Skip to main content
Log in

Theoretical study of the structures, stabilities, and electronic properties of neutral and anionic Ca2Si λn (n = 1–8, λ = 0, +1) clusters

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

An Erratum to this article was published on 27 June 2014

Abstract

The structures, stabilities and electronic properties of neutral and cationic, calcium-doped, small silicon clusters Ca2Si λ n (n = 1–8, λ = 0, +1) have been systematically investigated by using the density functional theory method at the B3LYP/6-311G (d) level. The results show that the ground state optimal structures of the cationic and neutral clusters favour the three-dimensional structures for n = 3−8 respectively, and that the cationic Ca2Si + n clusters have the lowest-energy structures similar to those of neutral Ca2Si n clusters with the exception of Ca2Si +6 . The main configurations of the Ca2Si n isomers are not affected by removal of an electron, but the order of their stability is reversed. Based on the optimised geometries, the averaged binding energy (E b ), fragmentation energy (E f ), second-order energy difference (Δ 2 E), HOMO-LUMO energy gap (E gap ), adiabatic ionisation potential (AIP) and vertical ionisation potential (VIP) are analysed for the most stable structures. We found that Ca2Si5, Ca2Si7 and Ca2Si +7 clusters have the strongest relative stability, and that the positive charged clusters are more stable than the corresponding neutral ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Derrien, J. Chevrier, V. Le Tranh, J.E. Mahan, Appl. Surf. Sci. 382, 56 (1992)

    Google Scholar 

  2. Y. Imai, A. Watanabe, Intermetallics 10, 333 (2002)

    Article  Google Scholar 

  3. H. Matsui, M. Kuramoto, T. Ono, Y. Nose, H. Tatsuoka, H. Kuwabara, J. Cryst. Growth 237, 2121 (2002)

    Article  ADS  Google Scholar 

  4. C. Wen, T. Nonomura, A. Kato, Y. Kenichi, H. Udono, K. Isobe, M. Otake, Y. Kubota, T. Nakamura, Y. Hayakawa, H. Tatsuoka, Phys. Procedia 11, 106 (2011)

    Article  ADS  Google Scholar 

  5. C. Chemelli, M. Sancrotti, L. Braicovich, F. Ciccacci, Phys. Rev. B 40, 10210 (1989)

    Article  ADS  Google Scholar 

  6. O. Bisi, L. Braicovich, C. Carbone, I. Lindau, A. Iandelli, G.L. Olcese, A. Palenzona, Phys. Rev. B 40, 10194 (1989)

    Article  ADS  Google Scholar 

  7. D.B. Migas, L. Miglio, Phys. Rev. B 67, 205203 (2003)

    Article  ADS  Google Scholar 

  8. Y. Imai, A. Watanabe, M. Mukaida, J. Alloys Compd. 358, 257 (2003)

    Article  Google Scholar 

  9. M.J. Frisch et al., Gaussian 09, Revision C.01 (Gaussian, Inc., Wallingford, CT, 2009)

  10. A.D. Becke, J. Chem. Phys. 98, 5648 (1993)

    Article  ADS  Google Scholar 

  11. C. Lee, W.T. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988)

    Article  ADS  Google Scholar 

  12. C.Y. Xiao, A. Abraham, R. Quinn, F. Hagelberg, W.A. Lester Jr., J. Phys. Chem. A 106, 11380 (2002)

  13. H.G. Xu, Z.G. Zhang, Y. Feng, J.Y. Yuan, Y.C. Zhao, W.J. Zheng, Chem. Phys. Lett. 487, 204 (2010)

    Article  ADS  Google Scholar 

  14. J. Wang, Q.M. Ma, Z. Xie, Y. Liu, Y.C. Li, Phys. Rev. B 76, 35406 (2007)

    Article  ADS  Google Scholar 

  15. C. Pouchan, D. Bégué, J. Chem. Phys. 121, 4628 (2004)

    Article  ADS  Google Scholar 

  16. P. Pradhan, A.K. Ray, Eur. Phys. J. D 37, 393 (2006)

    Article  ADS  Google Scholar 

  17. W. Qin, W.C. Lu, L.Z. Zhao, Q.J. Zang, C.Z. Wang, K.M. Ho, J. Phys.: Condens. Matter 21, 455501 (2009)

    ADS  Google Scholar 

  18. A.M. Gao, G.L. Li, Y. Chang, H.Y. Chen, D. Finlow, Q.S. Li, Inorg. Chim. Acta 367, 51 (2011)

    Article  Google Scholar 

  19. J.G. Han, R.N. Zhao, Y.H. Duan, J. Phys. Chem. A 111, 2148 (2007)

    Article  Google Scholar 

  20. W.J. Zhao, B. Xu, Y.X. Wang, Comput. Mater. Sci. 50, 2167 (2011)

    Article  Google Scholar 

  21. G.F. Zhao, J.M. Sun, Y.Z. Gu, Y.X. Wang, J. Chem. Phys. 131, 114312 (2009)

    Article  ADS  Google Scholar 

  22. K.P. Huber, G. Herzberg, in Constants of Diatomic Molecules, Molecular Spectra and Molecular structures (Van Nostrand Reinhold, New York, 1979), pp. 153–158

  23. W.A. de Heer, W.D. Knight, M.Y. Chou, M.L. Cohen, Solid State Phys. 40, 93 (1987)

    Google Scholar 

  24. T.N. Kitsopoulos, C.J. Chick, Y. Zhao, D.M. Neumark, J. Chem. Phys. 95, 1441 (1991)

    Article  ADS  Google Scholar 

  25. P. Shao, X.Y. Kuang, L.P. Ding, M.M. Zhong, Z.H. Wang, Physica B 407, 4379 (2012)

    Article  ADS  Google Scholar 

  26. H.G. Xu, Z.G. Zhang, Y. Feng, W.J. Zheng, Chem. Phys. Lett. 498, 22 (2010)

    Article  ADS  Google Scholar 

  27. A.M. Gao, G.L. Li, Y. Chang, H.Yu. Chen, D. Finlow, Q.S. Li, Inorg. Chim. Acta 367, 51 (2011)

    Article  Google Scholar 

  28. C.Z. Deng, L.Q. Zhou, G.L. Li, H.Y. Chen, Q.S. Li, J. Clust. Sci. 23, 975 (2012)

    Article  Google Scholar 

  29. Y. Chang, G.L. Li, A.M. Gao, H.Y. Chen, Q.S. Li, Theor. Chem. Acc. 130, 1009 (2011)

    Article  Google Scholar 

  30. Y.R. Zhao, X.Y. Kuang, B.B. Zheng, S.J. Wang, Y.F. Li, J. Mol. Model. 18, 275 (2012)

    Article  Google Scholar 

  31. X.X. Jin, J.G. Du, G. Jiang, X. Luo, X.W. Wang, Eur. Phys. J. D 64, 323 (2011)

    Article  ADS  Google Scholar 

  32. J.P. Foster, F. Weinhold, J. Am. Chem. Soc. 102, 7211 (1980)

    Article  Google Scholar 

  33. A.E. Reed, L.A. Curtiss, F. Weinhold, Chem. Rev. 88, 899 (1988)

    Article  Google Scholar 

  34. A.E. Reed, R.B. Weinstock, F. Weinhold, J. Chem. Phys. 83, 735 (1985)

    Article  ADS  Google Scholar 

  35. T. Lu, F.W. Chen, J. Mol. Graph. Model. 38, 314 (2012)

    Article  Google Scholar 

  36. T. Lu, F.W. Chen, J. Comput. Chem. 33, 580 (2012)

    Article  Google Scholar 

  37. A.D. Becke, K.E. Edgecombe, J. Chem. Phys. 92, 5397 (1990)

    Article  ADS  Google Scholar 

  38. L.P. Ding, X.Y. Kuang, P. Shao, M.M. Zhong, Dalton Trans. 42, 8644 (2013)

    Article  Google Scholar 

  39. P. Politzer, D.G. Truhlar, in Chemical Applications of Atomic and Molecular Electrostatic Potentials (Plenum Press, New York, 1981), pp. 225–231

  40. R.F.W. Bader, in Atoms in Molecules – A Quantum Theory (Oxford University Press, Oxford, 1990), pp. 168–173

  41. J.Q. Wen, Z.Y. Jiang, Y.Q. Hou, J.Q. Li, S.Y. Chu, J. Mol. Struct. (Theochem) 949, 91 (2010)

    Article  Google Scholar 

  42. H.Q. Wang, X.Y. Kuang, H.F. Li, Phys. Chem. Chem. Phys. 12, 5156 (2010)

    Article  Google Scholar 

  43. Y. Liu, G.L. Li, A.M. Gao, H.Y. Chen, D. Finlow, Q.S. Li, Eur. Phys. J. D 64, 27 (2011)

    Article  ADS  Google Scholar 

  44. Y.R. Zhao, X.Y. Kuang, B.B. Zheng, Y.F. Li, S.J. Wang, J. Phys. Chem. A 115, 569 (2011)

    Article  Google Scholar 

  45. X.B. Li, H.Y. Wang, X.D. Yang, Z.H. Zhu, J. Chem. Phys. 126, 084505 (2007)

    Article  ADS  Google Scholar 

  46. P. Karamanis, D. Xenides, J. Leszczynski, J. Chem. Phys. 129, 094708 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Lu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., He, C.Z., Zhou, P.P. et al. Theoretical study of the structures, stabilities, and electronic properties of neutral and anionic Ca2Si λn (n = 1–8, λ = 0, +1) clusters. Eur. Phys. J. D 68, 105 (2014). https://doi.org/10.1140/epjd/e2014-40814-3

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2014-40814-3

Keywords

Navigation