Skip to main content
Log in

Epigenetic variation of wild populations of the Pacific oyster Crassostrea gigas determined by methylation-sensitive amplified polymorphism analysis

  • Original Article
  • Biology
  • Published:
Fisheries Science Aims and scope Submit manuscript

Abstract

Epigenetic variation can provide insights into ecological and evolutionary processes of eukaryote well-being, and can also be useful information for the conservation and management of wildlife. DNA methylation, a major epigenetic mechanism, plays a central role in gene regulation and phenotype variation in eukaryote genomes. However, in natural invertebrate populations, the potential role of epigenetic variation in DNA methylation polymorphisms and the association between this and genetic profiles remains largely unknown. In this work, we estimated epigenetic diversity and differentiation of the Pacific oyster Crassostrea gigas, from seven natural Chinese and Korean populations using the fluorescent-labeled methylation-sensitive amplified polymorphism (F-MSAP) technique. In total, 636 MSAP loci revealed an unambiguous genome-wide methylation status (31.32–43.23% on average) as well as extensive epigenetic polymorphism (approximately 97%) at 5′-CCGG-3′ sites. The unweighted pair group method with arithmetic mean and principal coordinates analysis separated the seven C. gigas populations remarkably well, reflecting great epigenetic differentiation among populations, and in particular for the Korean population. Variation was higher in epigenetic structure than in genetic structure. Both multivariate analysis and a significantly different population molecular structure suggested that epigenetic variation might be determined by the combined effects of geographical barriers as well as current features and founder characteristics. A Mantel test showed a moderate but significant correlation between epigenetic and genetic profiles, indicating epigenetic variation coupled with genetic distribution in natural, wild C. gigas populations. This study provides some information on the role of DNA methylation in adaptive epigenetic divergence in wild marine bivalve populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aranishi F (2006) A novel mitochondrial intergenic spacer reflecting population structure of Pacific oyster. J Appl Genet 47:119–123

    Article  PubMed  Google Scholar 

  • Arias A, Freire R, Méndez J, Insua A (2010) Isolation and characterization of microsatellite markers in the queen scallop Aequipecten opercularis and their application to a population genetic study. Aquat Living Resour 23:199–207

    Article  CAS  Google Scholar 

  • Avramidou EV, Ganopoulos IV, Doulis AG, Tsaftaris AS, Aravanopoulos FA (2015) Beyond population genetics: natural epigenetic variation in wild cherry (Prunus avium). Tree Genet Genomes 11:95

    Article  Google Scholar 

  • Blouin MS, Thuillier V, Cooper B, Amarasinghe V, Cluzel L, Araki H, Grunau C (2010) No evidence for large differences in genomic methylation between wild and hatchery steelhead (Oncorhynchus mykiss). Can J Fish Aquat Sci 67:217–224

    Article  CAS  Google Scholar 

  • Bonasio R, Tu S, Reinberg D (2010) Molecular signals of epigenetic states. Science 330:612–616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonin A, Ehrich D, Manel S (2007) Statistical analysis of amplified fragment length polymorphism data: a toolbox for molecular ecologist and evolutionists. Mol Ecol 16:3737–3758

    Article  CAS  PubMed  Google Scholar 

  • Cervera MT, Ruiz-Garcia L, Martinez-Zapater J (2002) Analysis of DNA methylation in Arabidopsis thaliana based on methylation-sensitive AFLP markers. Mol Genet Genom 268:543–552

    Article  CAS  Google Scholar 

  • Chaney ML, Gracey AY (2011) Mass mortality in Pacific oysters is associated with a specific gene expression signature. Mol Ecol 20:2942–2954

    Article  PubMed  Google Scholar 

  • Díaz-Freije E, Gestal C, Castellanos-Martínez S, Morán P (2014) The role of DNA methylation on Octopus vulgaris development and their perspectives. Front Physiol 5:62

    Article  PubMed  PubMed Central  Google Scholar 

  • Dice LR (1945) Measures of the amount of ecologic association between species. Ecology 26:297–302

    Article  Google Scholar 

  • Faulk C, Dolinoy DC (2011) Timing is everything: the when and how of environmentally induced changes in the epigenome of animals. Epigenetics 6:791–797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng S, Jacobsen SE, Reik W (2010) Epigenetic reprogramming in plant and animal development. Science 330:622–627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao XL, Zheng XD, Bo QK, Li Q (2016) Population genetics of the common long-armed octopus Octopus minor (Sasaki, 1920) (Cephalopoda: Octopoda) in Chinese waters based on microsatellite analysis. Biochem Syst Ecol 66:129–136

    Article  CAS  Google Scholar 

  • Ghalambor CK, McKay JK, Carroll SP, Reznick DN (2007) Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Funct Ecol 21:394–407

    Article  Google Scholar 

  • Gonzalgo ML, Jones PA (1997) Mutagenic and epigenetic effects of DNA methylation. Mutat Res 386:107–118

    Article  CAS  PubMed  Google Scholar 

  • Grant-Downton R, Dickinson HG (2005) Epigenetics and its implications for plant biology. 1. The epigenetic network in plants. Ann Bot 96:1143–1164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo XM, He Y, Zhang LL, Lelong C, Jouaux A (2015) Immune and stress responses in oysters with insights on adaptation. Fish Shellfish Immun 46:107–119

    Article  CAS  Google Scholar 

  • He YY, Du Y, Li J, Liu P, Wang QY, Li ZX (2015) Analysis of DNA methylation in different tissues of Fenneropenaeus chinensis from the wild population and Huanghai no. 1. Acta Oceanol Sin 34:175–180

    Article  CAS  Google Scholar 

  • Herrera CM, Bazaga P (2010) Epigenetic differentiation and relationship to adaptive genetic divergence in discrete populations of the violet Viola cazorlensis. New Phytol 187:867–876

    Article  CAS  PubMed  Google Scholar 

  • Jablonka E, Lamb MJ (1998) Epigenetic inheritance in evolution. J Evol Biol 11:159–183

    Article  Google Scholar 

  • Jaccard P (1908) Nouvelles recherches sur la distribution florale. Bull Soc Vaud Sci Nat 44:223–270

    Google Scholar 

  • Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33:245–254

    Article  CAS  PubMed  Google Scholar 

  • Jensen JL, Bohonak AJ, Kelley ST (2005) Isolation by distance, web service. BMC Genet 6:13

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang Q, Li Q, Yu H, Kong LF (2013) Genetic and epigenetic variation in mass selection populations of Pacific oyster Crassostrea gigas. Genes Genom 35:641–647

    Article  Google Scholar 

  • Jiang Q, Li Q, Yu H, Kong LF (2016) Inheritance and variation of genomic DNA methylation in diploid and triploid Pacific oyster (Crassostrea gigas). Mar Biotechnol 18:124–132

    Article  CAS  PubMed  Google Scholar 

  • Kawabe S, Takada M, Shibuya R, Yokoyama Y (2010) Biochemical changes in oyster tissues and hemolymph during long-term air exposure. Fish Sci 76:841–855

    Article  CAS  Google Scholar 

  • Klose RJ, Bird AP (2006) Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci 31:89–97

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Yu H, Yu RH (2006) Genetic variability assessed by microsatellites in cultured populations of the Pacific oyster (Crassostrea gigas) in China. Aquaculture 259:95–102

    Article  CAS  Google Scholar 

  • Li YD, Shan XH, Liu XM, Hu LJ, Guo WL, Liu B (2008) Utility of the methylation-sensitive amplified polymorphism (MSAP) marker for detection of DNA methylation polymorphism and epigenetic population structure in a wild barley species (Hordeum brevisubulatum). Ecol Res 23:927–930

    Article  CAS  Google Scholar 

  • Li Q, Zhao XL, Kong L, Yu H (2013) Transcriptomic response to stress in marine bivalves. Invertebr Surviv J 10:84–93

    CAS  Google Scholar 

  • Li S, Li Q, Yu H, Kong LF, Liu SK (2015) Genetic variation and population structure of the Pacific oyster Crassostrea gigas in the northwestern Pacific inferred from mitochondrial COI sequences. Fish Sci 81:1071–1082

    Article  CAS  Google Scholar 

  • Liu S, Sun KP, Jiang TL, Ho JP, Liu B, Feng J (2012) Natural epigenetic variation in the female great roundleaf bat (Hipposideros armiger) populations. Mol Genet Genom 287:643–650

    Article  CAS  Google Scholar 

  • Liu S, Sun KP, Jiang TL, Feng J (2015) Natural epigenetic variation in bats and its role in evolution. J Exp Biol 218:100–106

    Article  PubMed  Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    CAS  PubMed  Google Scholar 

  • Miossec L, Le Deuff RM, Goulletquer P (2009) Alien species alert: Crassostrea gigas (Pacific oyster). ICES Coop Res Rep 299:1017–6195

    Google Scholar 

  • Morán P, Pérez-Figueroa A (2011) Methylation changes associated with early maturation stages in the Atlantic salmon. BMC Genet 12:86

    Article  PubMed  PubMed Central  Google Scholar 

  • Morris JR (2001) Genes, genetics, and epigenetics: a correspondence. Science 293:1103–1105

    Article  PubMed  Google Scholar 

  • Nei M (1978) Nei’s unbiased measures of genetic identity and genetic distance. Genetics 89:583–590

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ni LH, Li Q, Kong LF (2011) Microsatellites reveal fine-scale genetic structure of the Chinese surf clam Mactra chinensis (Mollusca, Bivalvia, Mactridae) in Northern China. Mar Ecol 32:488–497

    Article  Google Scholar 

  • Nicotra AB, Segal DL, Hoyle GL, Schrey AW, Verhoeven KJ, Richards CL (2015) Adaptive plasticity and epigenetic variation in response to warming in an Alpine plant. Ecol Evol 5:634–647

    Article  PubMed  PubMed Central  Google Scholar 

  • Ochogavía AC, Cervigni G, Selva JP, Echenique VC, Pessino SC (2009) Variation in cytosine methylation patterns during ploidy level conversions in Eragrostis curvula. Plant Mol Biol 70:17–29

    Article  PubMed  Google Scholar 

  • Palumbi SR (1994) Genetic divergence, reproductive isolation, and marine speciation. Annu Rev Ecol Evol S 25:547–572

    Article  Google Scholar 

  • Pérez-Figueroa A (2013) msap: a tool for the statistical analysis of methylationsensitive amplified polymorphism data. Mol Ecol Resour 13:522–527

    Article  PubMed  Google Scholar 

  • Rajasethupathy P, Antonov I, Sheridan R, Frey S, Sander C, Tuschl T, Kandel ER (2012) A role for neuronal piRNAs in the epigenetic control of memory-related synaptic plasticity. Cell 149:693–707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rando OJ, Verstrepen KJ (2007) Timescales of genetic and epigenetic inheritance. Cell 128:655–668

    Article  CAS  PubMed  Google Scholar 

  • Ren JF, Liu X, Jiang F, Guo XM, Liu B (2010) Unusual conservation of mitochondrial gene order in Crassostrea oysters: evidence for recent speciation in Asia. BMC Evol Biol 10:394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reyna-Lopez G, Simpson J, Ruiz-Herrera J (1997) Differences in DNA methylation patterns are detectable during the dimorphic transition of fungi by amplification of restriction polymorphisms. Mol Gen Genet 253:703–710

    Article  CAS  PubMed  Google Scholar 

  • Richards EJ (2006) Opinion-inherited epigenetic variation-revisiting soft inheritance. Nat Rev Genet 7:395–401

    Article  CAS  PubMed  Google Scholar 

  • Rico L, Ogaya R, Barbeta A, Penuelas J (2014) Changes in DNA methylation fingerprint of Quercus ilex trees in response to experimental field drought simulating projected climate change. Plant Biol 16:419–427

    Article  CAS  PubMed  Google Scholar 

  • Schulz B, Eckstein RL, Durka W (2014) Epigenetic variation reflects dynamic habitat conditions in a rare floodplain herb. Mol Ecol 23:3523–3537

    Article  PubMed  Google Scholar 

  • Shaked H, Kashkush K, Ozkan H, Feldman M, Levy AA (2001) Sequence elimination and cytosine methylation are rapid and reproducible responses of the genome to wide hybridization and allopolyploidy in wheat. Plant Cell 13:1749–1759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sneath PHA, Sokal RR (1973) Numerical taxonomy. The principles and practice of numerical classification. Freeman, San Francisco

    Google Scholar 

  • Vaughn MW, Tanurdžić M, Lippman Z, Jiang H, Carrasquillo R, Rabinowicz PD, Dedhia N, McCombie WR, Agier N, Bulski A, Colot V, Doerge RW, Martienssen RA (2007) Epigenetic natural variation in Arabidopsis thaliana. PLoS Biol 5:e174

    Article  PubMed  PubMed Central  Google Scholar 

  • Venetsky A, Levy-Zamir A, Khasdan V, Domb K, Kashkush K (2015) Structure and extent of DNA methylation-based epigenetic variation in wild emmer wheat (T. turgidum ssp. dicoccoides) populations. BMC Plant Biol 15:200

    Article  PubMed  PubMed Central  Google Scholar 

  • Via S, Gomulkiewicz R, De Jong G, Scheiner SM, Schlichting CD, Van Tienderen PH (1995) Adaptive phenotypic plasticity: consensus and controversy. Trends Ecol Evol 10:212–217

    Article  CAS  PubMed  Google Scholar 

  • Wenzel MA, Piertney SB (2014) Fine-scale population epigenetic structure in relation to gastrointestinal parasite load in red grouse (Lagopus lagopus scotica). Mol Ecol 23:4256–4273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeh FC, Yang RC, Boyle TBJ, Ye ZH, Mao JX (1999) POPGENE, version 1.32: the user-friendly software for population genetic analysis. Molecular Biology and Biotechnology Centre, University of Alberta, Canada

  • Zhong XX, Feng DD, Yu H, Kong LF, Li Q (2016) Genetic variation and breeding signature in mass selection lines of the Pacific oyster (Crassostrea gigas) assessed by SNP markers. PLoS One 11:e0150868

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank the Marine Mollusk Resource Bank of Korea for providing oyster samples of Korea. This study was supported by grants from the National Natural Science Foundation of China (31772843), the Key Research and Development Program of Shandong Province (2016ZDJS06A06), the Industrial Development Project of Qingdao City (17-3-3-64-nsh), and the Fundamental Research Funds for the Central Universities (201762014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Li, Q., Kong, L. et al. Epigenetic variation of wild populations of the Pacific oyster Crassostrea gigas determined by methylation-sensitive amplified polymorphism analysis. Fish Sci 84, 61–70 (2018). https://doi.org/10.1007/s12562-017-1154-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12562-017-1154-5

Keywords

Navigation