Skip to main content
Log in

Sequence analysis and expression profiles of TaABI5, a pre-harvest sprouting resistance gene in wheat

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Pre-harvest sprouting (PHS) is the germination of grains in the spike under wet conditions before harvest, which causes a severe reduction in crop yield and flour quality. The phytohormone abscisic acid plays a key role in regulating seed dormancy, which inhibits pre-harvest spouting or vivipary for many important crops. TaABI5, belonging to a family of basic leucine zipper transcription factors could regulate a subset of late embryogenesis abundant genes during seed development, was isolated and characterized. Phylogenetic analysis revealed that TaABI5 homologous gene belonged to the ABI5 subgroup of the ABF/AREB/ABI5 subfamily. TaABI5 consist of four conserved domains and one bZip domain. The expression pattern of TaABI5 indicated that it was seed-specific and accumulated at late stages of seed development. Accumulation of TaABI5 in synthetic hexaploid wheat SHW-L1 (PHS resistance) was 8.93-fold higher than that in wheat cultivar Chuanmai 32 (PHS susceptible) at 25 days post anthesis. Four expression quantitative trait loci (eQTL) of TaABI5 on chromosome 2DS, 4DS, 6DS, and 7DL were characterized from SHW-L1/Chuanmai 32 derived recombinant inbred line population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bailey PC, McKibbin RS, Lenton JR, Holdsworth MJ, Flintham JE, Gale MD (1999) Genetic map locations for orthologous Vp1 genes in wheat and rice. TAG Theor Appl Genet 98(2):281–284

    Article  CAS  Google Scholar 

  • Bensmihen S, Rippa S, Lambert G, Jublot D, Pautot V, Granier F, Giraudat J, Parcy F (2002) The homologous ABI5 and EEL transcription factors function antagonistically to fine-tune gene expression during late embryogenesis. Plant Cell 14:1391–1403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bensmihen S, Giraudat J, Parcy F (2005) Characterization of three homologous basic leucine zipper transcription factors (bZIP) of the ABI5 family during Arabidopsis thaliana embryo maturation. J Exp Bot 56:597–603

    Article  CAS  PubMed  Google Scholar 

  • Cabral AL, Jordan MC, McCartney CA, You FM, Humphreys DG, MacLachlan R, Pozniak CJ (2014) Identification of candidate genes, regions and markers for pre-harvest sprouting resistance in wheat (Triticum aestivum L.). BMC Plant Bio 14:340

  • Carles C, Bies-Etheve N, Aspart L, Léon-Kloosterziel KM, Koornneef M, Echeverria M, Delseny M (2002) Regulation of Arabidopsis thaliana Em genes: role of ABI5. Plant J 30:373–383

    Article  CAS  PubMed  Google Scholar 

  • Casaretto J, Ho TD (2003) The transcription factors HvABI5 and HvVP1 are required for the abscisic acid induction of gene expression in barley aleurone cells. Plant Cell 15:271–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi H, Hong J, Ha J, Kang J, Kim SY (2000) ABFs, a family of ABA-responsive element binding factors. J Biol Chem 275:1723–1730

    Article  CAS  PubMed  Google Scholar 

  • Doss S, Schadt EE, Drake TA, Lusis AJ (2005) Cis-acting expression quantitative trait loci in mice. Genome Res 15:681–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finkelstein RR, Lynch TJ (2000) The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor. Plant Cell 12:599–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finkelstein R, Gampala SS, Lynch TJ, Thomas TL, Rock CD (2005) Redundant and distinct functions of the ABA response loci ABA-INSENSITIVE (ABI)5 and ABRE-BINDING FACTOR (ABF)3. Plant Mol Biol 59:253–267

    Article  CAS  PubMed  Google Scholar 

  • Fujita Y, Fujita M, Satoh R, Maruyama K, Parvez MM, Seki M, Hiratsu K, Ohme-Takagi M, Shinozaki K, Yamaguchi-Shinozaki K (2005) AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis. Plant Cell 17:3470–3488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujita Y, Yoshida T, Yamaguchi-Shinozaki K (2013) Pivotal role of the AREB/ABF-SnRK2 pathway in ABRE-mediated transcription in response to osmotic stress in plants. Physiol Plant 147:15–27

    Article  CAS  PubMed  Google Scholar 

  • Gerjets T, Scholefield D, Foulkes MJ, Lenton JR, Holdsworth MJ (2010) An analysis of dormancy, ABA responsiveness, after-ripening and pre-harvest sprouting in hexaploid wheat (Triticum aestivum L.) caryopses. J Exp Bot 61:597–607

    Article  CAS  PubMed  Google Scholar 

  • Gubler F, Millar AA, Jacobsen JV (2005) Dormancy release, ABA and pre-harvest sprouting. Curr Opin Plant Biol 8:183–187

    Article  CAS  PubMed  Google Scholar 

  • Harris LJ, Martinez SA, Keyser BR, Dyer WE, Johnson RR (2013) Functional analysis of TaABF1 during abscisic acid and gibberellin signalling in aleurone cells of cereal grains. Seed Sci Res 23:89–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huo N, Vogel JP, Lazo GR, You FM, Ma Y, McMahon S, Dvorak J, Anderson OD, Luo MC, Gu YQ (2009) Structural characterization of Brachypodium genome and its syntenic relationship with rice and wheat. Plant Mol Biol 70:47–61

    Article  CAS  PubMed  Google Scholar 

  • Jakoby M, Weisshaar B, Dröge-Laser W, Vicente-Carbajosa J, Tiedemann J, Kroj T, Parcy F (2002) bZIP Research Group bZIP transcription factors in Arabidopsis. Trends Plant Sci 7:106–111

    Article  CAS  PubMed  Google Scholar 

  • Jansen RC, Nap JP (2001) Genetical genomics: the added value from segregation. Trends Genet 17:388–391

    Article  CAS  PubMed  Google Scholar 

  • Johnson RR, Wagner RL, Verhey SD, Walker-Simmons MK (2002) The abscisic acid-responsive kinase PKABA1 interacts with a seed-specific abscisic acid response element-binding factor, TaABF, and phosphorylates TaABF peptide sequences. Plant Physiol 130:837–846

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnson RR, Shin M, Shen JQ (2008) The wheat PKABA1-interacting factor TaABF1 mediates both abscisic acid-suppressed and abscisic acid-induced gene expression in bombarded aleurone cells. Plant Mol Biol 68:93–103

    Article  CAS  PubMed  Google Scholar 

  • Jordan MC, Somers DJ, Banks TW (2007) Identifying regions of the wheat genome controlling seed development by mapping expression quantitative trait loci. Plant Biotechnol J 5:442–453

    Article  CAS  PubMed  Google Scholar 

  • Kim SY (2006) The role of ABF family bZIP class transcription factors in stress response. Physiol Plant 126:519–527

    CAS  Google Scholar 

  • Kliebenstein D (2009) Quantitative genomics: analyzing intraspecific variation using global gene expression polymorphisms or eQTLs. Annu Rev Plant Biol 60:93–114

    Article  CAS  PubMed  Google Scholar 

  • Koornneef M, Bentsink L, Hilhorst H (2002) Seed dormancy and germination. Curr Opin Plant Biol 5:33–36

    Article  CAS  PubMed  Google Scholar 

  • Li C, Ni P, Francki M, Hunter A, Zhang Y, Schibeci D, Li H, Tarr A, Wang J, Cakir M, Yu J, Bellgard M, Lance R, Appels R (2004) Genes controlling seed dormancy and pre-harvest sprouting in a rice-wheat-barley comparison. Funct Integr Genomics 4:84–93

    Article  CAS  PubMed  Google Scholar 

  • Li C, Liu Z, Zhang Q, Wang R, Xiao L, Ma H, Chong K, Xu Y (2012) SKP1 is involved in abscisic acid signalling to regulate seed germination, stomatal opening and root growth in Arabidopsis thaliana. Plant Cell Environ 35:952–965

    Article  CAS  PubMed  Google Scholar 

  • Long XY, Wang JR, Ouellet T, Rocheleau H, Wei YM, Pu ZE, Jiang QT, Lan XJ, Zheng YL (2010) Genome-wide identification and evaluation of novel internal control genes for Q-PCR based transcript normalization in wheat. Plant Mol Biol 74:307–311

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Molina L, Mongrand S, Chua NH (2001) A postgermination developmental arrest checkpoint is mediated by abscisic acid and requires the ABI5 transcription factor in Arabidopsis. Proc Natl Acad Sci USA 98:4782–4787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez-Molina L, Mongrand S, McLachlin DT, Chait BT, Chua NH (2002) ABI5 acts downstream of ABI3 to execute an ABA-dependent growth arrest during germination. Plant J 32:317–328

    Article  CAS  PubMed  Google Scholar 

  • Manfre AJ, Lanni LM, Marcotte WR (2006) The Arabidopsis group 1 LATE EMBRYOGENESIS ABUNDANT protein ATEM6 is required for normal seed development. Plant Physiol 140:140–149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mares DJ, Mrva K (2014) Wheat grain preharvest sprouting and late maturity alpha-amylase. Planta 240:1167–1178

    Article  CAS  PubMed  Google Scholar 

  • Masojć P, Milczarski P (2009) Relationship between QTLs for preharvest sprouting and alpha-amylase activity in rye grain. Mol Breed 23:75–84

    Article  Google Scholar 

  • Munkvold JD, Laudencia-Chingcuanco D, Sorrells ME (2013) Systems genetics of environmental response in the mature wheat embryo. Genetics 194:265–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura S, Komatsuda T, Miura H (2007a) Mapping diploid wheat homologues of Arabidopsis seed ABA signaling genes and QTLs for seed dormancy. Theor Appl Genet 114:1129–1139

    Article  CAS  PubMed  Google Scholar 

  • Nakamura S, Komatsuda T, Miura H (2007b) Mapping diploid wheat homologues of Arabidopsis seed ABA signaling genes and QTLs for seed dormancy. Theor Appl Genet 114:1129–1139

    Article  CAS  PubMed  Google Scholar 

  • Nakamura S, Abe F, Kawahigashi H, Nakazono K, Tagiri A, Matsumoto T, Utsugi S, Ogawa T, Handa H, Ishida H, Mori M, Kawaura K, Ogihara Y, Miura H (2011) A wheat homolog of MOTHER OF FT AND TFL1 acts in the regulation of germination. Plant Cell 23:3215–3229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nambara E, Marion-Poll A (2005) Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol 56(1):165–185

    Article  CAS  PubMed  Google Scholar 

  • Nijhawan A, Jain M, Tyagi AK, Khurana JP (2008) Genomic survey and gene expression analysis of the basic leucine zipper transcription factor family in rice. Plant Physiol 146:333–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piskurewicz U, Jikumaru Y, Kinoshita N, Nambara E, Kamiya Y, Lopez-Molina L (2008) The gibberellic acid signaling repressor RGL2 inhibits Arabidopsis seed germination by stimulating abscisic acid synthesis and ABI5 activity. Plant Cell 20:2729–2745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Potokina E, Druka A, Luo Z, Wise R, Waugh R, Kearsey M (2008) Gene expression quantitative trait locus analysis of 16 000 barley genes reveals a complex pattern of genomewide transcriptional regulation. Plant J 53:90–101

    Article  CAS  PubMed  Google Scholar 

  • Rock CD (2000) Tansley Review No. 120: pathways to abscisic acid-regulated gene expression. New Phytol 148:357–396

    Article  CAS  Google Scholar 

  • Shu K, Liu X, Xie Q, He ZH (2016) Two faces of one seed: hormonal regulation of dormancy and germination. Mol Plant 9:34–45

    Article  CAS  PubMed  Google Scholar 

  • Simsek S, Ohm JB, Lu H, Rugg M, Berzonsky W, Alamri MS, Mergoum M (2014) Effect of pre-harvest sprouting on physicochemical changes of proteins in wheat. J Sci Food Agric 94:205–212

    Article  CAS  PubMed  Google Scholar 

  • Uno Y, Furihata T, Abe H, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K (2000) Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc Natl Acad Sci USA 97:11632–11637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Utsugi S, Nakamura S, Noda K, Maekawa M (2008) Structural and functional properties of Viviparous1 genes in dormant wheat. Genes Genet Syst 83:153–166

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Basten CJ, Zeng ZB (2007) Windows QTL cartographer 2.5. Department of statistics, North Carolina state university, Raleigh, NC

  • Xi W, Liu C, Hou X, Yu H (2010) MOTHER OF FT AND TFL1 regulates seed germination through a negative feedback loop modulating ABA signaling in Arabidopsis. Plant Cell 22:1733–1748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2005) Organization of cis-acting regulatory elements in osmotic-and cold-stress-responsive promoters. Trends Plant Sci 10:88–94

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Liu Y, Pu Z, Zhang L, Yuan Z, Chen G, Wei Y, Zheng Y, Liu D, Wang J (2014) Molecular characterization of high pI α-amylase and its expression QTL analysis in synthetic wheat RILs. Mol Breed 34:1075–1085

    Article  CAS  Google Scholar 

  • Yin Z, Meng F, Song H, Wang X, Chao M, Zhang G, Xu X, Deng D, Yu D (2011) GmFtsH9 expression correlates with in vivo photosystem II function: chlorophyll a fluorescence transient analysis and eQTL mapping in soybean. Planta 234:815–827

    Article  CAS  PubMed  Google Scholar 

  • Yoshida R, Umezawa T, Mizoguchi T, Takahashi S, Takahashi F, Shinozaki K (2006) The regulatory domain of SRK2E/OST1/SnRK2.6 interacts with ABI1 and integrates abscisic acid (ABA) and osmotic stress signals controlling stomatal closure in Arabidopsis. J Biol Chem 281:5310–5318

    Article  CAS  PubMed  Google Scholar 

  • Yu M, Chen GY (2013) Conditional QTL mapping for waterlogging tolerance in two RILs populations of wheat. Springerplus 2:245

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Basic Research Program of China (2014CB147200), the National Natural Science Foundation of China (31171555 and 31571654), the Research Fund for the Doctoral Program of Higher Education in China (20135103110008), and the Program for Scientific Research Team of Universities in Sichuan (KYTD201406).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-Rui Wang.

Ethics declarations

Conflict of interest

Ke Zhou, Jian Yang, Zao-Xia Wang, and Ji-Rui Wang, declares that they have no conflict of interest.

Studies with human or animal research

This article does not contain any studies with human subjects or animals performed by any of the authors.

Additional information

Ke Zhou and Jian Yang are Co-first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, K., Yang, J., Wang, ZX. et al. Sequence analysis and expression profiles of TaABI5, a pre-harvest sprouting resistance gene in wheat. Genes Genom 39, 161–171 (2017). https://doi.org/10.1007/s13258-016-0483-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-016-0483-6

Keywords

Navigation