Skip to main content
Log in

Origin of Primary Cu6Sn5 in Hypoeutectic Solder Alloys and a Method of Suppression to Improve Mechanical Properties

  • TMS2020 Microelectronic Packaging, Interconnect, and Pb-free Solder
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This study examines factor(s) behind the formation of primary Cu6Sn5 (in the bulk, rather than at the interface) in solder joints, even though solder alloys are hypoeutectic. To understand the contribution from copper (Cu) dissolution from the substrate a Cu-free alloy, tin-3.5 silver (Sn-3.5Ag), was used as a soldered-on copper organic solderability preservative (Cu-OSP) and electroless nickel immersion gold (ENIG) surface finish substrates. Microstructure observations including in situ synchrotron were used to observe microstructure development real-time and confirm the time and location for nucleation of primary Cu6Sn5. High-speed shear tests were performed to determine the solder joint’s strengths. The results confirm that Cu dissolution during soldering is responsible for the formation of primary Cu6Sn5. The ENIG finish prevented Cu dissolution and the formation of Cu6Sn5 resulting in higher solder joint strength for the Sn-3.5Ag/ENIG solder joints. The findings can be used to understand the evolution of primary Cu6Sn5 and how it can be suppressed to improve joint strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.W. Yoon, B.I. Noh, and S.B. Jung, J. Alloys Compd. 506, 331 (2010).

    Article  CAS  Google Scholar 

  2. Z. Huang, P. Kumar, I. Dutta, R. Sidhu, M. Renavikar, and R. Mahajan, J. Electron. Mater. 43, 4485 (2014).

    Article  CAS  Google Scholar 

  3. J.M. Kim, M.H. Jeong, S. Yoo, and Y.B. Park, J. Electron. Mater. 41, 791 (2012).

    Article  CAS  Google Scholar 

  4. T.H. Chuang, C.C. Jain, and S.S. Wang, J. Mater. Eng. Perform. 18, 1133 (2009).

    Article  CAS  Google Scholar 

  5. Y. Tian, W. Liu, R. An, W. Zhang, L. Niu, and C. Wang, J. Mater. Sci.-Mater. Electron. 23, 136 (2012).

    Article  CAS  Google Scholar 

  6. G. Zeng, S. Xue, L. Zhang, L. Gao, W. Dai, and J. Luo, J. Mater. Sci-Mater. Electron. 21, 421 (2010).

    Article  CAS  Google Scholar 

  7. J.M. Kim, M.H. Jeong, S. Yoo, C.W. Lee, and Y.B. Park, Microelectron. Eng. 89, 55 (2012).

    Article  CAS  Google Scholar 

  8. J.W. Xian, S.A. Belyakov, M. Ollivier, K. Nogita, H. Yasuda, and C.M. Gourlay, Acta Mater. 126, 540 (2017).

    Article  CAS  Google Scholar 

  9. J.W. Xian, S.A. Belyakov, and C.M. Gourlay, J. Electron. Mater. 45, 69 (2016).

    Article  CAS  Google Scholar 

  10. M.A.A. Mohd Salleh, S.D. McDonald, C.M. Gourlay, S.A. Belyakov, H. Yasuda, and K. Nogita, J. Electron. Mater. 45, 154 (2016).

    Article  CAS  Google Scholar 

  11. M.A.A. Mohd Salleh, C.M. Gourlay, J.W. Xian, S.A. Belyakov, H. Yasuda, S.D. McDonald, and K. Nogita, Sci. Rep.-UK 7, 1 (2017).

    Article  Google Scholar 

  12. J. Shen, Y.C. Chan, and S.Y. Liu, Acta Mater. 57, 5196 (2009).

    Article  CAS  Google Scholar 

  13. Z. Chen, A. Kumar, and M. Mona, J. Electron. Mater. 35, 2126 (2006).

    Article  CAS  Google Scholar 

  14. M.A.A. Mohd Salleh, S.D. McDonald, H. Yasuda, A. Sugiyama, and K. Nogita, Scr. Mater. 100, 17 (2015).

    Article  CAS  Google Scholar 

  15. P.F. Yang, Y.S. Lai, S.R. Jian, J. Chen, and R.S. Chen, Mater. Sci. Eng. A 485, 305 (2008).

    Article  Google Scholar 

  16. S.K. Kang, W.K. Choi, D.Y. Shih, D.W. Henderson, T. Gosselin, A. Sarkhel, C. Goldsmith, and K.J. Puttlitz, JOM 55, 61 (2003).

    Article  CAS  Google Scholar 

  17. T. Garami and O. Krammer, J. Mater. Sci.-Mater. Electron. 26, 8540 (2015).

    Article  CAS  Google Scholar 

  18. H. Esaka, K. Shinozuka, and M. Tamura, Mater. Trans. (2005). https://doi.org/10.2320/matertrans.46.916.

    Article  Google Scholar 

  19. Y. Takamatsu, H. Esaka, and K. Shinozuka, Mater. Trans. (2011). https://doi.org/10.2320/matertrans.M2010325.

    Article  Google Scholar 

  20. J.W. Kim, Y.C. Lee, S.S. Ha, and S.B. Jung, J. Mater. Sci.-Mater. Electron. 20, 17 (2009).

    Article  CAS  Google Scholar 

  21. H. Tskukamoto, T. Nishimura, S. Suenaga, and K. Nogita, Mater. Sci. Eng. B 171, 162 (2010).

    Article  Google Scholar 

  22. H. Tskukamoto, T. Nishimura, S. Suenaga, S.D. McDonald, K.W. Sweatman, and K. Nogita, Microelectron. Reliab. 51, 657 (2011).

    Article  Google Scholar 

  23. A. Kumar, Z. Chen, S.G. Mhaisalkar, C.C. Wong, P.S. Teo, and V. Kripesh, Thin Solid Films 504, 410 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from the Universiti Malaysia Perlis (UniMAP), Nihon Superior Co. Ltd. collaboration research project and the fundamental research grant scheme (FRGS) FRGS/1/2017/TK05/UNIMAP/03/3 (9003-00621) from the Ministry of Higher Education, Malaysia. Authors would like to thank N.R. Abdul Razak at the University of Queensland and UniMAP for the help in preparing the samples and helping in synchrotron imaging experiments. Real-time in situ synchrotron imaging experiments were performed at the Japan Synchrotron Radiation Research Institute (JASRI) using BL20XU beamline of the SPring-8 Synchrotron (2017B1519 and 2019B1618) which is also supported by Grant-in-Aid for Scientific Research (S) (No. 17H06155), JSPS, Japan. The micro-XRF mapping technique was performed at the Synchrotron Light Research Institute (SLRI), Thailand (Project ID: 6031). The high-speed shear test was conducted at Nihon Superior R&D Center, Osaka, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. A. Mohd Salleh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muhd Amli, S.F.N., Mohd Salleh, M.A.A., Ramli, M.I.I. et al. Origin of Primary Cu6Sn5 in Hypoeutectic Solder Alloys and a Method of Suppression to Improve Mechanical Properties. J. Electron. Mater. 50, 710–722 (2021). https://doi.org/10.1007/s11664-020-08428-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08428-9

Keywords

Navigation