Skip to main content
Log in

Mapping diploid wheat homologues of Arabidopsis seed ABA signaling genes and QTLs for seed dormancy

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Abscisic acid (ABA) sensitivity in embryos is one of the key factors in the seed dormancy of wheat. Many ABA signaling genes have been isolated in Arabidopsis, while only a few wheat homologues have been identified. In the present study, diploid wheat homologues to Arabidopsis ABA signaling genes were identified by in silico analysis, and mapped them using a population of diploid wheat recombinant inbred lines derived from a cross between Triticum monococcum (Tm) and T. boeoticum (Tb). Four diploid wheat homologues, TmVP1, TmABF, TmABI8 and TmERA1 were located on chromosome 3Am and TmERA3 was on the centromere region of chromosome 5Am. In two consecutive year trials, one major QTL on the long arm of 5Am, two minor QTLs on the long arm of 3Am and one minor QTL on the long arm of 4Am were detected. The 5Am QTL explained 20–27% of the phenotypic variations and the other three QTLs each accounted for approximately 10% of the phenotypic variations. Map positions of the loci of TmABF and TmABI8 matched the LOD peaks of the two QTLs on 3Am, indicating that these two homologues are possible candidate genes for seed dormancy QTLs. Moreover, we have found two SNPs result in amino acid substitutions in TmABF between Tb and Tm. Comparison of the marker positions of QTLs for seed dormancy of barley revealed that the largest QTL on 5Am may be orthologous to the barley seed dormancy QTL, SD1, whereas there seems no orthologous QTL to the corresponding barley SD2 locus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alonso JM, Hirayama T, Roman G, Nourizadeh S, Ecker JR (1999) EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science 284:2148–2152

    Article  PubMed  CAS  Google Scholar 

  • Altschul SF, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Bailey PC, Mckibbin RS, Lenton JR, Holdsworth MJ, Flintham JE, Gale MD (1999) Genetic map locations for orthologous Vp1 genes in wheat and rice. Theor Appl Genet 98:281–284

    Article  CAS  Google Scholar 

  • Bensmihen S, To A, Lambert G, Kroj T, Giraudat J, Parcy F (2004) Analysis of an activated ABI5 allele using a new selection method for transgenic Arabidopsis seeds. FEBS Lett 561:127–131

    Article  PubMed  CAS  Google Scholar 

  • Bentsink L, Jowett J, Hanhart CJ, Koornneef M (2006) Cloning of DOG1, a quantitative trait locus controlling seed dormancy in Arabidopsis. Proc Natl Acad Sci USA 103:17042–17047

    Article  PubMed  CAS  Google Scholar 

  • Brocard-Gifford I, Lynch TJ, Garcia ME, Malhotra B, Finkelstein RR (2004) The Arabidopsis thaliana ABSCISIC ACID-INSENSITIVE8 locus encodes a novel protein mediating abscisic acid and sugar responses essential for growth. Plant Cell 16:406–421

    Article  PubMed  CAS  Google Scholar 

  • Carles C, Bies-Etheve N, Aspart L, Léon-Kloosterziel, Koornneef M, Echeverria M, Delseny M (2002) Regulation of Arabidopsis thaliana Em genes: role of ABI5. Plant J. 30:373–383

    Article  PubMed  CAS  Google Scholar 

  • Castagna R, Maga G, Parenzin M, Heun M, Salamini F (1994) RFLP-based genetic relationships of einkorn wheats. Theor Appl Genet 88:818–823

    Article  CAS  Google Scholar 

  • Culter S, Ghasseiman M, Bonetta D, Cooney S, McCourt P (1996) A protein farnesyl transferase involved in abscisic acid signal transduction in Arabidopsis. Science 273:1239–1241

    Article  Google Scholar 

  • Devos KM, Dubcovsky J, Dvořák J, Chinoy CN, Gale MD (1995) Structural evolution of wheat chromosomes 4A, 5A, and 7B and its impact on recombination. Theor Appl Genet 91:282–288

    Article  CAS  Google Scholar 

  • Dubcovsky J, Luo MC, Zhong GY, Bransteitter R, Desai A, Kilian A, Kleinhofs A, Dvořák J (1996) Genetic map of diploid wheat, Triticum monococcum L., and its comparison with maps of Hordeum vulgare L. Genetics 143:983–999

    PubMed  CAS  Google Scholar 

  • Finkelstein RR, Lynch TJ (2000) The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor. Plant Cell 12:599–609

    Article  PubMed  CAS  Google Scholar 

  • Finkelstein RR, Gampala SSL, Rock CD (2002) Abscisic acid signaling in seeds and seedlings. Plant Cell 14(Suppl):S15–S45

    PubMed  CAS  Google Scholar 

  • Gao W, Clancy JA, Han F, Prada D, Kleinhofs A Ullrich SE (2003) Molecular dissection of a dormancy QTL region near the chromosome 7 (5H) L telomere in barley. Theor Appl Genet 107:552–559

    Article  PubMed  CAS  Google Scholar 

  • Ghassemian M, Nambara E, Cutler S, Kawaide H, Kamiya, McCourt P (2000) Regulation of abscisic acid signaling by the ethylene response pathway in Arabidopsis. Plant Cell 12:1117–1126

    Article  PubMed  CAS  Google Scholar 

  • Giraudat J, Hauge BM, Valon C, Smalle J, Parcy F, Goodman HM (1992) Isolation of the Arabidopsis ABI3 gene by positional cloning. Plant Cell 4:1251–1261

    Article  PubMed  CAS  Google Scholar 

  • Groos C, Gay G, Perretant MR, Bernard LGM, Dedryver F, Charmet G (2002) Study of the relationship between pre-harvest sprouting and grain color by quantitative trait loci analysis in a white x red grain bread−wheat cross. Theor Appl Genet 104:39–47

    Article  PubMed  CAS  Google Scholar 

  • Han F, Ullrich SE, Clancy JA, Romagosa I (1999) Inheritance and fine mapping of a major barley seed dormancy QTL. Plant Sci 143:113–118

    Article  CAS  Google Scholar 

  • Initiative, Arabidopsis genome (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

  • IRGSP (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Article  CAS  Google Scholar 

  • Jakoby M, Weisshaar B, Dröge-Laser W, Vincente-Carbajosa J, Tiedemann J, Kroj T, Parcy F (2002) bZip transcription factors in Arabidopsis. Trends Plant Sci 7:106–111

    Article  PubMed  CAS  Google Scholar 

  • Johnson RR, Wagner RL, Verhey SD, Walker-Simmons MK (2002) The abscisic acid-responsive kinase PKABA1 interacts with a seed-specific abscisic acid response elementbinding factor, TaABF, and phosphorylates TaABF peptide sequences. Plant Physiol 130:837–846

    Article  PubMed  Google Scholar 

  • Kato K, Nakamura W, Tabiki T, Miura H, Sawada S (2001) Detection of loci controlling seed dormancy on group 4 chromosomes of wheat and comparative mapping with rice and barley genomes. Theor Appl Genet 102:980–985

    Article  CAS  Google Scholar 

  • Korzun V, Röder MS, Wendehake K, Pasqualone A, Lotti C, Ganal MW, Blanco (1999) Integration of dinucleotide microsatellites from hexaploid bread wheat into a genetic linkage map of durum wheat. Theor Appl Genet 98:1202–1207

    Article  CAS  Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Google Scholar 

  • Kulwal PL, Singh R, Balyan HS, Gupta PK (2004) Genetic basis of pre-harvest sprouting tolerance using single-locus and two-locus QTL analyses in bread wheat. Funct Integr Genomics 4:94–101

    Article  PubMed  CAS  Google Scholar 

  • Le Corre V, Bernard M (1995) Assessment of the type and degree of restriction fragment length polymorphism (RFLP) in diploid species of the genus Triticum. Theor Appl Genet 90:1063–1067

    Article  CAS  Google Scholar 

  • Li C, Ni P, Francki M, Hunter A, Zhang Y, Schibeci D, Li H, Tarr A, Wang J, Cakir M, Yu J, Bellgard M, Lance R, Appels R (2004) Genes controlling seed dormancy and pre-harvest sprouting in a rice-wheat-barley comparison. Funct Integr Genomics 4:84–93

    Article  PubMed  CAS  Google Scholar 

  • Liu YG, Tsunewaki K (1991) Restriction fragment length polymorphism (RFLP) analysis in wheat II. Linkage maps of the RFLP sites in common wheat. Jpn J Genet 66:617–633

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Molina L, Mongrand S, McLachlin DT, Chait BT, Chua N-H (2002) ABI5 acts downstream of ABI3 to execute an ABA-dependent growth arrest during germination. Plant J 32:317–328

    Article  PubMed  CAS  Google Scholar 

  • Mano Y, Kawasaki S, Takaiwa F, Komatsuda T (2001) Construction of a genetic map of barley (Hordeum vulgare L.) cross ‘Azumamugi’ × ‘Kanto Nakate Gold’ using a simple and efficient amplified fragment-length polymorphism system. Genome 44:284–292

    Article  PubMed  CAS  Google Scholar 

  • Mares DJ, Mrva K, Tan MK, Sharp P (2002) Dormancy in white-grained wheat: Progress towards identification of genes and molecular markers. Euphytica 126:47–53

    Article  CAS  Google Scholar 

  • Mares D, Mrva K, Cheong J. Williams K, Watson B, Storlie E, Southerland M, Zou Y (2005) A QTL located on chromosome 4A associate with dormancy in white- and red-grained wheat of diverse origin. Theor Appl Genet 111:1357–1364

    Article  PubMed  CAS  Google Scholar 

  • McCarty DR (1995) Genetic control and integration of maturation and germination pathways in seed development. Annu Rev Plant Physiol Plant Mol Biol 46:71–93

    Article  CAS  Google Scholar 

  • McKibbin RS, Wilkinson MD, Bailey PC, Flintham JE, Andrew LM, Lazzeri PA, Gale MD, Lenton JR, Holdsworth MJ (2002) Transcripts of Vp-1 homeologues are misspliced in modern wheat and ancestral species. Proc Natl Acad Sci USA 99:10203–10208

    Article  PubMed  CAS  Google Scholar 

  • Mori M, Uchino N, Chono M, Kato K, Miura H (2005) Mapping QTLs for grain dormancy on chromosome 3A and the group 4 chromosomes, and their combined effect. Theor Appl Genet 110:1315–1323

    Article  PubMed  CAS  Google Scholar 

  • Nakamura S, Toyama T (2001) Isolation of a VP1 homologue from wheat and analysis of its expression in embryos of dormant and non-dormant cultivars. J Exp Bot 52:875–876

    Article  PubMed  CAS  Google Scholar 

  • Neff MM, Turk E, Kalishaman M (2002) Web-based primer design for single nucleotide polymorphism analysis. Trends Genet 18:613–615

    Article  PubMed  CAS  Google Scholar 

  • Oberthur LE, Dyer W, Blake TK, Ullrich SE (1995) Genetic analysis of seed dormancy in barley (Hordeum vulgare L.). J Quant Trait Loci 1:http://www.hordeum.oscs.montana.edu/class/oberthur/dormancy.html

  • Osa M, Kato K, Mori M, Shindo C, Torada A, Miura H. (2003) Mapping QTLs for seed dormancy and the Vp1 homologue on chromosome 3A in wheat. Theor Appl Genet 106:1491–1496

    PubMed  CAS  Google Scholar 

  • Page RDM (1996) TREEVIEW: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    PubMed  CAS  Google Scholar 

  • Rogers SO, Quatrano RS (1983) Morphological staging of wheat caryopsis development. Amer J Bot 70:308–311

    Article  Google Scholar 

  • Romagosa I, Prada D., Moralejo MA, Sopena A, Muñoz, Casas AM, Swanston JS, Molina-Cano JL (2001) Dormancy, ABA content and sensitivity of a mutant to ABA application during seed development and after ripening. J Exp Bot 52:1499–1506

    Article  PubMed  CAS  Google Scholar 

  • Saez A, Apostolova N, Gonzalez-Guzman M, Gonzalez-Garcia MP, Nicolas C, Lorenzo O, Rodriguez PL (2004) Gain-of-function and loss-of-function phenotypes of the protein phosphatase 2C HAB1 reveal its role as a negative regulator of abscisic acid signaling. Plant J 37:354–369

    Article  PubMed  CAS  Google Scholar 

  • Schweighofer A, Hirt H, Meskiene I (2004) Plant PP2C phosphatases: emerging functions in stress signaling. Trends Plant Sci 9:236–243

    Article  PubMed  CAS  Google Scholar 

  • Shindo C, Sasakuma T, Watanabe N, Noda K (2002) Two-gene system of vernalization requirement and narrow-sense earliness in einkorn wheat. Genome 45:563–569

    Article  PubMed  CAS  Google Scholar 

  • Söderman EM, Brocard IM, Lynch TJ, Finkelstein RR (2000) Regulation and function of the Arabidopsis ABA-insensitive 4 gene in seed and abscisic acid response signaling networks. Plant Physiol 124:1752–1765

    Article  PubMed  Google Scholar 

  • Somers DJ, Isasc P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114

    Article  PubMed  CAS  Google Scholar 

  • Torada A, Ikeguchi S, Koike M (2005) Mapping and validation of PCR-based markers associated with a major QTL for seed dormancy. Euphytica 143:251–255

    Article  CAS  Google Scholar 

  • Thomopson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucl Acids Res 22:4673–4680

    Article  Google Scholar 

  • Walker-Simmons MK (1987) ABA levels and sensitivity in developing wheat embryos of sprouting resistant and susceptible cultivars. Plant Physiol 84:61–66

    Article  PubMed  CAS  Google Scholar 

  • Walker-Simmons MK (1988) Enhancement of ABA responsiveness in wheat embryos at higher temperature. Plant Cell Environ 11:769–775

    Article  CAS  Google Scholar 

  • West MAL, Harada JJ (1993) Embryogenesis in higher plants: an overview. Plant Cell 5:1361–1369

    Article  PubMed  Google Scholar 

  • Zanetti S, Winzeler M, Keller M, Keller B, Messmer M (2000) Genetic analysis of pre-harvest sprouting resistance in a wheat x spelt cross. Crop Sci 40:1406–1417

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Professor T. Sasakuma at the Kihara Institute of Yokohama City University and Professor K. Noda, Okayama University for providing us with diploid wheat RILs for mapping, Dr. M. Sameri at the National Institute of Agrobiological Sciences, and Dr. Y. Turuspekov at Montana State University for their kind advice, Dr. S. Utsugi at Okayama University and Professor R.R. Finkelstein at University of California, Santa Barbara for critical reading of the manuscript, and H. Morishige, K. Kanamaru and H. Miki for their technical assistance. This research was supported by a Brand Nippon grant from the Ministry of Agriculture, Forestry and Fisheries of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shingo Nakamura.

Additional information

Communicated by M. Sorrells.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM1 (PDF 1.05 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakamura, S., Komatsuda, T. & Miura, H. Mapping diploid wheat homologues of Arabidopsis seed ABA signaling genes and QTLs for seed dormancy. Theor Appl Genet 114, 1129–1139 (2007). https://doi.org/10.1007/s00122-007-0502-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-007-0502-8

Keywords

Navigation