1 Introduction

The non-leptonic decays of the lightest charmed baryon \(\Lambda _c\) play an important role in the study of strong and weak interactions [1,2,3,4,5,6]. In the last decades, lots of the information about the \(\Lambda _c\) decays has been accumulated [7,8,9,10,11], which provides a good platform to investigate the possible final state interference effects where some resonances can be dynamically generated [12,13,14,15,16,17].

Recently, the BESIII Collaboration has reported the branching fractions of the \(\Lambda _c\rightarrow p K^+K^-, \,p\pi ^+\pi ^-\),

$$\begin{aligned} \frac{{\mathcal {B}}(\Lambda _c \rightarrow p \phi )}{{\mathcal {B}}(\Lambda _c \rightarrow p K^-\pi ^+)}= & {} (1.81\pm 0.33\pm 0.13)\%, \end{aligned}$$
(1)
$$\begin{aligned} \frac{{\mathcal {B}}(\Lambda _c \rightarrow p K^+K^-)_{\mathrm{non}-\phi }}{{\mathcal {B}}(\Lambda _c \rightarrow p K^-\pi ^+)}= & {} (9.36\pm 2.22\pm 0.71)\%, \end{aligned}$$
(2)
$$\begin{aligned} \frac{{\mathcal {B}}(\Lambda _c \rightarrow p \pi ^+\pi ^-)}{{\mathcal {B}}(\Lambda _c \rightarrow p K^-\pi ^+)}= & {} (6.70\pm 0.48\pm 0.25)\%, \end{aligned}$$
(3)

and also measured the \(\pi ^+\pi ^-\) and \(K^+K^-\) invariant mass distributions, respectively [18], where one can find a broad bump around 500 MeV for the scalar resonance \(f_0(500)\) and a narrow peak around 980 MeV for the scalar resonance \(f_0(980)\) in the \(\pi ^+\pi ^-\) invariant mass distribution, in addition to the peak for the \(\rho ^0\) meson. Later, the LHCb Collaboration has also reported these ratios using the proton-proton collision data [11],

$$\begin{aligned} \frac{{\mathcal {B}}(\Lambda _c \rightarrow p K^+K^-)}{{\mathcal {B}}(\Lambda _c \rightarrow p K^-\pi ^+)}= & {} (1.70\pm 0.03\pm 0.03)\%, \end{aligned}$$
(4)
$$\begin{aligned} \frac{{\mathcal {B}}(\Lambda _c \rightarrow p \pi ^+\pi ^-)}{{\mathcal {B}}(\Lambda _c \rightarrow p K^-\pi ^+)}= & {} (7.44\pm 0.08\pm 0.18)\%. \end{aligned}$$
(5)

Before the BESIII and LHCb results, the above two decay modes have also been observed by the NA32 [19], E687 [20], CLEO [21], and Belle Collaborations [7].

Within the chiral unitary approach, the scalar resonances \(f_0(500)\), \(f_0(980)\), \(a_0(980)\), and \(K^*_0(700)\) [known as \(\kappa (800)\)] appear as composite states of meson-meson, automatically dynamically generated by the interaction of pseudoscalar-pseudoscalar where the kernel for the Bethe-Salpter equation is taken from the chiral Lagrangians [22,23,24,25,26,27]. The productions of \(f_0(500)\), \(f_0(980)\), and \(a_0(980)\) have been recently studied with the chiral unitary approach and the final state interactions in the decays of the \(D^0\) [28], \(D^+_s\) [29], \({\bar{B}}\) and \({\bar{B}}_s\) [30,31,32,33], \(\chi _{c1}\) [34, 35], \(\tau ^-\) [36], and \(J/\psi \) [37].

In this work, we perform the calculations for the decays \(\Lambda _c \rightarrow p K^+K^-\) and \(\Lambda _c \rightarrow p \pi ^+\pi ^-\) taking into account the meson-meson interaction in coupled channels and also the contributions from the intermediate vector mesons \(\phi \) and \(\rho ^0\). The final states interaction of the pseudoscalar-pseudoscalar in the decay \(\Lambda _c \rightarrow p \pi ^+\pi ^-\) can propagate in s-wave, which will generate the \(f_0(500)\) and \(f_0(980)\) resonances, and for the decay \(\Lambda _c \rightarrow p K^+K^-\), the \(f_0(980)\) and \(a_0(980)\) resonances dynamically generated from the s-wave final state interaction will result in an enhancement structure close to the \(K^+K^-\) threshold.

The paper is organized as follows. In Sect. 2, we present the formalism and ingredients for the decays of the \(\Lambda _c \rightarrow p K^+ K^-\) and \(p\pi ^+ \pi ^-\) decays. Numerical results for the \(K^+K^-\) and \(\pi ^+ \pi ^-\) invariant mass distributions and discussions are given in Sect. 3, followed by a short summary in the last section.

2 Formalism

In this section, we will present the formalism for the decays \(\Lambda _c \rightarrow p K^+ K^-\) and \(\Lambda _c \rightarrow p \pi ^+ \pi ^-\). For the three-body decays of \(\Lambda _c\), the s-wave final state interactions of \(\pi ^+\pi ^-\) or \(K^+K^-\) will dynamically generate the scalar resonances \(f_0(500)\), \(f_0(980)\), and \(a_0(980)\). In addition, the three-body decays can happen via the intermediate vector mesons \(\rho ^0\) or \(\phi \). We first introduce the formalism for the mechanism of final state interactions of \(\pi ^+\pi ^-\) or \(K^+K^-\) in s-wave in Sect. 2.1, then we show the details for the mechanism of the \(\Lambda _c\) decays via the intermediate vector mesons \(\rho ^0\) and \(\phi \) in Sect 2.2.

2.1 \(s\)-wave final state interactions of \(K^+ K^-\) and \(\pi ^+\pi ^-\)

Fig. 1
figure 1

The diagrams of the decays \(\Lambda _c\rightarrow pK^+K^-\) and \(p\pi ^+\pi ^-\), a the internal W emission for \(\Lambda _c \rightarrow p K^+K^-\), b the internal W emission for \(\Lambda _c \rightarrow p \pi ^+\pi ^-\), c the external W emission for \(\Lambda _c \rightarrow p K^+K^-\), and d the external W emission for \(\Lambda _c \rightarrow p \pi ^+\pi ^-\)

Following Refs. [38,39,40,41], we take the decay mechanism of the internal W emission mechanism for the decays \(\Lambda _c \rightarrow p K^+K^-\) and \(\Lambda _c \rightarrow p \pi ^+ \pi ^-\) as depicted in Fig. 1a, b. For the weak decays of \(\Lambda _c\), the c quark decays into a \(W^+\) boson and an s (or d) quark, then the \(W^+\) boson decays into an \({\bar{s}}u\) (or \({\bar{d}}u\)) pair. In order to give rise to the final states of \(p K^+K^-\) (or \(p \pi ^+\pi ^-\)), the \(s{\bar{s}}\) (or \(d{\bar{d}}\)) quark pair need to hadronize together with the \({\bar{q}}q\) (\(={\bar{u}}u+{\bar{d}}d+{\bar{s}}s\)) produced in the vacuum, which are given by,

$$\begin{aligned} H^{(a)}= & {} V^{(a)} s({\bar{u}}u+{\bar{d}}d \nonumber \\&+{\bar{s}}s){\bar{s}} u\frac{1}{\sqrt{2}}(ud-du) = V^{(a)} \left( M^2\right) _{33}p, \end{aligned}$$
(6)
$$\begin{aligned} H^{(b)}= & {} V^{(b)} d({\bar{u}}u+{\bar{d}}d \nonumber \\&+{\bar{s}}s){\bar{d}} u\frac{1}{\sqrt{2}}(ud-du) = V^{(b)}\left( M^2\right) _{22}p, \end{aligned}$$
(7)

where \(V^{(a)}\) and \(V^{(b)}\) are the weak interaction strengths. We use \(\left| p\right\rangle =\frac{1}{\sqrt{2}}\left| u(ud-du)\right\rangle \), and \(\left| \Lambda _c\right\rangle =\frac{1}{\sqrt{2}}\left| c(ud-du)\right\rangle \). M is the \(q{\bar{q}}\) matrix,

$$\begin{aligned} M=\left( \begin{array}{ccc} u{\bar{u}} &{} u{\bar{d}} &{} u{\bar{s}}\\ d{\bar{u}} &{} d{\bar{d}} &{} d{\bar{s}} \\ s{\bar{u}} &{} s{\bar{d}} &{} s{\bar{s}} \end{array} \right) . \end{aligned}$$

The matrix M in terms of pseudoscalar mesons can be written as,

$$\begin{aligned} M\Rightarrow P= \left( \begin{array}{ccc} \frac{\pi ^0}{\sqrt{2}} + \frac{\eta }{\sqrt{3}}+\frac{\eta '}{\sqrt{6}}&{} \pi ^+ &{} K^+\\ \pi ^-&{} -\frac{1}{\sqrt{2}}\pi ^0 + \frac{\eta }{\sqrt{3}}+ \frac{\eta '}{\sqrt{6}}&{} K^0\\ K^-&{} {\bar{K}}^0 &{} -\frac{\eta }{\sqrt{3}}+ \frac{2\eta '}{\sqrt{6}} \end{array} \right) . \nonumber \\ \end{aligned}$$
(8)

Then, we have,

$$\begin{aligned} H^{(a)}= & {} V^{(a)} \left( M^2\right) _{33} p \nonumber \\= & {} V_P V_{cs}V_{us} \left( K^-K^+ +K^0{\bar{K}}^0 +\frac{1}{3}\eta \eta \right) p, \end{aligned}$$
(9)
$$\begin{aligned} H^{(b)}= & {} V^{(b)} \left( M^2\right) _{22} p \nonumber \\= & {} V_P V_{cd}V_{ud} \left( \pi ^+\pi ^-+\frac{1}{2}\pi ^0\pi ^0\right. \nonumber \\&\left. +\frac{1}{3}\eta \eta -\frac{2}{\sqrt{6}}\pi ^0\eta +K^0{\bar{K}}^0\right) p, \end{aligned}$$
(10)

where we neglect the \(\eta '\) because of its large mass. \(V_P\) is the strength of the production vertex, and contains all dynamical factors, which is assumed to be same for Fig. 1a, b within the SU(3) flavor symmetry. In the following, we will see that this hypothesis is also reasonable by comparing the predicted ratios of the two body decays of \(\Lambda _c\) with the experimental measurements. In this work we take \(V_{cd}=V_{us}= -0.22534\), \(V_{cs}=V_{ud}=0.97427\) [42].

On the other hand, the decays \(\Lambda _c \rightarrow p K^+ K^-\) and \(\Lambda _c \rightarrow p \pi ^+ \pi ^-\) can also proceed with the color favored external W emission mechanism: (i) the charmed quark turns into \(W^+\) and the s (or d) quark, with the \(K^+\) or \(\pi ^+\) emission from the \(W^+\); (ii) the remaining quarks s (or d) and ud in the \(\Lambda _c\), together with the \(u{\bar{u}}\) pair created from the vacuum, hadronize to the \(K^- p\) (or \(\pi ^- p\)), as depicted in Fig. 1c, d respectively. Thus, we have,

$$\begin{aligned} H^{(c)}= & {} V^{\mathrm{(c)}}(u{\bar{s}})s{\bar{u}}u\frac{1}{\sqrt{2}}(ud-du)=C\times V_P V_{cs}V_{us} K^+K^-p,\nonumber \\ \end{aligned}$$
(11)
$$\begin{aligned} H^{(d)}= & {} V^{\mathrm{(d)}}(u{\bar{d}})d{\bar{u}}u\frac{1}{\sqrt{2}}(ud-du)= C\times V_P V_{cd}V_{ud}\pi ^+\pi ^-p,\nonumber \\ \end{aligned}$$
(12)

where we take the same normalization factor \(V_P\) as Eqs. (9) and (10), the color factor C accounts for the relative weight of the external emission mechanism with respect to the one of the internal emission mechanism [41, 43]. The value of C should be around 3, because the quarks from the W decay in the external emission diagram (for example, the u and \({\bar{s}}\) of Fig. 1c) have three choices of the colors (we take \(N_c=3\)), while the quarks from the W decay in the internal emission diagram (for example, the u and \({\bar{s}}\) of Fig. 1a) have the fixed colors. We will keep this factor in the following formalism, and present our results by varying its value in Sect. 3.

Fig. 2
figure 2

The mechanisms of the decay \(\Lambda _c \rightarrow p K^+K^-\), left) tree diagram, right) the s-wave final state interactions

Fig. 3
figure 3

The mechanisms of the decay \(\Lambda _c \rightarrow p \pi ^+\pi ^-\), left) tree diagram, right) the s-wave final state interactions

After the production of a meson-meson pair, the final state interaction in the s-wave between the mesons takes place, as shown in Figs. 2 and 3 for the decays \(\Lambda _c\rightarrow p K^+K^-\) and \(\Lambda _c\rightarrow p \pi ^+\pi ^-\). Since the isospin of \(\pi ^+\pi ^-\) system is \(I=0\), we will take into account the contributions from all the mechanisms of Fig. 1, except the \(\pi ^0\eta p\) states of Eq. (10) because of the isospin violation, and the amplitude is given by,

$$\begin{aligned}&t^{s-\mathrm{wave}}_{\Lambda _c\rightarrow p\pi ^+\pi ^-}= t^{(a)}_{\Lambda _c\rightarrow p\pi ^+\pi ^-}+t^{(b)}_{\Lambda _c\rightarrow p\pi ^+\pi ^-}\nonumber \\&\qquad +t^{(c)}_{\Lambda _c\rightarrow p\pi ^+\pi ^-}+t^{(d)}_{\Lambda _c\rightarrow p\pi ^+\pi ^-} \nonumber \\&\quad = V_PV_{cs}V_{us} \left[ G_{K^+K^-}t_{K^+K^-\rightarrow \pi ^+\pi ^-}\right. \nonumber \\&\qquad \left. + G_{K^0{\bar{K}}^0}t_{K^0{\bar{K}}^0\rightarrow \pi ^+\pi ^-} +\frac{1}{3}\times 2\times \frac{1}{2} G_{\eta \eta }{\tilde{t}}_{\eta \eta \rightarrow \pi ^+\pi ^-} \right] \nonumber \\&\qquad + V_PV_{cs}V_{us} \left[ 1 +G_{\pi ^+\pi ^-}t_{\pi ^+\pi ^-\rightarrow \pi ^+\pi ^-}\right. \nonumber \\&\qquad \left. + \frac{1}{2}\times 2\times \frac{1}{2} G_{\pi ^0\pi ^0}{\tilde{t}}_{\pi ^0\pi ^0\rightarrow \pi ^+\pi ^-} \right. \nonumber \\&\qquad \left. +\frac{1}{3}\times 2 \times \frac{1}{2} G_{\eta \eta }{\tilde{t}}_{\eta \eta \rightarrow \pi ^+\pi ^-} + G_{K^0{\bar{K}}^0}t_{K^0{\bar{K}}^0\rightarrow \pi ^+\pi ^-} \right] \nonumber \\&\qquad + C\times V_PV_{cs}V_{us} \left[ G_{K^+K^-}t_{K^+K^-\rightarrow \pi ^+\pi ^-}\right] \nonumber \\&\qquad + C\times V_p V_{cs}V_{us} \left[ 1+ G_{\pi ^+\pi ^-}t_{\pi ^+\pi ^-\rightarrow \pi ^+\pi ^-}\right] \nonumber \\&\quad = V_P V_{cs}V_{us} \left[ (1+C) +(1+C) G_{K^+K^-}t_{K^+K^-\rightarrow \pi ^+\pi ^-}\right. \nonumber \\&\qquad \left. + 2 G_{K^0{\bar{K}}^0}t_{K^0{\bar{K}}^0\rightarrow \pi ^+\pi ^-} + (1+C) G_{\pi ^+\pi ^-}t_{\pi ^+\pi ^-\rightarrow \pi ^+\pi ^-} \right. \nonumber \\&\qquad \left. + \frac{1}{2} G_{\pi ^0\pi ^0}{\tilde{t}}_{\pi ^0\pi ^0\rightarrow \pi ^+\pi ^-} +\frac{2}{3}G_{\eta \eta }{\tilde{t}}_{\eta \eta \rightarrow \pi ^+\pi ^-} \right] . \end{aligned}$$
(13)

For the decay \(\Lambda _c\rightarrow p K^+K^-\), the amplitude is given by,

$$\begin{aligned}&t^{s-\mathrm{wave}}_{\Lambda _c\rightarrow pK^+K^-}= t^{(a)}_{\Lambda _c\rightarrow pK^+K^-}\nonumber \\&\qquad + t^{(b)}_{\Lambda _c\rightarrow pK^+K^-}+ t^{(c)}_{\Lambda _c\rightarrow pK^+K^-}+ t^{(d)}_{\Lambda _c\rightarrow pK^+K^-} \nonumber \\&\quad = V_PV_{cs}V_{us}\biggl [1+ G_{K^+K^-}t_{K^+K^-\rightarrow K^+K^-}\nonumber \\&\qquad + G_{K^0{\bar{K}}^0}t_{K^0{\bar{K}}^0\rightarrow K^+K^-}\nonumber \\&\qquad +\frac{1}{3}\times 2\times \frac{1}{2} G_{\eta \eta }{\tilde{t}}_{\eta \eta \rightarrow K^+K^-} \biggr ] \nonumber \\&\qquad + V_P V_{cs}V_{us}\biggl [G_{\pi ^+\pi ^-}t_{\pi ^+\pi ^-\rightarrow K^+K^-}\nonumber \\&\qquad + \frac{1}{2}\times 2\times \frac{1}{2} G_{\pi ^0\pi ^0}{\tilde{t}}_{\pi ^0\pi ^0\rightarrow K^+K^-}\nonumber \\&\qquad +\frac{1}{3}\times 2 \times \frac{1}{2} G_{\eta \eta }{\tilde{t}}_{\eta \eta \rightarrow K^+K^-} \nonumber \\&\qquad - \frac{2}{\sqrt{6}} G_{\pi ^0\eta }t_{\pi ^0\eta \rightarrow K^+K^-} + G_{K^0{\bar{K}}^0}t_{K^0{\bar{K}}^0\rightarrow K^+K^-} \biggr ] \nonumber \\&\qquad + C\times V_P V_{cs}V_{us}\biggl [1+G_{K^+K^-}t_{K^+K^-\rightarrow K^+K^-}\biggr ]\nonumber \\&\qquad + C\times V_p V_{cs}V_{us} \biggl [ G_{\pi ^+\pi ^-}t_{\pi ^+\pi ^-\rightarrow K^+K^-}\biggr ] \nonumber \\&\quad = V_PV_{cs}V_{us} \biggl [ (1+C)+ G_{K^+K^-}t_{K^+K^-\rightarrow K^+K^-}\nonumber \\&\qquad + G_{K^0{\bar{K}}^0}t_{K^0{\bar{K}}^0\rightarrow K^+K^-} + (1+C) G_{\pi ^+\pi ^-}t_{\pi ^+\pi ^-\rightarrow K^+K^-} \nonumber \\&\qquad +\frac{1}{2} G_{\pi ^0\pi ^0}{\tilde{t}}_{\pi ^0\pi ^0\rightarrow K^+K^-} + \frac{2}{3}G_{\eta \eta }{\tilde{t}}_{\eta \eta \rightarrow K^+K^-}\biggr ] \nonumber \\&\qquad + V_PV_{cs}V_{us}\biggl [ C\times G_{K^+K^-}t_{K^+K^-\rightarrow K^+K^-}\nonumber \\&\qquad + G_{K^0{\bar{K}}^0}t_{K^0{\bar{K}}^0\rightarrow K^+K^-} - \frac{2}{\sqrt{6}} G_{\pi ^0\eta }t_{\pi ^0\eta \rightarrow K^+K^-} \biggr ], \end{aligned}$$
(14)

where the first term only contains the contribution from isospin \(I=0\), and the second term has the contributions of \(I=0\) and \(I=1\) from the mechanisms of Fig. 1b, c. It is easily done taking \(G_{K^0{\bar{K}}^0}=G_{K^+K^-}\), and rewriting \(t_{K^+K^-\rightarrow K^+K^-}\) and \(t_{K^0{\bar{K}}^0\rightarrow K^+K^-}\) from the mechanisms of Fig. 1b, c as done in Ref. [32],

$$\begin{aligned}&G_{K^0{\bar{K}}^0}t_{K^0{\bar{K}}^0\rightarrow K^+K^-}+ C\times G_{K^+K^-}t_{K^+K^-\rightarrow K^+K^-} \nonumber \\&\quad = G_{K^0{\bar{K}}^0}\left[ \frac{1+C}{2} \left( t_{K^0{\bar{K}}^0\rightarrow K^+K^-} +t_{K^+K^-\rightarrow K^+K^-} \right) \right. \nonumber \\&\qquad \left. +\frac{1-C}{2} \left( t_{K^0{\bar{K}}^0\rightarrow K^+K^-} -t_{K^+K^-\rightarrow K^+K^-} \right) \right] , \end{aligned}$$
(15)

where the first two terms are in \(I=0\) while the last two terms are in \(I=1\).

Thus, the amplitude of Eq. (14) can be rewritten as,

$$\begin{aligned}&t^{s-\mathrm{wave}}_{\Lambda _c\rightarrow pK^+K^-} = V_P V_{cs}V_{us}\left\{ \left[ (1+C) \right. \right. \nonumber \\&\qquad \left. \left. + \frac{3+C}{2}G_{K^0{\bar{K}}^0} \left( t_{K^0{\bar{K}}^0\rightarrow K^+K^-} +t_{K^+K^-\rightarrow K^+K^-} \right) \right. \right. \nonumber \\&\qquad \left. + (1+C) G_{\pi ^+\pi ^-}t_{\pi ^+\pi ^-\rightarrow K^+K^-}\right. \nonumber \\&\qquad \left. +\frac{1}{2} G_{\pi ^0\pi ^0}{\tilde{t}}_{\pi ^0\pi ^0\rightarrow K^+K^-} +\frac{2}{3}G_{\eta \eta }{\tilde{t}}_{\eta \eta \rightarrow K^+K^-} \right] \nonumber \\&\qquad \left. +\left[ \frac{1-C}{2} G_{K^0{\bar{K}}^0}\left( t_{K^0{\bar{K}}^0\rightarrow K^+K^-} -t_{K^+K^-\rightarrow K^+K^-}\right) \right. \right. \nonumber \\&\qquad \left. \left. - \frac{2}{\sqrt{6}} G_{\pi ^0\eta }t_{\pi ^0\eta \rightarrow K^+K^-} \right] \right\} \nonumber \\&\quad = t^{I=0} + t^{I=1} , \end{aligned}$$
(16)

where the terms \(t^{I=0}\) and \(t^{I=1}\) correspond to the contributions from the \(I=0\) and \(I=1\), respectively.

In Eqs. (13) and (14), we include a factor of 2 from the two way to match the two identical particles of the operators in Eqs. (9) and (10) with the two mesons (\(\pi ^0\pi ^0\) and \(\eta \eta \)) produced, and a factor 1/2 in the intermediate loops involving a pair of identical mesons [30, 32]. The scattering matrix \(t_{i\rightarrow j}\) has been calculated within the chiral unitary approach in Refs. [22, 28, 31, 44, 45], and we take \({\tilde{t}}_{\eta \eta \rightarrow i}=\sqrt{2}t_{\eta \eta \rightarrow i}\), \({\tilde{t}}_{\pi ^0\pi ^0\rightarrow j}=\sqrt{2} t_{\pi ^0\pi ^0\rightarrow j}\) for the two identical particles [44]. \(G_l\) is the loop function for the two mesons propagator in the lth channel, which is given as follows after the integration in \(dq^0\),

$$\begin{aligned}&G_l =i\int \frac{d^4q}{(2\pi )^4}\frac{1}{(p-q)^2-m^2_1+i\epsilon }\frac{1}{q^2-m^2_2+i\epsilon }\nonumber \\&\quad = \int \frac{d^3\mathbf {q}}{(2\pi )^3}\frac{\omega _1+\omega _2}{\omega _1 \omega _2}\frac{1}{(\sqrt{s}+\omega _1+\omega _2)(\sqrt{s}-\omega _1-\omega _2+i\epsilon )},\nonumber \\ \end{aligned}$$
(17)

where \(\sqrt{s}\) is the invariant mass of the meson-meson pair, and the meson energies \(\omega _i=\sqrt{(\mathbf {q}\,)^2+m_i^2}\) (\(i=1,2\)). The integral on \(\mathbf {q}\) in Eq. (17) is performed with a cutoff \(|\mathbf {q}_{\mathrm{max}}|=600\) MeV, as used in Refs. [28, 31, 44]. The transition amplitude \(t_{ij}\) is obtained by solving the Bethe–Salpeter equation in coupled channels,

$$\begin{aligned} T=[1-VG]^{-1}V, \end{aligned}$$
(18)

where five channels \(\pi ^+\pi ^-\) (1), \(\pi ^0\pi ^0\) (2), \(K^+K^-\) (3), \(K^0{\bar{K}}^0\) (4), and \(\eta \eta \) (5) are included for \(I=0\), and three channels \(K^+K^-\) (1), \(K^0{\bar{K}}^0\), (2) and \(\pi ^0\eta \) (3) are included for \(I=1\). The elements of the diagonal matrix G are given by the loop function of Eq. (17), and V is the matrix of the interaction kernel corresponding to the tree level transition amplitudes obtained from phenomenological Lagrangians [22]. The explicit expressions for \(I=0\) can be expressed as [44],

$$\begin{aligned}&V_{\pi ^+\pi ^-\rightarrow \pi ^+\pi ^-}=-\frac{1}{2f^2}s,~~~V_{\pi ^+\pi ^-\rightarrow \pi ^0\pi ^0}\nonumber \\&\quad =-\frac{1}{\sqrt{2}f^2}(s-m^2_\pi ),~~~V_{\pi ^+\pi ^-\rightarrow K^+K^-}=-\frac{1}{4f^2}s, \nonumber \\&\qquad V_{\pi ^+\pi ^-\rightarrow K^0{\bar{K}}^0}=-\frac{1}{4f^2}s,~~~V_{\pi ^+\pi ^-\rightarrow \eta \eta }\nonumber \\&\quad =-\frac{1}{3\sqrt{2}f^2}m^2_\pi ,~~~V_{\pi ^0\pi ^0 \rightarrow \pi ^0\pi ^0}=-\frac{1}{2f^2}m^2_\pi ,\nonumber \\&\qquad V_{\pi ^0\pi ^0 \rightarrow K^+K^-}=-\frac{1}{4\sqrt{2} f^2}s,~~~V_{\pi ^0\pi ^0 \rightarrow K^0{\bar{K}}^0}\nonumber \\&\quad =-\frac{1}{4\sqrt{2} f^2}s,~~~V_{\pi ^0\pi ^0 \rightarrow \eta \eta }=-\frac{1}{6f^2}m^2_\pi , \nonumber \\&\qquad V_{K^+K^- \rightarrow K^+K^-}=-\frac{1}{2f^2}s,~~~V_{K^+K^-\rightarrow K^0{\bar{K}}^0}\nonumber \\&\quad =-\frac{1}{4f^2}s,~~~V_{K^+K^- \rightarrow \eta \eta }\nonumber \\&\quad =-\frac{1}{12\sqrt{2}f^2}(9s-6m^2_\eta -2m^2_\pi ),\nonumber \\&\qquad V_{K^0{\bar{K}}^0 \rightarrow K^0{\bar{K}}^0}=-\frac{1}{2f^2}s,~~~V_{K^0{\bar{K}}^0\rightarrow \eta \eta }\nonumber \\&\quad =-\frac{1}{12\sqrt{2}f^2}(9s-6m^2_\eta -2m^2_\pi ),\nonumber \\&\qquad V_{\eta \eta \rightarrow \eta \eta }=-\frac{1}{18f^2}(16m^2_K-7m^2_\pi ), \end{aligned}$$
(19)

and the ones for \(I=1\) are [28],

$$\begin{aligned}&V_{K^+K^- \rightarrow K^+K^-}=-\frac{1}{2f^2}s,~~~V_{K^+K^-\rightarrow K^0{\bar{K}}^0}=-\frac{1}{4f^2}s,\nonumber \\&\qquad V_{K^+K^-\rightarrow \pi ^0\eta }=\frac{-\sqrt{3}}{12f^2}\left( 3s-\frac{8}{3}m^2_K-\frac{1}{3}m^2_\pi -m^2_\eta \right) ,\nonumber \\&\qquad V_{K^0{\bar{K}}^0-\rightarrow K^0{\bar{K}}^0 }=-\frac{1}{2f^2}s,~~~V_{K^0{\bar{K}}^0-\rightarrow \pi ^0\eta }\nonumber \\&\quad =-V_{K^+K^- \rightarrow \pi ^0\eta },~~~V_{\pi ^0\eta \rightarrow \pi ^0\eta }=-\frac{m^2_\pi }{3f^2}, \end{aligned}$$
(20)

where \(f=f_\pi =93\) MeV is the pion decay constant, and \(m_\pi \), \(m_K\), and \(m_\eta \) are the averaged masses of the pion, kaon, and \(\eta \) mesons, respectively [42].

With the amplitudes of Eqs. (14) and (13), we can write the differential decay width for the decays \(\Lambda _c\rightarrow p K^+K^-\) and \(\Lambda _c\rightarrow p \pi ^+\pi ^-\) in s-wave,

$$\begin{aligned} \frac{d\Gamma ^{s-\mathrm{wave}}}{dM_\mathrm{inv}}=\frac{1}{(2\pi )^3}\frac{p_p {\tilde{k}}}{4M^2_{\Lambda _c}}\left| t^{s-\mathrm{wave}}_{\Lambda _c\rightarrow pK^+K^-,\, p \pi ^+\pi ^-}\right| ^2, \end{aligned}$$
(21)

where \(M_{\mathrm{inv}}\) is the invariant mass of the \(K^+K^-\) or \(\pi ^+\pi ^-\), \(p_p\) is the momentum of the proton in the \(\Lambda _c\) rest frame, and \({\tilde{k}}\) is the momentum of the \(K^+\) (or \(\pi ^+\)) in the rest frame of the \(K^+K^-\) (or \(\pi ^+\pi ^-\)) system,

$$\begin{aligned}&p_p=\frac{\lambda ^{1/2}\left( M^2_{\Lambda _c}, M^2_p, M^2_{\mathrm{inv}} \right) }{2M_{\Lambda _c}},\nonumber \\&\qquad {\tilde{k}} = \frac{\lambda ^{1/2}\left( M^2_{\mathrm{inv}}, m^2_{K^+/\pi ^+}, m^2_{K^-/\pi ^-} \right) }{2M_{\mathrm{inv}}}, \end{aligned}$$
(22)

with the Källen function \(\lambda (x,y,z)=x^2+y^2+z^2-2xy-2yz-2zx\). The masses of the baryons and mesons involved in our calculations are taken from PDG [42].

2.2 \(\Lambda _c\) decays via the intermediate vector mesons \(\phi \) and \(\rho ^0\)

In this section, we will present the formalism for the decays \(\Lambda _c\rightarrow p K^+K^-\) and \(\Lambda _c\rightarrow p \pi ^+\pi ^-\) via the intermediate mesons \(\phi \) and \(\rho ^0\). The quark level diagrams for the two-body decays of \(\Lambda _c\) into a proton and a vector meson are shown in Fig. 4.

Fig. 4
figure 4

The quark level diagrams for the two-body decays of \(\Lambda _c\), a \(\Lambda _c \rightarrow p \rho ^0\), and \(p\omega \), b \(\Lambda _c \rightarrow p \phi \), and c \(\Lambda _c \rightarrow p {\bar{K}}^{*0}\)

At the quark level, the quark components of the vector mesons are,

$$\begin{aligned} \rho ^0= & {} \frac{1}{\sqrt{2}}(u{\bar{u}}-d {\bar{d}}),~~~\phi =s{\bar{s}}, \nonumber \\ \omega= & {} \frac{1}{\sqrt{2}}(u{\bar{u}}+d {\bar{d}}), ~~{\bar{K}}^{*0}= s{\bar{d}}. \end{aligned}$$
(23)

The amplitudes can be written as,

$$\begin{aligned} t_{\Lambda _c\rightarrow p\rho ^0}= & {} -\frac{1}{\sqrt{2}} V'_P V_{cd}V_{ud}, ~~~~~~~~~ t_{\Lambda _c\rightarrow p\phi } = V'_P V_{cs}V_{us}, \end{aligned}$$
(24)
$$\begin{aligned} t_{\Lambda _c\rightarrow p\omega }= & {} \frac{1}{\sqrt{2}} V'_P V_{cd}V_{ud}, ~~~~~~~~~ t_{\Lambda _c\rightarrow p {\bar{K}}^{*0}} = V'_P V_{cs}V_{ud}, \end{aligned}$$
(25)

where \(V'_P\) is a normalization factor for the \(\Lambda _c\) decay into proton and a vector meson. The factor of \(1/\sqrt{2}\) in the above amplitudes comes from the quark component of the \(\rho ^0\) and \(\omega \). With those amplitudes, the decay width for the two-body decay of \(\Lambda _c\) into proton and a vector meson in s-wave is,

$$\begin{aligned} \Gamma _{\Lambda _c\rightarrow p V} = \frac{\lambda ^{1/2}\left( M^2_{\Lambda _c}, m^2_V, M^2_p \right) }{16\pi M^3_{\Lambda _c}} \left| t_{\Lambda _c\rightarrow p V}\right| ^2 , \end{aligned}$$
(26)

where V stands for the vector mesons \(\rho ^0\), \(\phi \), \(\omega \), and \({\bar{K}}^{*0}\).

The \(K^+K^-\) and \(\pi ^+\pi ^-\) invariant mass distributions respectively for the \(\phi \) and \(\rho ^0\) mesons can be obtained by converting the total rate for vector production into a mass distribution as Refs. [30, 46],

$$\begin{aligned} \frac{d\Gamma _{\Lambda _c\rightarrow p \rho ^0, \rho ^0 \rightarrow \pi ^+ \pi ^-}}{dM_{\mathrm{inv}}}= & {} \frac{2m^2_\rho }{\pi } \frac{{{\tilde{\Gamma }}}_\rho {\tilde{\Gamma }}_{\Lambda _c\rightarrow p \rho ^0}}{(M^2_{\mathrm{inv}}-m^2_\rho )^2 + m^2_\rho {{\tilde{\Gamma }}}^2_\rho } , \end{aligned}$$
(27)
$$\begin{aligned} \frac{d\Gamma _{\Lambda _c\rightarrow p \phi , \phi \rightarrow K^+ K^-}}{dM_{\mathrm{inv}}}= & {} \frac{m^2_\phi }{\pi } \frac{{{\tilde{\Gamma }}}_\phi {\tilde{\Gamma }}_{\Lambda _c\rightarrow p \phi }}{(M^2_{\mathrm{inv}}-m^2_\phi )^2 + m^2_\phi {{\tilde{\Gamma }}}^2_\phi } , \end{aligned}$$
(28)

where we have considered that the \(K^+ K^-\) decay accounts for 1/2 of the \(K{\bar{K}}\) decay width of the \(\phi \) meson. Since \(\rho ^0 \rightarrow \pi ^+\pi ^-\) and \(\phi \rightarrow K^+ K^-\) are in p-wave, we take

$$\begin{aligned} {{\tilde{\Gamma }}}_\rho= & {} \Gamma _{\rho ^0} \left( \frac{ \sqrt{M^2_{\mathrm{inv}} - 4m^2_\pi } }{ \sqrt{m^2_\rho - 4m^2_\pi } } \right) ^3, \nonumber \\ {{\tilde{\Gamma }}}_\phi= & {} \Gamma _{\phi } \left( \frac{ \sqrt{M^2_{\mathrm{inv}} - 4m^2_K} }{ \sqrt{m^2_\phi - 4m^2_K} } \right) ^3, \end{aligned}$$
(29)

and

$$\begin{aligned} {{\tilde{\Gamma }}}_{\Lambda _c\rightarrow p V}= & {} \Gamma _{\Lambda _c\rightarrow p V} \frac{\lambda ^{1/2}\left( M^2_{\Lambda _c}, M^2_{\mathrm{inv}}, M^2_{p} \right) }{\lambda ^{1/2}\left( M^2_{\Lambda _c}, m^2_V, M^2_{p} \right) } \frac{m_V}{M_{\mathrm{inv}}}. \end{aligned}$$
(30)

For the processes \(\Lambda _c\rightarrow p K^+K^-\) and \(\Lambda _c\rightarrow p \pi ^+\pi ^-\), the contributions from the vector mesons \(\phi \) and \(\rho ^0\), which respectively decay into \(K^+K^-\) and \(\pi ^+\pi ^-\) in p-wave, should be added to Eq. (21) incoherently.

3 Results and discussion

With Eqs. (24-26), the ratios of the branching fractions of the decays \(\Lambda _c\rightarrow p {\bar{K}}^{*0}\), \(\Lambda _c\rightarrow p \omega \), \(\Lambda _c\rightarrow p \rho ^0\) with respect to the decay \(\Lambda _c\rightarrow p \phi \) can be obtained with Eq. (26),

$$\begin{aligned} R^{\mathrm{th}}_1= & {} \frac{{\mathcal {B}}(\Lambda _c\rightarrow p {\bar{K}}^{*0})}{{\mathcal {B}}(\Lambda _c\rightarrow p \phi )}=\frac{\Gamma _{\Lambda _c\rightarrow p {\bar{K}}^{*0}}}{\Gamma _{\Lambda _c\rightarrow p \phi }} \nonumber \\= & {} \frac{\lambda ^{1/2}\left( M^2_{\Lambda _c}, m^2_{{\bar{K}}^{*0}}, M^2_p \right) \left| t_{\Lambda _c\rightarrow p {\bar{K}}^{*0}}\right| ^2}{\lambda ^{1/2}\left( M^2_{\Lambda _c}, m^2_{\phi }, M^2_p \right) \left| t_{\Lambda _c\rightarrow p \phi }\right| ^2}\nonumber \\= & {} \frac{\lambda ^{1/2}\left( M^2_{\Lambda _c}, m^2_{K^{*0}}, M^2_p \right) V^2_{ud}}{\lambda ^{1/2}\left( M^2_{\Lambda _c}, m^2_{\phi }, M^2_p \right) V^2_{us}}=21.6, \end{aligned}$$
(31)

and analogously,

$$\begin{aligned} R^{\mathrm{th}}_2= & {} \frac{{\mathcal {B}}(\Lambda _c\rightarrow p \omega )}{{\mathcal {B}}(\Lambda _c\rightarrow p \phi )}=0.636, \nonumber \\ R^{\mathrm{th}}_3= & {} \frac{{\mathcal {B}}(\Lambda _c\rightarrow p \rho ^0)}{{\mathcal {B}}(\Lambda _c\rightarrow p \phi )}=0.640, \end{aligned}$$
(32)

and one can find that \(R^{\mathrm{th}}_1\) and \(R^{\mathrm{th}}_2\) are consistent with the experimental results [42],

$$\begin{aligned} R^{\mathrm{exp}}_1= & {} \frac{{\mathcal {B}}(\Lambda _c\rightarrow p {\bar{K}}^{*0})}{{\mathcal {B}}(\Lambda _c\rightarrow p \phi )}\nonumber \\= & {} \frac{(1.94\pm 0.27) \%}{(1.06\pm 0.14)\times 10^{-3}}=18.3\pm 3.5, \end{aligned}$$
(33)
$$\begin{aligned} R^{\mathrm{exp}}_2= & {} \frac{{\mathcal {B}}(\Lambda _c\rightarrow p \omega )}{{\mathcal {B}}(\Lambda _c\rightarrow p \phi )}\nonumber \\= & {} \frac{(9\pm 4)\times 10^{-4}}{(1.06\pm 0.14)\times 10^{-3}}=0.85\pm 0.39, \end{aligned}$$
(34)

which implies that it is reasonable to take the same value of \(V'_P\) for the mechanisms of Fig. 4. By fitting to the branching fractions of the decays \(\Lambda _c\rightarrow p {\bar{K}}^{*0}\), \(\Lambda _c\rightarrow p \phi \), and \(\Lambda _c\rightarrow p \omega \), we can obtain the \((V'_P)^2/\Gamma _{\Lambda _c}=(4.5 \pm 0.4)\times 10^3\) MeV. With this value, the branching fraction of the decay \(\Lambda _c\rightarrow p \rho ^0\) is estimated to be \({\mathcal {B}}(\Lambda _c\rightarrow p \rho ^0)=(6.3 \pm 0.6)\times 10^{-4}\), and the \(K^+K^-\) and \(\pi ^+\pi ^-\) invariant mass distribution of the decays \(\Lambda _c\rightarrow p \phi \rightarrow p K^+K^-\) and \(\Lambda _c\rightarrow p \rho \rightarrow p \pi ^+\pi ^-\) are easily calculated as shown in Figs. 5 and 6, respectively.

Fig. 5
figure 5

The \(K^+K^-\) invariant mass distribution of the decay \(\Lambda _c \rightarrow p\phi \rightarrow pK^+K^-\) with \((V'_P)^2/\Gamma _{\Lambda _c}=4.5\times 10^3\) MeV

Fig. 6
figure 6

The \(\pi ^+\pi ^-\) invariant mass distribution of the decay \(\Lambda _c \rightarrow p\rho \rightarrow p\pi ^+\pi ^-\) with \((V'_P)^2/\Gamma _{\Lambda _c}=4.5\times 10^3\) MeV

Fig. 7
figure 7

The \(K^+K^-\) invariant mass distribution of the decay \(\Lambda _c \rightarrow pK^+K^-\) in s-wave with different values of \(C=3,2,-2,-3\) and an arbitrary normalization factor \(V_P\). The curves labeled as ‘both’, ‘\(I=0\)’, and ‘\(I=1\)’ correspond to the contributions from the term of \(t^{\mathrm{s-wave}}_{\Lambda _c\rightarrow pK^+K^-}\), \(t^{I=0}\), and \(t^{I=1}\), respectively

In addition to the factor \(V_P\), we have also the free parameter C, the relative weight of the external emission mechanism with respect to the internal emission mechanisms. The value of C should be around 3 because we take the number of the colors \(N_c=3\), and the relative sign of C is not fixed. We present the \(K^+K^-\) and \(\pi ^+\pi ^-\) invariant mass distributions with different values of \(C=3,2,-2,-3\) in Figs. 7 and 8, respectively. In the \(K^+K^-\) invariant mass distribution, one can see that the contributions from the isospin \(I=1\) are much smaller than the ones of the isospin \(I=0\) for the positive values of C, while both contributions from the isospin \(I=0\) and \(I=1\) are comparable for the negative values of C. This is because the coefficients of the terms \(t^{I=0}\) and \(t^{I=1}\) have the opposite sign before the C, and the contributions from the \(\pi ^0\eta \) and \((K{\bar{K}})_{I=1}\) [see Eq. (16)] have the negative interference for positive values of C. In both cases, one can find an enhancement structure close to the threshold, which is stronger for the positive values of C and weaker for the negative values of C. For the \(\pi ^+\pi ^-\) invariant mass distribution of Fig. 8, we can see a clear bump structure around 500 MeV, and a sharp peak around 980 MeV, which correspond to the \(f_0(500)\) and \(f_0(980)\), respectively. Both the signals are clearer for the positive value of C, and weaker for the negative value of C.

Fig. 8
figure 8

The \(\pi ^+\pi ^-\) invariant mass distribution of the decay \(\Lambda _c \rightarrow p\pi ^+\pi ^-\) in s-wave with different values of \(C=3,2,-2,-3\) and an arbitrary normalization factor \(V_P\)

It should be stressed that although the BESIII Collaboration has reported the \(K^+K^-\) and \(\pi ^+\pi ^-\) invariant mass distributions, we can not fit our model to to BESIII data which contain the background in the sideband region [18]. In addition, we must bear in mind that the chiral unitary approach only makes reliable predictions up to 1100-1200 MeV. With the value of \((V'_P)^2/\Gamma _{\Lambda _c}=4.5\times 10^3\) MeV obtained above, we present the \(K^+K^-\) and \(\pi ^+\pi ^-\) invariant mass distributions by summing the contributions from the decays in s-wave and the intermediate vector mesons incoherently, as shown in Figs. 9 and 10, respectively. For comparison, the BESIII data [18] have been adjusted to the strength of our theoretical calculations. We take the parameter \(C=2\) and \((V_P)^2/\Gamma _{\Lambda _c}=0.2\) MeV\(^{-1}\), in order to give rise to the sizeable signals of the \(f_0(500)\) and \(f_0(980)\) Footnote 1. Both the parameters can be obtained by fitting to the experimental data, when more precise measurement of the processes is available in future. For the \(K^+K^-\) invariant mass distribution, our model produces an enhancement structure close to the threshold mainly due to the resonance \(f_0(980)\), and a clear peak of the \(\phi \), which are in good agreement with the BESIII data. It is worth mentioning that, in the \(K^+K^-\) invariant mass distribution of the decay \(\chi _{cJ}\rightarrow p{\bar{p}}K^+K^-\) measured by the BESIII Collaboration [47], one can find an enhancement structure close to the threshold, which can be associated to the resonance \(f_0(980)\) and \(a_0(980)\). A similar structure can also be found in the decay \(D^+_s \rightarrow K^+K^-\pi ^+\) measured by the BABAR Collaboration [48].

Fig. 9
figure 9

The \(K^+K\) invariant mass distribution of the \(\Lambda _c \rightarrow pK^+K^-\) decay compared with the experimental data from Ref. [18]. The green dotted curve stands for the contribution from the meson-meson interaction in s-wave, the blue dashed curve corresponds to the results for the intermediate vector \(\phi \), and the red solid line shows the total contributions

For the \(\pi ^+\pi ^-\) invariant mass distribution of the decay \(\Lambda _c\rightarrow p \pi ^+\pi ^-\) as shown in Fig. 10, one can see a clear peak around 770 MeV, corresponding to the vector meson \(\rho ^0\), and a broad peak around 500 MeV, which can be associated to the scalar meson \(f_0(500)\), dynamically generated from the meson-meson interactions in s-wave. In addition, there is a narrow sharp peak around 980 MeV for the scalar state \(f_0(980)\). We can see that the broad peak for \(f_0(500)\), the peak for \(\rho ^0\), and a narrow sharp one for \(f_0(980)\) Footnote 2 of our results are compatible with the BESIII measurement [18].

From Figs. 9 and 10, one can find that the results with \(C=2\) are in reasonable agreement with the BESIII measurements [18], which implies that the W external emission mechanism is more important than the W internal emission mechanism. According to the topological classification of the weak decays in Refs. [49, 50], the strength of W external emission is larger than the one of W internal emission. It should be stressed that our results strongly depend on the sign of C, and the present measurements of the BESIII Collaboration favor \(C=2\) and a much smaller contribution from the \(a_0(980)\). Indeed, if there is a sizeable contribution from the \(a_0(980)\) in \(\Lambda _c \rightarrow p K^+K^-\), it implies that we can observe the process \(\Lambda _c\rightarrow p \pi ^0 \eta \), and the signal of the \(a_0(980)\) in the \(\pi ^0\eta \) mass distribution experimentally, however there are no any report about this process [42].

Fig. 10
figure 10

The \(\pi ^+\pi ^-\) invariant mass distributions of the \(\Lambda _c \rightarrow p \pi ^+ \pi ^-\) decay compared with the experimental data from Ref. [18]. The green dotted curve stands for the contribution from the meson–meson interaction in s-wave, the blue dashed curve corresponds to the results for the intermediate vector \(\rho ^0\), and the red solid line shows the total contributions

4 Conclusions

In this work, we have studied the decays \(\Lambda _c\rightarrow p K^+K^-\) and \(\Lambda _c\rightarrow p \pi ^+\pi ^-\), by taking into account contributions of the intermediate vector mesons, and the s-wave meson–meson interactions within the chiral unitary approach, where the \(f_0(500)\), \(f_0(980)\), and \(a_0(980)\) resonances are dynamically generated.

The \(K^+K^-\) and \(\pi ^+\pi ^-\) invariant mass distributions for these two decays are calculated. In the \(K^+K^-\) invariant mass distribution, one can find a narrow peak for the \(\phi \), and an enhancement structure close to the \(K^+K^-\) threshold, which should be the reflection of the \(f_0(980)\) and \(a_0(980)\) resonances. For the \(\Lambda _c\rightarrow p \pi ^+\pi ^-\) mass distribution, in addition to the broad peak of the \(\rho ^0\), one can find a bump structure around 500 MeV for the \(f_0(500)\), and a narrow sharp peak around 980 MeV for the \(f_0(980)\), in agreement with the BESIII measurement.

According to our calculations, the present measurements of the BESIII Collaboration favor a much smaller contribution from the \(a_0(980)\). As we discussed, if there is a sizeable contribution from the \(a_0(980)\) in \(\Lambda _c \rightarrow p K^+K^-\), it implies that we can observe the process \(\Lambda _c\rightarrow p \pi ^0 \eta \), and the signal of the \(a_0(980)\) in the \(\pi ^0\eta \) mass distribution experimentally, however there are no any report about this process [42].

We encourage our experimental colleagues to measure these two decays, which can be used to test the molecular nature of the scalar resonances \(f_0(500)\), \(f_0(980)\), and \(a_0(980)\).