eng 30:419–427

    Article  CAS  Google Scholar 

  58. Qureshi N, Saha BC, Cotta MA (2008) Butanol production from wheat straw by simultaneous saccharification and fermentation using Clostridium beijerinckii: part II—fed-batch fermentation. Biomass Bioenergy 32:176–183

    Article  CAS  Google Scholar 

  59. Qureshi N, Saha BC, Hector RE et al (2008) Removal of fermentation inhibitors from alkaline peroxide pretreated and enzymatically hydrolyzed wheat straw: production of butanol from hydrolysate using Clostridium beijerinckii in batch reactors. Biomass Bioenergy 32: 1353–1358

    Article  CAS  Google Scholar 

  60. Qureshi N, Saha BC, Hector RE et al (2008) Butanol production from wheat straw by simultaneous saccharification and fermentation using Clostridium beijerinckii: part I—batch fermentation. Biomass Bioenergy 32:168–175

    Article  CAS  Google Scholar 

  61. Qureshi N, Saha BC, Dien B et al (2010) Production of butanol (a biofuel) from agricultural residues: part I—use of barley straw hydrolysate. Biomass Bioenergy 34:559–565

    Article  CAS  Google Scholar 

  62. Qureshi N, Saha BC, Hector RE et al (2010) Production of butanol (a biofuel) from agricultural residues: part II—use of corn stover and switchgrass hydrolysate. Biomass Bioenergy 34: 566–571

    Article  CAS  Google Scholar 

  63. Qureshi N, Schripsema J, Lienhardt J et al (2000) Continuous solvent production by Clostridium beijerinckii BA101 immobilized by adsorption onto brick. World J Microbiol Biotechnol 16: 377–382

    Article  CAS  Google Scholar 

  64. Roffler SR, Blanch HW, Wilke CR (1987) In-situ recovery of butanol during fermentation: part I—batch extractive fermentation. Bioproc Eng 2:1–12

    Article  CAS  Google Scholar 

  65. Roffler SR, Blanch HW, Wilke CR (1987) In-situ recovery of butanol during fermentation: part 2—fed-batch extractive fermentation. Bioproc Eng 2:181–190

    Article  CAS  Google Scholar 

  66. Sakamoto K, Konings WN (2003) Beer spoilage bacteria and hop resistance. Int J Food Microbiol 89(2–3):105–124

    Article  CAS  Google Scholar 

  67. Shi Z, Blaschek HP (2008) Transcriptional analysis of Clostridium beijerinckii NCIMB 8052 and the hyper-butanol-producing mutant BA101 during the shift from acidogenesis to solventogenesis. Appl Environ Microbiol 74:7709–7714

    Article  CAS  Google Scholar 

  68. Sillers R, Al-Hinai MA, Papoutsakis ET (2009) Aldehyde-alcohol dehydrogenase and/or thiolase overexpression coupled with CoA transferase downregulation lead to higher alcohol titers and selectivity in Clostridium acetobutylicum fermentations. Biotechnol Bioeng 102: 38–49

    Article  CAS  Google Scholar 

  69. Smith KM, Cho K-M, Liao JC (2010) Engineering Corynebacterium glutamicum for isobutanol production. Appl Microbiol Biotechnol 87:1045–1055

    Article  CAS  Google Scholar 

  70. Soucaille P, Joliff G, Izard A et al (1987) Butanol tolerance and autobacteriocin production by Clostridium acetobutylicum. Curr Microbiol 14:295–299

    Article  CAS  Google Scholar 

  71. Steen EJ, Chan R, Prasad N et al (2008) Metabolic engineering of Saccharomyces cerevisiae for the production of n-butanol. Microb Cell Fact 7:36

    Article  Google Scholar 

  72. Thongsukmak A, Sirkar KK (2007) Pervaporative membranes highly selective for solvents present in fermentation broths. J Membr Sci 302:45–58

    Article  CAS  Google Scholar 

  73. Tomas CA, Welker NE, Papoutsakis ET (2003) Overexpression of groESL in Clostridium acetobutylicum results in increased solvent production and tolerance, prolonged metabolism, and changes in the cell’s transcriptional program. Appl Environ Microbiol 69:4951–4965

    Article  CAS  Google Scholar 

  74. Yang X, Tsai G-J, Tsao GT (1994) Enhancement of in situ adsorption on the acetone-butanol fermentation by Clostridium acetobutylicum. Sep Technol 4:81–92

    Article  CAS  Google Scholar 

  75. Zhao Y, Tomas CA, Rudolph FB et al (2005) Intracellular butyryl phosphate and acetyl phosphate concentrations in Clostridium acetobutylicum and their implications for solvent formation. Appl Environ Microbiol 71:530–537

    Article  CAS  Google Scholar 

  76. Zverlov VV, Berezina O, Velikodvorskaya GA et al (2006) Bacterial acetone and butanol production by industrial fermentation in the Soviet Union: use of hydrolyzed agricultural waste for biorefinery. Appl Microbiol Biotechnol 71:587–597

    Article  CAS  Google Scholar 

Download references

Acknowledgments

N. Qureshi would like to thank Michael A. Cotta (United States Department of Agriculture, National Center for Agricultural Utilization Research, Bioenergy Research Unit, Peoria, IL) for reading this manuscript and providing valuable and constructive comments. Part of this work was supported by the hatch grant (Project No: OHO01222; Department of Animal Sciences, The Ohio State University) to T.C. Ezeji.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Qureshi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Qureshi, N., Liu, S., Ezeji, T.C. (2013). Cellulosic Butanol Production from Agricultural Biomass and Residues: Recent Advances in Technology. In: Lee, J. (eds) Advanced Biofuels and Bioproducts. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3348-4_15

Download citation

Publish with us

Policies and ethics