Skip to main content
Log in

The geometric, energetic, and electronic properties of charged phosphorus-doped silicon clusters, PSi n +/PSi n (n = 1–8)

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Charged phosphorus-doped small silicon clusters, PSi n +/PSi n (n = 1−8), have been investigated using the B3LYP/6-311+G* level Kohn–Sham density functional theory (KS-DFT) method. For comparison, the geometries of neutral PSi n clusters were also optimized at the same level, though most of them have been previously reported. According to our results, cationic PSi n + clusters have ground state structures similar to those of pure silicon clusters Si n+1, with the exception of n = 5. For anionic PSi n , most of the lowest-energy structures are in accord with Wade’s 2N+2 rule for closed polyhedra: PSi4 , PSi5 , PSi6 , and PSi8 , respectively, favor the trigonal bipyramid, tetragonal bipyramid, pentagonal bipyramid, and tricapped trigonal prism (TTP) structures, corresponding to Wade’s 2N+2 rule with N = 5, 6, 7, and 9. The structures tend to contract when the cationic species is reduced initially to the neutral species and subsequently to the anionic species, implying a strengthening interaction between atoms within the clusters on one and two electron reductions of the cationic species to the neutral and anionic species, respectively. The relative order of stability of the PSi n +/PSi n isomers differs from that of the PSi n isomers. Cluster stability was also analyzed by adiabatic ionization potentials (AIP), adiabatic electron affinities (AEA), binding energies (BE), second-order energy differences (∆2E), and HOMO-LUMO gap values. The results indicate that PSi4 and PSi7 clusters are more stable than their neighboring anionic clusters and would be potential species for further mass spectrometric measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bloomfield LA, Freeman RR, Brown WL (1985) Phys Rev Lett 54:2246–2249

    Article  CAS  Google Scholar 

  2. Jarrold MF (1991) Science 252: 1085–1092. http://www.jstor.org/stable/2876284

    Google Scholar 

  3. Pouchan C, Begue D, Zhang DY (2004) J Chem Phys 121:4628–4634

    Article  CAS  Google Scholar 

  4. Ho KM, Shvartsburg AA, Pan B, Lu ZY, Wang CZ, Wacker JG, Fye J, Jarrold MF (1998) Nature 392:582–584

    Article  CAS  Google Scholar 

  5. Hagelberg F, Leszczynski J, Murashov V (1998) J Mol Struct Theochem 454:209–216

    Article  CAS  Google Scholar 

  6. Rata I, Shvartsburg AA, Horoi M, Frauenheim T, Siu KWM, Jackson KA (2000) Phys Rev Lett 85:546–549

    Article  CAS  Google Scholar 

  7. Kanayama T (1994) Jpn J Appl Phys 33:1792–1795

    Article  Google Scholar 

  8. Kanayama T, Murakami H (1997) J Vac Sci Technol B 15:2882–2886

    Article  CAS  Google Scholar 

  9. Guo P, Zhao YR, Wang F, Jiang B, Han JG, Wang GH (2004) J Chem Phys 121:12265–12275

    Article  CAS  Google Scholar 

  10. Beck SM (1989) J Chem Phys 90:6306–6312

    Article  CAS  Google Scholar 

  11. Hiura H, Miyazaki T, Kanayama T (2001) Phys Rev Lett 86:1733–1736

    Article  CAS  Google Scholar 

  12. Kumar V, Kawazoe Y (2001) Phys Rev Lett 87:045503. doi:10.1103/PhysRevLett.87.045503

    Article  CAS  Google Scholar 

  13. Kumar V, Kawazoe Y (2002) Phys Rev B 65:073404. doi:10.1103/PhysRevB.65.073404

    Article  Google Scholar 

  14. Xiao CY, Hagelberg F Jr (2002) Phys Rev B 66:075425. doi:10.1103/PhysRevB.66.075425

    Article  Google Scholar 

  15. Li M, Zhao JJ, Wang JG, Wang BL, Lu QL, Wang GH (2006) Phys Rev B 73:125439. doi:10.1103/PhysRevB.73.125439

    Article  Google Scholar 

  16. Li JR, Wang GH, Yao CH, Mu YW, Wan JG, Han M (2009) J Chem Phys 130:164514. doi:10.1063/1.3123805

    Article  Google Scholar 

  17. Sen P, Mitas L (2003) Phys Rev B 68:155404. doi:10.1103/PhysRevB.68.155404

    Article  Google Scholar 

  18. Koyasu K, Atobe J, Mitsui M, Nakajima A (2007) J Phys Chem A 111:42–49

    Article  CAS  Google Scholar 

  19. Kishi R, Iwata S, Nakajima A, Kaya K (1997) J Chem Phys 107:3056–3070

    Article  CAS  Google Scholar 

  20. Wei S, Barnett RN, Landman U (1997) Phys Rev. B 55:7935–7944

    Article  CAS  Google Scholar 

  21. Sporea C, Rabilloud F, Allouche AR, Frecon M (2006) J Phys Chem A 110:1046–1051

    Article  CAS  Google Scholar 

  22. Sporea C, Rabilloud F, Cosson X, Allouche AR, Frecon M (2006) J Phys Chem A 110:6032–6038

    Article  CAS  Google Scholar 

  23. Lin LH, Yang JC, Ning HM, Hao DS, Fan HW (2008) J Mol Struct Theochem 851:197–206

    Article  CAS  Google Scholar 

  24. Hao DS, Liu JR, Wu WG, Yang JC (2009) Theor Chem Acc 124:431–437

    Article  CAS  Google Scholar 

  25. Majumder C, Kulshreshtha SK (2004) Phys Rev B 69:115432. doi:10.1103/PhysRevB.69.115432

    Article  Google Scholar 

  26. Nigam S, Majumder C, Kulshreshtha SK (2004) J Chem Phys 121:7756–7763

    Article  CAS  Google Scholar 

  27. Li BX, Wang GY, Ye MY, Yang GC, Yao CH (2007) J Mol Struct Theochem 820:128–140

    Article  CAS  Google Scholar 

  28. Fang HW, Yang JC, Lu W, Ning HM, Zhang QC (2010) J Phys Chem A 114:1218–1223

    Article  Google Scholar 

  29. Chu QY, Li BX, Yu J (2007) J Mol Struct Theochem 806:67–76

    Article  CAS  Google Scholar 

  30. Jackson K, Jungnickel G, Frauenheim T (1998) Chem Phys Lett 292:235–242

    Article  CAS  Google Scholar 

  31. Li BX, Wang GY, Ding WF, Ren XJ, Ye JZ (2009) Phys B 404:1679–1685

    Article  CAS  Google Scholar 

  32. Jungnickel G, Frauenheim T, Jackson KA (2000) J Chem Phys 112:1295–1305

    Article  CAS  Google Scholar 

  33. Nigam S, Majumder C, Kulshreshtha SK (2006) J Chem Phys 125:074303

    Article  Google Scholar 

  34. Zdetsis AD (2001) Phys Rev A 64:023202

    Article  Google Scholar 

  35. Zhao CY, Balasubramanian K (2002) J Chem Phys 116:3690–3799

    Article  CAS  Google Scholar 

  36. Zdetsis AD (2007) J Chem Phys 127:014314. doi:10.1063/1.2746030

    Article  Google Scholar 

  37. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery Jr. JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R; Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA Gaussian 03, Revision D.01, Gaussian, Inc., Wallingford, CT, 2003

  38. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98:11623–11627

    Article  CAS  Google Scholar 

  39. Becke D (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  40. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  41. Guo LJ, Liu X, Zhao GF, Luo YH (2007) J Chem Phys 126:234704. doi:10.1063/1.2743412

    Article  Google Scholar 

  42. Han JG, Zhao RN, Duan YH (2007) J Phys Chem A 111:2148–2155

    Article  CAS  Google Scholar 

  43. Lan YZ, Feng YL (2009) Phys Rev A 79:033201. doi:10.1103/PhysRevA.79.033201

    Article  Google Scholar 

  44. Ngan VT, Gruene P, Claes P, Janssens E, Fielicke A, Nguyen MT, Lievens P (2010) J Am Chem Soc 132:15589–15602

    Article  CAS  Google Scholar 

  45. McLean AD, Chandler GS (1980) J Chem Phys 72:5639–5648

    Article  CAS  Google Scholar 

  46. Frisch MJ, Pople JA J, Binkley S (1984) J Chem Phys 80:3265–3269

    Article  CAS  Google Scholar 

  47. Johnson BG, Frisch MJ (1993) Chem Phys Lett 216:133–140. doi:10.1016/0009-2614(93)E1238-C

    Article  CAS  Google Scholar 

  48. Stratmann RE, Burant JC, Scuseria GE, Frisch MJ (1997) J Chem Phys 106:10175–10183. doi:10.1063/1.474047

    Article  CAS  Google Scholar 

  49. Kasdan A, Herbst E, Lineberger WC (1975) J Chem Phys 62:541–548

    Article  CAS  Google Scholar 

  50. Moore CE (1970) Natl Stand Ref Data Ser (U.S. Natl. Bur. Stand.) 34:1–44

    Google Scholar 

  51. Bennett SL, Margrave JL, Franklin JL (1974) J Chem Phys 61:1647–1651

    Article  CAS  Google Scholar 

  52. Scheer M, Bilodeau RC, Brodie CA, Haugen HK (1998) Phys Rev A 58:2844–2856

    Article  CAS  Google Scholar 

  53. Arnold CC, Kitsopoulos TN, Neumark DM (1993) J Chem Phys 99:766–768

    Article  CAS  Google Scholar 

  54. Liu Z, Davies PB (1996) J Chem Phys 105:3443–3449

    Article  CAS  Google Scholar 

  55. Guillaume M, Champagne B, Bégué D, Pouchan C (2009) J Chem Phys 130:134715-1-7

    Article  Google Scholar 

  56. Truhlar DG (1993) J Chem Phys 98:2491

    Article  CAS  Google Scholar 

  57. Zhao Y, Truhlar DG (2006) J Chem Theory Comput 2:1009–1018

    Article  CAS  Google Scholar 

  58. Zhao Y, Truhlar DG (2006) J Phys Chem A 110:5121–5129

    Article  CAS  Google Scholar 

  59. Zhao Y, Truhlar DG (2008) Acc Chem Res 41:157–167

    Article  CAS  Google Scholar 

  60. Zhao Y, Truhlar DG (2007) J Am Chem Soc 129:8440–8442

    Article  CAS  Google Scholar 

  61. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhasis C (1992) Phys Rev B 46:6671–6687

    Article  CAS  Google Scholar 

  62. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  63. Perdew JP, Burke K, Wang Y (1996) Phys Rev B 54:533–539

    Article  Google Scholar 

  64. Filatov M, Cremer D (2005) J Chem Phys 123:124101-1-7

    Article  Google Scholar 

  65. Bartlett RJ, Lotrich VF, Schweigert IV (2005) J Chem Phys 123:062205-1-21

    Article  Google Scholar 

  66. Bartlett RJ, Schweigert IV, Lotrich VF (2006) J Mol Struct Theochem 771:1–8

    Article  CAS  Google Scholar 

  67. Yanai T, Tew DP, Handy NC (2004) Chem Phys Lett 393:51–57

    Article  CAS  Google Scholar 

  68. Peach MJG, Helgaker T, Sałek P, Keal TW, Lutnæs OB, Tozer DJ, Handy NC (2006) Phys Chem Chem Phys 8:558–562. doi:10.1039/b511865d

    Article  CAS  Google Scholar 

  69. Peach MJG, Cohen AJ, Tozer DJ (2006) Phys Chem Chem Phys 8:4543–4549

    Article  CAS  Google Scholar 

  70. Jakubek ZJ, Nakhate SG, Simard B (2002) J Chem Phys 116:6513–6520

    Article  CAS  Google Scholar 

  71. Wade K (1971) J Chem Soc D 792–793. doi:10.1039/C29710000792

  72. Wade K (1976) Adv Inorg Chem 18:1–66. doi:10.1016/S0065-2792(08)60027-8

    Article  CAS  Google Scholar 

  73. Peng C, Schlegel HB (1993) Isr J Chem 33:449–454

    CAS  Google Scholar 

  74. Peng C, Ayala PY, Schlegel HB, Frisch MJ (1996) J Comp Chem 17:49–56

    Article  CAS  Google Scholar 

  75. Gonzalez C, Schlegel HB (1989) J Chem Phys 90:2154–2161

    Article  CAS  Google Scholar 

  76. Gonzalez C, Schlegel HB (1990) J Phys Chem 94:5523–5527

    Article  CAS  Google Scholar 

  77. Yang JC, Xu WG, Xiao WS (2005) J Mol Struct Theochem 719:89–102

    Article  CAS  Google Scholar 

  78. Huang RB, Li HD, Lin ZY, Yang SH (1995) J Phys Chem 99:1418–1423

    Article  CAS  Google Scholar 

  79. Parr RG, Yang W (1989) Density Functional Theory of Atoms and Molecules. New York, Oxford University Press

    Google Scholar 

  80. Baerends EJ, Gritsenko OV (1997) J Phys Chem A 101:5383–5403

    Article  CAS  Google Scholar 

  81. Stowasser R, Hoffman R (1999) J Am Chem Soc 121:3414–3420

    Article  CAS  Google Scholar 

  82. Tozer DJ, Proft FD (2005) J Phys Chem A 109:8923–8929

    Article  CAS  Google Scholar 

  83. Zhang G, Musgrave CB (2007) J Phys Chem A 111:1554–1561

    Article  CAS  Google Scholar 

  84. Kleinman L (1997) Phys Rev B 56:12042–12049

    Article  CAS  Google Scholar 

  85. Kleinman L (1997) Phys Rev B 56:16029–16030

    Article  CAS  Google Scholar 

  86. Wang Z, Day PN, Pachter R (1998) J Chem Phys 108:2504–2510

    Article  CAS  Google Scholar 

  87. Mitsui M, Ohshima Y (2000) J Phys Chem A 104:8638–8648

    Article  CAS  Google Scholar 

  88. Hutchison GR, Ratner MA, Marks TJ (2002) J Phys Chem A 106:10596–10605

    Article  CAS  Google Scholar 

  89. Vargas R, Garza J, Cedillo A (2005) J Phys Chem A 109:8880–8892

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the 973 program (2009CB226109) in China and Guangdong provincial natural science foundation (10151063101000041) of China. Dr. David E. Finlow provided a critical reading of the manuscript, plus assistance with the English. Specially thank the last reviewer for his/her series of worthwhile suggestions that make our work have an improvement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyu Chen.

Additional information

Dedicated to Professor Akira Imamura on the occasion of his 77th birthday and published as part of the Imamura Festschrift Issue.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 538 kb)

Supplementary material 2 (PDF 424 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, Y., Li, G., Gao, A. et al. The geometric, energetic, and electronic properties of charged phosphorus-doped silicon clusters, PSi n +/PSi n (n = 1–8). Theor Chem Acc 130, 1009–1022 (2011). https://doi.org/10.1007/s00214-011-0947-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-011-0947-3

Keywords

Navigation