Skip to main content
Log in

Reconstructing the clostridial n-butanol metabolic pathway in Lactobacillus brevis

  • Applied Genetics and Molecular Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A Lactobacillus brevis strain with the ability to synthesize butanol from glucose was constructed by metabolic engineering. The genes crt, bcd, etfB, etfA, and hbd, composing the bcs-operon, and the thl gene encode the enzymes of the lower part of the clostridial butanol pathway (crotonase, butyryl-CoA-dehydrogenase, two subunits of the electron transfer flavoprotein, 3-hydroxybutyryl-CoA dehydrogenase, and thiolase) of Clostridium acetobutylicum. They were cloned into the Gram-positive/Gram-negative shuttle plasmid vector pHYc. The two resulting plasmids pHYc-thl-bcs and pHYc-bcs (respectively, with and without the clostridial thl gene) were transferred to Escherichia coli and L. brevis. The recombinant L. brevis strains were able to synthesize up to 300 mg l−1 or 4.1 mM of butanol on a glucose-containing medium. A L. brevis strain carrying the clostridial bcs-operon has the ability to synthesize butanol with participation of its own thiolase, aldehyde dehydrogenase, and alcohol dehydrogenase. The particular role of the enzymes involved in butanol production and the suitability of L. brevis as an n-butanol producer are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agnihotri G, Liu HW (2003) Enoyl-CoA hydratase. Reaction, mechanism, and inhibition. Bioorg Med Chem 11:9–20

    Article  CAS  Google Scholar 

  • Antoni D, Zverlov VV, Schwarz WH (2007) Biofuels from microbes. Appl Microbiol Biotechnol 77:23–35

    Article  CAS  Google Scholar 

  • Atsumi S, Cann AF, Connor MR, Shen CR, Smith KM, Brynildsen MP, Chou KJ, Hanai T, Liao JC (2008) Metabolic engineering of Escherichia coli for 1-butanol production. Metab Eng 10:305–11

    Article  CAS  Google Scholar 

  • Berezina OV, Sineokii SP, Velikodvorskaia GA, Schwarz WH, Zverlov VV (2008) Extracellular glycosyl hydrolase activity of the clostridia producing acetone, butanol, and ethanol. Prikl Biokhim Mikrobiol 44:49–55

    CAS  Google Scholar 

  • Bergmeyer HU (1970) Methoden der enzymatischen analyse. Weinheim, Verlag Chemie

    Google Scholar 

  • Boynton ZL, Bennet GN, Rudolph FB (1996) Cloning, sequencing, and expression of clustered genes encoding beta-hydroxybutyryl-coenzyme A (CoA) dehydrogenase, crotonase, and butyryl-CoA dehydrogenase from Clostridium acetobutylicum ATCC 824. J Bacteriol 178:3015–24

    CAS  Google Scholar 

  • Chassy BM, Murphy CM (1993) Lactococcus and Lactobacillus. In: Sonenshein AL, Hoch JA, Losick R (eds) Bacillus subtilis and other Gram-positive bacteria. American Society for Microbiology, Washington, pp 65–82

    Google Scholar 

  • Cosby WM, Casas IA, Dobrogosz WJ (1988) Formation, regeneration, and transfection of Lactobacillus plantarum protoplasts. Appl Environ Microbiol 54:2599–602

    CAS  Google Scholar 

  • DeMoss RD, Bard RC, Gunsalus IC (1951) The mechanism of the heterolactic fermentation; a new route of ethanol formation. J Bacteriol 62:499–511

    CAS  Google Scholar 

  • Fischer CR, Klein-Marcuschamer D, Stephanopoulos G (2008) Selection and optimization of microbial hosts for biofuels production. Metab Eng 10:295–304

    Article  CAS  Google Scholar 

  • Gregersen N (1985) Riboflavin-responsive defects of β-oxidation. J Inherit Metab Dis, Suppl 1:65–69

    Article  Google Scholar 

  • Hamed RB, Batchelar ET, Clifton IJ, Schofield CJ (2008) Mechanisms and structures of crotonase superfamily enzymes—how nature controls enolate and oxyanion reactivity. Cell Mol Life Sci 65:2507–27

    Article  CAS  Google Scholar 

  • Hartmanis MG, Gatenbeck S (1984) Intermediary metabolism in Clostridium acetobutylicum: levels of enzymes involved in the formation of acetate and butyrate. Appl Environ Microbiol 47:1277–1283

    CAS  Google Scholar 

  • Herrmann G, Jayamani E, Mai G, Buckel W (2008) Energy conservation via electron-transferring flavoprotein in anaerobic bacteria. J Bacteriol 190:784–791

    Article  CAS  Google Scholar 

  • Hoefnagel MH, Starrenburg MJ, Martens DE, Hugenholtz J, Kleerebezem M, Van S II, Bongers R, Westerhoff HV, Snoep JL (2002) Metabolic engineering of lactic acid bacteria, the combined approach: kinetic modelling, metabolic control and experimental analysis. Microbiology 148:1003–13

    CAS  Google Scholar 

  • Hugenholtz J, Kleerebezem M (1999) Metabolic engineering of lactic acid bacteria: overview of the approaches and results of pathway rerouting involved in food fermentations. Curr Opin Biotechnol 10:492–7

    Article  CAS  Google Scholar 

  • Iijima K, Suzuki K, Ozaki K, Yamashita H (2006) horC confers beer-spoilage ability on hop-sensitive Lactobacillus brevis ABBC45cc. J Appl Microbiol 100:1282–8

    Article  CAS  Google Scholar 

  • Ikeda Y, Okamura-Ikeda K, Tanaka K (1985) Purification and characterization of short-chain, medium-chain, and long-chain acyl-CoA dehydrogenases from rat liver mitochondria. Isolation of the holo- and apoenzymes and conversion of the apoenzyme to the holoenzyme. J Biol Chem 260:1311–25

    CAS  Google Scholar 

  • Ingram SW, Stratemann SA, Barnes LD (1999) Schizosaccharomyces pombe Aps1, a diadenosine 5′, 5′ ″-P1, P6-hexaphosphate hydrolase that is a member of the nudix (MutT) family of hydrolases: cloning of the gene and characterization of the purified enzyme. Biochemistry 38:3649–55

    Article  CAS  Google Scholar 

  • Inui M, Suda M, Kimura S, Yasuda K, Suzuki H, Toda H, Yamamoto S, Okino S, Suzuki N, Yukawa H (2008) Expression of Clostridium acetobutylicum butanol synthetic genes in Escherichia coli. Appl Microbiol Biotechnol 77:1305–16

    Article  CAS  Google Scholar 

  • Jones DT, Woods DR (1986) Acetone-butanol fermentation revisited. Microbiol Rev 50:484–524

    CAS  Google Scholar 

  • Knoshaug EP, Zhang M (2009) Butanol tolerance in a selection of microorganisms. Appl Biochem Biotechnol 153:13–20

    Article  CAS  Google Scholar 

  • Kok J (1991) Lactococci: molecular biology and biotechnology. In: Dunny GM, Cleary PP, McKay LL (eds) Genetics and molecular biology of Streptococci, Lactococci, and Enterococci. American Society for Microbiology, Washington, DC, pp 97–102

    Google Scholar 

  • Leenhouts KJ, Venema G (1993) Lactococcal plasmid vectors. In: Hardy KG (ed) Plasmids. A practical approach. Oxford University Press, New York, pp 65–94

    Google Scholar 

  • Lehman TC, Thorpe C (1990) Alternate electron acceptors for medium-chain acyl-CoA dehydrogenase: use of ferricenium salts. Biochemistry 29:10594–10602

    Article  CAS  Google Scholar 

  • Li F, Hinderberger J, Seedorf H, Zhang J, Buckel W, Thauer RK (2008) Coupled ferredoxin and crotonyl Coenzyme A (CoA) reduction with NADH catalyzed by the butyryl-CoA dehydrogenase/Etf complex from Clostridium kluyveri. J Bacteriol 190:843–850

    Article  CAS  Google Scholar 

  • Liu S, Nichols NN, Dien BS, Cotta MA (2006) Metabolic engineering of a Lactobacillus plantarum double ldh knockout strain for enhanced ethanol production. J Ind Microbiol Biotech 33:1–7

    Article  Google Scholar 

  • Liu S, Dien BS, Nichols NN, Bischoff KM, Hughes SR, Cotta MA (2007) Coexpression of pyruvate decarboxylase and alcohol dehydrogenase genes in Lactobacillus brevis. FEMS Microbiol Lett 274:291–7

    Article  CAS  Google Scholar 

  • Lokman BC, van Santen P, Verdoes JC, Kruse J, Leer RJ, Posno M, Pouwels PH (1991) Organization and characterization of three genes involved in D-xylose catabolism in Lactobacillus pentosus. Mol Gen Genet 230:161–169

    Article  CAS  Google Scholar 

  • Makarova K, Slesarev A, Wolf Y, Sorokin A, Mirkin B, Koonin E, Pavlov A, Pavlova N, Karamychev V, Polouchine N, Shakhova V, Grigoriev I, Lou Y, Rohksar D, Lucas S, Huang K, Goodstein DM, Plengvidhya V, Hawkins T, Welker D, Hughes J, Goh Y, Benson A, Baldwin K, Lee JH, Diaz-Muniz I, Dosti B, Smeianov V, Wechter W, Barabote R, Lorca G, Altermann E, Barrangou R, Ganesan B, Xie Y, Rawsthorne H, Tamir D, Parker C, Breidt F, Broadbent J, Hutkins R, O’Sullivan D, Steele J, Unlu G, Saier M, Klaenhammer T, Richardson P, Kozyavkin S, Weimer B, Mills D (2006) Comparative genomics of the lactic acid bacteria. Proc Natl Acad Sci USA 103:15611–15616

    Article  Google Scholar 

  • Morelli L, Cocconcelli PS, Bottazzi V, Damiani G, Ferretti L, Sgaramella V (1987) Lactobacillus protoplast transformation. Plasmid 17:73–5

    Article  CAS  Google Scholar 

  • Nielsen DR, Leonard E, Yoon S-H, Tseng H-C, Yuan C, Prather KLJ (2009) Engineering alternative butanol production platforms in heterologous bacteria. Metab Eng. doi:10.1016/j.ymben.2009.05.003

    Google Scholar 

  • Palosaari NR, Rogers P (1988) Purification and properties of the inducible coenzyme A-linked butyraldehyde dehydrogenase from Clostridium acetobutylicum. J Bacteriol 170:2971–6

    CAS  Google Scholar 

  • Pesce A, Fondy TP, Stolzenbach F, Castillo F, Kaplan NO (1967) The comparative enzymology of lactic dehydrogenases. 3. Properties of the H4 and M4 enzymes from a number of vertebrates. J Biol Chem 242:2151–67

    CAS  Google Scholar 

  • Romano AH, Saier MHJ (1992) Evolution of the bacterial phosphoenolpyruvate:sugar phosphotransferase system. I. Physiologic and organismic considerations. In: Mortlock RP (ed) The evolution of metabolic function. Boca Raton, CRC Press, pp 143–170

    Google Scholar 

  • Saier MH Jr, Ye JJ, Klinke S, Nino E (1996) Identification of an anaerobically induced phosphoenolpyruvate-dependent fructose-specific phosphotransferase system and evidence for the Embden-Meyerhof glycolytic pathway in the heterofermentative bacterium Lactobacillus brevis. J Bacteriol 178:314–6

    CAS  Google Scholar 

  • Sami M, Suzuki K, Sakamoto K, Kadokura H, Kitamoto K, Yoda K (1998) A plasmid pRH45 of Lactobacillus brevis confers hop resistance. J Gen Appl Microbiol 44:361–363

    Article  CAS  Google Scholar 

  • Schwarz WH, Slattery M, Gapes JR (2007) The ABC of ABE. BioWorld Europe 2:8–10

    Google Scholar 

  • Simpson WJ, Fernandez JL (1994) Mechanism of resistance of lactic acid bacteria to trans-isohumulone. J Am Soc Brew Chem 52:9–11

    CAS  Google Scholar 

  • Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85

    Article  CAS  Google Scholar 

  • Steen EJ, Chan R, Prasad N, Myers S, Petzold CJ, Redding A, Ouellet M, Keasling JD (2008) Metabolic engineering of Saccharomyces cerevisiae for the production of n-butanol. Microb Cell Factor 7:36

    Article  Google Scholar 

  • Wiesenborn DP, Rudolph FB, Papoutsakis ET (1988) Thiolase from Clostridium acetobutylicum ATCC 824 and its role in the synthesis of acids and solvents. Appl Environ Microbiol 54:2717–2722

    CAS  Google Scholar 

  • Youngleson JS, Santangelo JD, Jones DT, Woods DR (1988) Cloning and expression of a Clostridium acetobutylicum alcohol dehydrogenase Gene in Escherichia coli. Appl Environ Microbiol 54:676–682

    CAS  Google Scholar 

  • Zaunmüller T, Eichert M, Richter H, Unden G (2006) Variations in the energy metabolism of biotechnologically relevant heterofermentative lactic acid bacteria during growth on sugars and organic acids. Appl Microbiol Biotechnol 72:421–429

    Article  Google Scholar 

  • Zhou S, Iverson AG, Grayburn WS (2008) Engineering a native homoethanol pathway in Escherichia coli B for ethanol production. Biotechnol Lett 30:335–342

    Article  CAS  Google Scholar 

  • Zverlov VV, Berezina O, Velikodvorskaya GA, Schwarz WH (2006) Bacterial acetone and butanol production by industrial fermentation in the Soviet Union: use of hydrolyzed agricultural waste for biorefinery. Appl Microbiol Biotechnol 71:587–597

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Bioprocess Group, Moscow. Dr. Iijima kindly provided the shuttle-vector pHYc utilized for expression of clostridial genes as a gift. We are most grateful to Dr. Rustem Shakulov for his invaluable advice and Olesya Shashkina for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Oksana V. Berezina or Natalia V. Zakharova.

Additional information

Oksana V. Berezina and Natalia V. Zakharova equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berezina, O.V., Zakharova, N.V., Brandt, A. et al. Reconstructing the clostridial n-butanol metabolic pathway in Lactobacillus brevis . Appl Microbiol Biotechnol 87, 635–646 (2010). https://doi.org/10.1007/s00253-010-2480-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-2480-z

Keywords

Navigation