Skip to main content
Log in

Diffusion Parameters and Growth Mechanism of Phases in the Cu-Sn System

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The tracer diffusion coefficients of the elements as well as the integrated interdiffusion coefficients are determined for the Cu3Sn and Cu6Sn5 intermetallic compounds using incremental diffusion couples and Kirkendall marker shift measurements. The activation energies are determined for the former between 498 K and 623 K (225 °C and 350 °C) and for the latter between 423 K and 473 K (150 °C and 200 °C). Sn is found to be a slightly faster diffuser in Cu6Sn5, and Cu is found to be the faster diffuser in Cu3Sn. The results from the incremental couples are used to predict the behavior of a Cu/Sn couple where simultaneous growth of both intermetallics occurs. The waviness at the Cu3Sn/Cu6Sn5 interface and possible reasons for not finding Kirkendall markers in both intermetallics in the Cu/Sn couple are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. D.R. Frear and P.T. Vianco: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 1509–23.

    Article  CAS  Google Scholar 

  2. Z. Mei, A.J. Sunwoo, and J.W. Morris: Metall. Trans. A, 1992, vol. 23A, pp. 857–64.

    CAS  Google Scholar 

  3. D.B. Butrymowicz: International Copper Research Association, Diffusion Rate Data and Mass Transport Phenomena for Copper SystemsPart II, INCRA Monograph Series V (International Copper Research Association), Diffusion in Metals Data Center, National Bureau of Standards, Washington, DC, 1981, pp. 398–475.

    Google Scholar 

  4. L.C.C. da Silva and R.F. Mehl: Trans. AIME, 1951, vol. 191, pp. 155–73.

    Google Scholar 

  5. H. Oikawa and A. Hosoi: Scripta Metall., 1975, vol. 9, pp. 823–28.

    Article  CAS  Google Scholar 

  6. B.F. Dyson, T.R. Anthony, and D.Turnbull: J. Appl. Phys., 1967, vol. 38, p. 3408.

    Article  CAS  Google Scholar 

  7. M. Onishi and H. Fujibuchi: Trans. Jpn. Inst. Met., 1975, vol. 16, pp. 539–47.

    CAS  Google Scholar 

  8. C. Wagner: Acta Metall., 1969, vol. 17, pp. 99–107.

    Article  CAS  Google Scholar 

  9. K.N. Tu and R.D. Thompson: Acta Metall., 1982, vol. 30, pp. 947–52.

    Article  CAS  Google Scholar 

  10. A. Paul, A.A. Kodentsov, and F.J.J. van Loo: Z. Metallkd., 2004, vol. 95, pp. 913–20.

    CAS  Google Scholar 

  11. R.J. Schaeffer, F.S. Biancaniello, and R.D. Jiggetts: in The Metal Science of Joining, M.J. Cieslak, J.H. Perpezko, S. Kang, and M.E. Glicksman, eds., TMS-AIME, Warrendale, PA, 1992, pp. 175–81.

  12. E. Chason, N. Jadhav, W.L. Chan, L. Reinbold, and K.S. Kumar: Appl. Phys. Lett., 2008, vol. 92, art. no. 171901.

  13. K.S. Kumar, L. Reinbold, A.F. Bower, and E. Chason: J. Mater. Res., 2008, vol. 23, pp. 2916–34.

    Article  CAS  Google Scholar 

  14. R.J. Fields, S.R. Low, and G.K. Lucey: in The Metal Science of Joining, M.J. Cieslak, J.H. Perepezko, S. Kang, and M.E. Glicksman, eds., TMS-AIME, Warrendale, PA, 1992, pp. 165–73.

  15. W.J. Boettinger, C.A. Handwerker, and L.C. Smith: in The Metal Science of Joining, M.J. Cieslak, J.H. Perepezko, S. Kang, and M.E. Glicksman, eds., TMS-AIME, Warrendale, PA, 1992, pp. 183–89.

  16. P. Villars and L.D. Calvert: Pearson’s Handbook of Crystallographic Data for Intermetallic Phases, ASM, Metals Park OH, 1985, p. 2030.

    Google Scholar 

  17. F.J.J. van Loo: Acta Metall., 1970, vol. 18, pp. 1107–11.

    Article  Google Scholar 

  18. F. Sauer and V. Freise: Z. Electrochem., 1962, vol. 66, pp. 353–63.

    CAS  Google Scholar 

  19. J.R. Manning: Acta Metall., 1967, vol. 15, pp. 817–26.

    Article  CAS  Google Scholar 

  20. I.V. Belova and G.E. Murch: Def. Diffus. Forum, 2003, vols. 213–215, pp. 95–106.

    Article  Google Scholar 

  21. A. Paul, A.A. Kodentsov, and F.J.J. van Loo: J. Alloys Compds., 2005, vol. 403, pp. 147–53.

    Article  CAS  Google Scholar 

  22. J.H. Shim, C.S. Oh, B.J. Lee, and D.N. Lee: Z. Metallkd., 1996, vol. 87, pp. 205–12.

    CAS  Google Scholar 

  23. X.J. Liu, H.S. Liu, I. Ohnuma, R. Kainuma, K. Ishida, S. Itabashi, K. Kameda, and K. Yamaguchi: J. Electron Mater., 2001, vol. 30, pp. 1093–03.

    Article  CAS  Google Scholar 

  24. F.J.J. van Loo, B. Pieraggi, and R.A. Rapp: Acta Metall. Mater., 1990, vol. 38, pp. 1769–79.

    Article  Google Scholar 

  25. A. Paul, M.J.H. van Dal, A.A. Kodentsov, and F.J.J. van Loo: Acta Mater., 2004, vol. 52, pp. 623–30.

    Article  CAS  Google Scholar 

  26. Y. Watanabe, Y. Fujinaga, and H. Iwasaki: Acta Cryst. B, 1983, vol. 39, p. 306–11.

    Article  Google Scholar 

  27. I.V. Belova and G.E. Murch: J. Phys. Chem. Solids, 1998, vol. 59, pp. 1–6.

    Article  CAS  Google Scholar 

  28. A. Gangulee, G.C. Das, and M.B. Bever: Metall. Trans., 1973, vol. 4, pp. 2063–66.

    Article  CAS  Google Scholar 

  29. A.-K. Larsson, L. Stenberg, and S. Lidin: Acta Cryst., 1994, vol. B50, pp. 636–43.

  30. A. Paul: Ph.D. Thesis, Eindhoven University of Technology, Eindhoven, 2004.

  31. C. Ghosh and A. Paul: Acta Mater., 2007, vol. 55, pp. 1927–39.

    Article  CAS  Google Scholar 

  32. K.N. Tu, G. Ottaviani, U. Gösele, and H. Föll: J. Appl. Phys., 1983, vol. 54, pp. 758–63.

    Article  CAS  Google Scholar 

  33. R. Pretorius, R. De Reus, A.M. Vredenberg, and F.W. Saris: Mater. Lett., 1990, vol. 9, pp. 494–99.

    Article  CAS  Google Scholar 

  34. R. Pretorius, A.M. Vredenberg, F.W. Saris, and R. De Reus: J. Appl. Phys., 1991, vol. 70, pp. 3636–46.

    Article  CAS  Google Scholar 

  35. B.J. Lee, N.M. Hwang, and H.M. Lee: Acta Mater., 1997, vol. 45, pp. 1867–74.

    Article  CAS  Google Scholar 

  36. V.I. Dybkov: Powder Metall. Met. Ceram., 1996, vol. 35, pp. 355–59.

    Article  Google Scholar 

  37. J. Philibert: Atom MovementsDiffusion and Mass Transport in Solids, Les Editions de Physique, 1991, p. 423.

  38. P.T. Vianco and D.R. Frear: J. Met., 1993, vol. 45, pp. 14–19.

    CAS  Google Scholar 

  39. S. Kumar, C.A Handwerker, and M. Dayananda: Paper presented at the 2009 MS&T Meeting, Pittsburgh, PA, Oct. 2009.

Download references

Acknowledgments

One of the authors (AP) acknowledges the financial support received from the Department of Science and Technology, Government of India (Grant No. SR/FTP/ETA-18/2006), for this research work. WJB expresses gratitude to Ursula Kattner, NIST, for computing the thermodynamic parameters for the intermetallic phases and to the NIST Office of Microelectronic Programs for support.

Note added in proof

The recent research[39] conducted at Purdue University reports qualitatively similar results to this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. J. Boettinger.

Additional information

Manuscript submitted April 22, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paul, A., Ghosh, C. & Boettinger, W.J. Diffusion Parameters and Growth Mechanism of Phases in the Cu-Sn System. Metall Mater Trans A 42, 952–963 (2011). https://doi.org/10.1007/s11661-010-0592-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-010-0592-9

Keywords

Navigation