Skip to main content
Log in

Inhibiting the growth of Cu3Sn and Kirkendall voids in the Cu/Sn-Ag-Cu system by minor Pd alloying

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

In this study, the metallurgical reaction between Cu substrates (electrolytic type) and a Sn3Ag0.5Cu-xPd alloy at 180°C was examined using a scanning electron microscope (SEM), electron probe microanalyzer (EPMA), focused ion beam (FIB) microscope, and transmission electron microscope (TEM). The results showed that the growth of Cu3Sn in the Cu/Sn-Ag-Cu solder joints was substantially suppressed by doping with a minor quantity of Pd (0.1–0.7 wt. %) in the solder alloy. The sluggish growth of Cu3Sn reduced the formation of Kirkendall voids at the Cu/Cu3Sn interface and significantly improved the mechanical reliability of the joint interface. It was argued that a minor addition of Pd into the solder stabilized the Cu6Sn5 phase and enlarged the interdiffusion coefficient of Cu6Sn5 but diminished that of the neighboring phase (Cu3Sn), thereby decreasing the Kirkendall effect in the Cu/Sn-Ag-Cu reactive system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Zeng and K. N. Tu, Mat. Sci. Eng. R 38 55 (2002).

    Article  Google Scholar 

  2. T. Laurila, V. Vuorinen, and J. K. Kivilahti, Mater. Sci. Eng. R 49 1 (2005).

    Article  Google Scholar 

  3. T. Laurila, V. Vuorinen, and M. P. Kröckel, Mater. Sci. Eng. R 68 1 (2010).

    Article  Google Scholar 

  4. A. Paul, C. Ghosh, and W. J. Boettinger, Metall. Mater. Trans. A 42 952 (2011).

    Article  CAS  Google Scholar 

  5. K. Zeng, R. Stierman, T. C. Chiu, D. Edwards, K. Ano, and K. N. Tu, J. Appl. Phys. 97, 0245081 (2005).

    Google Scholar 

  6. J. Yu and J. Y. Kim, Acta Mater. 56 5514 (2008).

    Article  CAS  Google Scholar 

  7. L. Yin and P. Borgesen, J. Mater. Res. 26 455 (2011).

    Article  CAS  Google Scholar 

  8. S. Kim and J. Yu, J. Appl. Phys. 108, 083532 (2010).

    Article  Google Scholar 

  9. T. Laurila, J. Hurtig, V. Vuorinen, and J. K. Kivilahti, Microelectron. Reliab. 49 242 (2009).

    Article  CAS  Google Scholar 

  10. I. E. Anderson and J. L. Harringa, J. Electron. Mater. 33 1485 (2004).

    Article  CAS  Google Scholar 

  11. Y. W. Wang, Y. W. Lin, C. T. Tu, and C. R. Kao, J. Alloys Compd. 478 121 (2009).

    Article  CAS  Google Scholar 

  12. F. Gao, T. Takemoto, and H. Nishikawa, Mater. Sci. Eng. A 420 39 (2006).

    Article  Google Scholar 

  13. I. E. Anderson and J. L. Harringa, J. Electron. Mater. 35 94 (2006).

    Article  CAS  Google Scholar 

  14. J. Y. Kim, J. Yu, and S. H. Kim, Acta Mater. 57 5001 (2009).

    Article  CAS  Google Scholar 

  15. Y. W. Wang, Y. W. Lin, and C. R. Kao, J. Alloys Compd. 493 233 (2010).

    Article  CAS  Google Scholar 

  16. Y. W. Wang, C. C. Chang, and C. R. Kao, J. Alloys Compd. 478, L1 (2009).

    Article  CAS  Google Scholar 

  17. J. Y. Tsai, Y. C. Hu, C. M. Tsai, and C. R. Kao, J. Electron. Mater. 32 1203 (2003).

    Article  CAS  Google Scholar 

  18. F. Wang, X. Ma, Y. Qian, Scripta Mater. 53 699 (2005).

    Article  CAS  Google Scholar 

  19. S. C. Yang, C. E. Ho, C. W. Chang, and C. R. Kao, J. Mater. Res. 21 2436 (2006).

    Article  CAS  Google Scholar 

  20. S. K. Kang, D. Leonard, D. Y. Shih, L. Gignac, D. W. Henderson, S. Cho, and J. Yu, J. Electron. Mater. 35 479 (2005).

    Article  Google Scholar 

  21. F. J. Wang, F. Gao, X. Ma, and Y. Y. Qian, J. Electron. Mater. 35 1818 (2006).

    Article  CAS  Google Scholar 

  22. Y. K. Jee, Y. H. Ko, and J. Yu, J. Mater. Res. 22 1879 (2007).

    Article  CAS  Google Scholar 

  23. Y. M. Kim, K. M. Harr, and Y. H. Kim, Electron. Mater. Lett. 6 151 (2010).

    Article  CAS  Google Scholar 

  24. P. G. Kim, K. N. Tu, and D. C. Abbott, J. Appl. Phys. 84 770 (1998).

    Article  CAS  Google Scholar 

  25. G. Ghosh, J. Electron. Mater. 28 1238 (1999).

    Article  CAS  Google Scholar 

  26. S. P. Peng, W. H. Wu, C. E. Ho, and Y. M. Huang, J. Alloys Compd. 493 431 (2010).

    Article  CAS  Google Scholar 

  27. C. E. Ho, W. Gierlotka, and S. W. Lin, J. Mater. Res. 25 2078 (2010).

    Article  CAS  Google Scholar 

  28. C. E. Ho, S. W. Lin, and Y. C. Lin, J. Alloys Compd. 509 7749 (2011).

    Article  CAS  Google Scholar 

  29. C. E. Ho, L. H. Hsu, S. W. Lin, and M. A. Rahman, J. Electron. Mater. 41 2 (2012).

    Article  CAS  Google Scholar 

  30. BGA Ball Shear, JESD22-B117 (JEDEC Solid State Technology Association, (Edition: October 2006).

  31. R. Kubiak and M. Wolcyrz, J. Less-common Met. 97 265 (1984).

    Article  CAS  Google Scholar 

  32. K. Schubert, H. L. Lukas, H. G. Meissner, and S. Bhan, Z. Metallkd. 50 534 (1959).

    CAS  Google Scholar 

  33. M. Kajihara, Meeting Report at TMS Annual Meeting, San Diego, USA (2011).

  34. C. P. Chen and Y. A. Chang, Diffusion in Ordered Alloys (eds., B. Fultz, R. W. Cahn, and D. Gupta), p. 169, TMS: Warrendale, PA, USA (1993).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng En Ho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ho, C.E., Kuo, T.T., Wang, C.C. et al. Inhibiting the growth of Cu3Sn and Kirkendall voids in the Cu/Sn-Ag-Cu system by minor Pd alloying. Electron. Mater. Lett. 8, 495–501 (2012). https://doi.org/10.1007/s13391-012-2049-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-012-2049-3

Keywords

Navigation