Skip to main content
Log in

Reexamination of structures, stabilities, and electronic properties of holmium-doped silicon clusters HoSi n (n = 12–20)

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The total energies, growth patterns, equilibrium geometries, relative stabilities, hardnesses, intramolecular charge transfer, and magnetic moments of HoSi n (n = 12–20) clusters have been reexamined theoretically using two different density functional schemes in combination with relativistic small-core Stuttgart effective core potentials (ECP28MWB) for the Ho atoms. The results show that when n = 12–15, the most stable structures are predicted to be exohedral frameworks with a quartet ground state, but when n = 16–20, they are predicted to be endohedral frameworks with a sextuplet ground state. These trend in stability across the clusters (gauged from their dissociation energies) was found to be approximately the same regardless of the DFT scheme used in the calculations, with HoSi13, HoSi16, HoSi18, and HoSi20 calculated to be more stable than the other clusters. The results obtained for cluster hardness indicated that doping the Ho atom into Si13 and Si16 leads to the most stable HoSi n clusters, while doping Ho into the other Si n clusters increases the photochemical sensitivity of the cluster. Analyses of intracluster charge transfer and magnetic moments revealed that charge always shifts from the Ho atom to the Si n cluster during the creation of exohedral HoSi n (n = 12–15) structures. However, the direction of charge transfer is reversed during the creation of endohedral HoSi n (n = 16–20) structures, which implies that Ho acts as an electron acceptor when it is encapsulated in the Si n cage. Furthermore, when the most stable exohedral HoSi n (n = 12–15) structures are generated, the 4f electrons of Ho are virtually unchanged and barely participate in intracluster bonding. However, in the most stable endohedral HoSi n (n = 16–20) frameworks, a 4f electron does participate in bonding. It does this by transferring to the 5d orbital, which hybridizes with the 6s and 6p orbitals and then interacts with Si valence sp orbitals. Meanwhile, the total magnetic moments of the HoSi n (n = 16–20) clusters are considerably higher than those of HoSi n (n = 12–15). Interestingly, the endohedral HoSi16 and HoSi20 clusters can be viewed as the most suitable building blocks for novel high-density magnetic storage nanomaterials and for novel optical and optoelectronic photosensitive nanomaterials, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Raghavachari K (1986) J Chem Phys 84:5672–5686

    Article  CAS  Google Scholar 

  2. Li BX, Cao PL, Zhan SC (2003) Phys Lett A 316:252–260

    Article  CAS  Google Scholar 

  3. Vasiliev I, Öğüt S, Chelikowsky JR (1997) Phys Rev Lett 78:4805–4808

    Article  CAS  Google Scholar 

  4. Grossman JC, Mitáš L (1995) Phys Rev Lett 74:1323–1326

    Article  CAS  Google Scholar 

  5. Zhu X, Zeng XC (2003) J Chem Phys 118:3558–3570

    Article  CAS  Google Scholar 

  6. Zhu X, Zeng XC, Lei YA, Pan B (2004) J Chem Phys 120:8985–8995

    Article  CAS  Google Scholar 

  7. Yoo S, Zeng XC (2005) J Chem Phys 123:164303-1–164303-6

    Article  Google Scholar 

  8. Yoo S, Zeng XC (2006) J Chem Phys 124:054304-1–054304-6

    Google Scholar 

  9. Nigam S, Majumder C, Kulshreshtha SK (2006) J Chem Phys 125:074303-1–074303-11

  10. Li S, Zee RJV, Weltner W Jr (1994) J Chem Phys 100:7079–7086

    Article  CAS  Google Scholar 

  11. Xu CS, Taylor TR, Burton GR, Neumark DM (1998) J Chem Phys 108:1395–1406

    Article  CAS  Google Scholar 

  12. Ohara M, Koyasu K, Nakajima A, Kaya K (2003) Chem Phys Lett 371:490–497

    Article  CAS  Google Scholar 

  13. Honea EC, Ogura A, Peale DR, Félix C, Murray CA, Raghavachari K, Sprenger WO, Jarrold MF, Brown WL (1999) J Chem Phys 110:12161–12171

    Article  CAS  Google Scholar 

  14. Li S, Zee RJV, Weltner W Jr, Raghavachari K (1995) Chem Phys Lett 243:275–280

    Article  CAS  Google Scholar 

  15. Koyasu K, Atobe J, Furuse S, Nakajima A (2008) J Chem Phys 129:214301-1–214301-7

    Article  Google Scholar 

  16. Grubisic A, Ko YJ, Wang H, Bowen KH (2009) J Am Chem Soc 131:10783–10790

    Article  CAS  Google Scholar 

  17. Li J, Wang G, Yao C, Mu Y, Wan J, Han M (2009) J Chem Phys 130:164514-1–164514-9

    Google Scholar 

  18. Zhao G, Sun J, Gu Y, Wang Y (2009) J Chem Phys 131:114312-1–114312-7

    Google Scholar 

  19. Peng Q, Shen J (2008) J Chem Phys 128:084711-1–084711-11

    Article  Google Scholar 

  20. Liu T, Zhao G, Wang Y (2011) Phys Lett A 375:1120–1127

    Article  CAS  Google Scholar 

  21. Dhaka K, Bandyopadhyay D (2015) RSC Adv 5:83004–83012

    Article  CAS  Google Scholar 

  22. Li Y, Tam NM, Claes P, Woodham AP, Lyon JT, Ngan VT, Nguyen MT, Lievens P, Fielicke A, Janssens E (2014) J Chem Phys A 118:8198–8203

    Article  CAS  Google Scholar 

  23. Kenyon AJ (2005) Semicond Sci Technol 20:R65–R84

    Article  CAS  Google Scholar 

  24. Ohara M, Miyajima K, Pramann A, Nakajima A, Kaya K (2002) J Chem Phys A 106:3702–3705

    Article  CAS  Google Scholar 

  25. Yang JC, Wang J, Hao YR (2015) Theor Chem Accounts 134:81-1–81-11

    Google Scholar 

  26. Xie XH, Hao DS, Liu YM, Yang JC (2015) Comput Theor Chem 1074:1–8

    Article  CAS  Google Scholar 

  27. Xie XH, Hao DS, Yang JC (2015) Chem Phys 461:11–19

    Article  CAS  Google Scholar 

  28. Li CG, Pan LJ, Shao P, Ding LP, Feng HT, Luo DB, Liu B (2015) Theor Chem Accounts 134:34-1–34-11

    Google Scholar 

  29. Wang HQ, Li HF (2014) RSC Adv 4:29782–29793

    Article  CAS  Google Scholar 

  30. Zhao RN, Han JG, Bai JT, Sheng LS (2010) Chem Phys 378:82–87

    Article  CAS  Google Scholar 

  31. Zhao RN, Han JG, Bai JT, Liu FY, Sheng LS (2010) Chem Phys 372:89–95

    Article  CAS  Google Scholar 

  32. Zhao RN, Ren ZY, Guo P, Bai JT, Zhang CH, Han JG (2006) J Phys Chem A 110(11):4071–4079

    Article  CAS  Google Scholar 

  33. Cao TT, Zhao LX, Feng XJ, Lei YM, Luo YH (2009) J Mol Struct 895:148–155

    Article  CAS  Google Scholar 

  34. Cao TT, Feng XJ, Zhao LX, Liang X, Lei YM, Luo YH (2008) Eur Phys J D 49:343–351

    Article  CAS  Google Scholar 

  35. Kumar V, Singh AK, Kawazoe Y (2006) Phys Rev B 74:125411-1–125411-5

    Google Scholar 

  36. Wang J, Liu Y, Li YC (2010) Phys Chem Chem Phys 12:11428–11431

    Article  CAS  Google Scholar 

  37. Liu TG, Zhang WQ, Li YL (2014) Front Phys 9:210–218

    Article  CAS  Google Scholar 

  38. Zhao RN, Han JG (2014) RSC Adv 4:64410–64418

    Article  CAS  Google Scholar 

  39. Adamo C, Barone V (1999) J Chem Phys 110:6158–6170

    Article  CAS  Google Scholar 

  40. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  41. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  42. Woon DE, Dunning TH Jr (1993) J Chem Phys 98:1358–1371

    Article  CAS  Google Scholar 

  43. Cao X, Dolg M (2002) J Mol Struct THEOCHEM 581:139–147

    Article  CAS  Google Scholar 

  44. Frisch MJ, Trucks GW, Schlegel HB et al (2010) Gaussian 09, revision C.01. Gaussian Inc., Wallingford

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (grant no. 21263010), by the Program for Innovative Research Team in Universities of the Inner Mongolia Autonomous Region (grant no. NMGIRT-A1603), and by the Inner Mongolia Natural Science Foundation (grant no. 2015MS0216).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jucai Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, L., Yang, J. & Liu, Y. Reexamination of structures, stabilities, and electronic properties of holmium-doped silicon clusters HoSi n (n = 12–20). J Mol Model 22, 193 (2016). https://doi.org/10.1007/s00894-016-3058-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-016-3058-1

Keywords

Navigation