Skip to main content
Log in

Assessing and refining molecular dynamics simulations of proteins with nuclear magnetic resonance data

  • Review
  • Published:
Biophysical Reviews Aims and scope Submit manuscript

Abstract

The sophistication of the force fields, algorithms and hardware used for molecular dynamics (MD) simulations of proteins is continuously increasing. No matter how advanced the methodology, however, it is essential to evaluate the appropriateness of the structures sampled in a simulation by comparison with quantitative experimental data. Solution nuclear magnetic resonance (NMR) data are particularly useful for checking the quality of protein simulations, as they provide both structural and dynamic information on a variety of temporal and spatial scales. Here, various features and implications of using NMR data to validate and bias MD simulations are outlined, including an overview of the different types of NMR data that report directly on structural properties and of relevant simulation techniques. The focus throughout is on how to properly account for conformational averaging, particularly within the context of the assumptions inherent in the relationships that link NMR data to structural properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allison JR, van Gunsteren WF (2009) A method to explore protein side chain conformational variability using experimental data. Chem Phys Chem 10(18):3213–3228

    CAS  PubMed  Google Scholar 

  • Allison JR, Varnai P, Dobson CM, Vendruscolo M (2009) Determination of the free energy landscape of α-synuclein using spin label nuclear magnetic resonance measurements. J Am Chem Soc 131(51):18,314–18,326

    Article  CAS  Google Scholar 

  • Allison JR, Bergeler M, Hansen N, van Gunsteren WF (2011) Current computer modeling cannot explain why two highly similar sequences fold into different structures. Biochemistry 50(50):10,965–10,973

    Article  CAS  Google Scholar 

  • Allison JR, Hertig S, Missimer JH, Smith LJ, Steinmetz MO, Dolenc J (2012) Probing the structure and dynamics of proteins by combining molecular dynamics simulations and experimental NMR data. J Chem Theory Comput. doi:10.1021/ct300393b

  • Andronesi OC, Becker S, Seidel K, Heise H, Young HS, Baldus M (2005) Determination of membrane protein structure and dynamics by magic-angle-spinning solid-state NMR spectroscopy. J Am Chem Soc 127(37):12,965–12,974

    Article  CAS  Google Scholar 

  • Battiste JL, Wagner G (2000) Utilization of site-directed spin labeling and high-resolution heteronuclear nuclear magnetic resonance for global fold determination of large proteins with limited nuclear Overhauser effect data. Biochemistry 39(18):5355–5365

    Article  CAS  PubMed  Google Scholar 

  • Bax A (2003) Weak alignment offers new NMR opportunities to study protein structure and dynamics. Protein Sci 12(1):1–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beauchamp KA, Lin YS, Das R, Pande VS (2012) Are protein force fields getting better? A systematic benchmark on 524 diverse NMR measurements. J Chem Theory Comput 8(4):1409–1414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Best RB, Hummer G (2009) Optimized molecular dynamics force fields applied to the helix-coil transition of polypeptides. J Phys Chem B 113(26):9004–9015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Best RB, Vendruscolo M (2004) Determination of protein structures consistent with NMR order parameters. J Am Chem Soc 126(26):8090–8091

    Article  CAS  PubMed  Google Scholar 

  • Blackledge M (2005) Recent progress in the study of biomolecular structure and dynamics in solution from residual dipolar couplings. Prog Nucl Magn Reson Spectrosc 46(1):23–61

    Article  CAS  Google Scholar 

  • Boelens R, Koning TMG, Kaptein R (1988) Determination of biomolecular structures from proton-proton NOE’s using a relaxation matrix approach. J Mol Struct 173:299–311

    Article  CAS  Google Scholar 

  • Bonvin AM, Brünger AT (1995) Conformational variability of solution nuclear magnetic resonance structures. J Mol Biol 250(1):80–93

    Article  CAS  PubMed  Google Scholar 

  • Bonvin AMJJ, Boelens R, Kaptein R (1994) Time- and ensemble-averaged direct NOE restraints. J Biomol NMR 4(1):143–149

    Article  CAS  PubMed  Google Scholar 

  • Borgias BA, James TL (1990) MARDIGRAS - a procedure for matrix analysis of relaxation for discerning geometry of an aqueous structure. J Magn Reson 87(3):475–487

    CAS  Google Scholar 

  • Borgias BA, Gochin M, Kerwood DJ, James TL (1990) Relaxation matrix analysis of 2D NMR data. Prog Nucl Magn Reson Spectrosc 22(1):83–100

    Article  CAS  Google Scholar 

  • Brown WM, Wang P, Plimpton SJ, Tharrington AN (2011) Implementing molecular dynamics on hybrid high performance computers - short range forces. Comp Phys Comm 182(4):898–911

    Article  CAS  Google Scholar 

  • Brünger AT (1992) Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature 355(6359):472–475

    Article  PubMed  Google Scholar 

  • Brünger AT (1993) Assessment of phase accuracy by cross validation: the free R value. Methods and applications. Acta Crystallogr D Biol Crystallogr 49(Pt 1):24–36

    Article  PubMed  Google Scholar 

  • Brünger AT, Clore GM, Gronenborn AM, Saffrich R, Nilges M (1993) Assessing the quality of solution nuclear magnetic resonance structures by complete cross-validation. Science 261(5119):328–331

    Article  PubMed  Google Scholar 

  • Brüschweiler R, Case DA (1994) Adding harmonic motion to the Karplus relation for spin-spin coupling. J Am Chem Soc 116(24):11,199–11,200

    Article  Google Scholar 

  • Brüschweiler R, Roux B, Blackledge M, Griesinger C, Karplus M, Ernst RR (1992) Influence of rapid intramolecular motion on NMR cross-relaxation rates. A moleculardynamics study of antamanide in solution. J Am Chem Soc 114(7):2289–2302

    Article  Google Scholar 

  • Bryant RG (1983) The NMR time scale. J Chem Edu 60(11):933

    Article  CAS  Google Scholar 

  • Buck M, Bouguet-Bonnet S, Pastor RW, MacKerell AD (2006) Importance of the CMAP correction to the CHARMM22 protein force field: dynamics of hen lysozyme. Biophys J 90(4):L36–L38

    Article  CAS  PubMed  Google Scholar 

  • Bühl M, van Mourik T (2011) NMR spectroscopy: quantum-chemical calculations. WIREs: Comput Mol Sci 1(4):634–647

    Google Scholar 

  • Bürgi R, Pitera J, van Gunsteren WF (2001) Assessing the effect of conformational averaging on the measured values of observables. J Biomol NMR 19(4):305–320

    Article  PubMed  Google Scholar 

  • Camilloni C, Robustelli P, Simone AD, Cavalli A, Vendruscolo M (2012) Characterization of the conformational equilibrium between the two major substates of RNase A using NMR chemical shifts. J Am Chem Soc 134(9):3968–3971

    Article  CAS  PubMed  Google Scholar 

  • Case DA (1995) Calibration of ring-current effects in proteins and nucleic acids. J Biomol NMR 6(4):341–346

    Article  CAS  PubMed  Google Scholar 

  • Castellani F, van Rossum B, Diehl A, Schubert M, Rehbein K, Oschkinat H (2002) Structure of a protein determined by solid-state magic-angle-spinning NMR spectroscopy. Nature 420(6911):98–102

    Article  CAS  PubMed  Google Scholar 

  • Chandrasekhar I, Clore GM, Szabo A, Gronenborn AM, Brooks BR (1992) A 500 ps molecular dynamics simulation study of interleukin-1β in water: correlation with nuclear magnetic resonance spectroscopy and crystallography. J Mol Biol 226(1):239–250

    Article  CAS  PubMed  Google Scholar 

  • Choy WY, Mulder FA, Crowhurst KA, Muhandiram DR, Millett IS, Doniach S, Forman-Kay JD, Kay LE (2002) Distribution of molecular size within an unfolded state ensemble using small-angle X-ray scattering and pulse field gradient NMR techniques. J Mol Biol 316(1):101–112

    Article  CAS  PubMed  Google Scholar 

  • Christen M, Keller B, van Gunsteren WF (2007) Biomolecular structure refinement based on adaptive restraints using local-elevation simulation. J Biomol NMR 39(4):265–273

    Article  CAS  PubMed  Google Scholar 

  • Clore GM, Iwahara J (2009) Theory, practice, and applications of paramagnetic relaxation enhancement for the characterization of transient low-population states of biological macromolecules and their complexes. Chem Rev 109(9):4108–4139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clore GM, Schwieters CD (2004) How much backbone motion in ubiquitin is required to account for dipolar coupling data measured in multiple alignment media as assessed by independent cross-validation? J Am Chem Soc 126(9):2923–2938

    Article  CAS  PubMed  Google Scholar 

  • Clore GM, Schwieters CD (2006) Concordance of residual dipolar couplings, backbone order parameters and crystallographic B-factors for a small α/β protein: a unified picture of high probability, fast atomic motions in proteins. J Mol Biol 355(5):879–886

    Article  CAS  PubMed  Google Scholar 

  • Clore G, Starich M, Gronenborn A (1998) Measurement of residual dipolar couplings of macromolecules aligned in the nematic phase of a colloidal suspension of rod-shaped viruses. J Am Chem Soc 120(40):10,571–10,572

    Article  CAS  Google Scholar 

  • Cornilescu G, Delaglio F, Bax A (1999) Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J Biomol NMR 13(3):289–302

    Article  CAS  PubMed  Google Scholar 

  • Daura X, Antes I, van Gunsteren WF, Thiel W, Mark AE (1999) The effect of motional averaging on the calculation of NMR-derived structural properties. Proteins Struct Funct Bioinform 36(4):542–555

    Article  CAS  Google Scholar 

  • Daura X, Gademann K, Schäfer H, Jaun B, Seebach D, van Gunsteren WF (2001) The β-peptide hairpin in solution: conformational study of a β-hexapeptide in methanol by NMR spectroscopy and MD simulation. J Am Chem Soc 123(10):2393–2404

    Article  CAS  PubMed  Google Scholar 

  • de Dios A, Pearson J, Oldfield E (1993) Secondary and tertiary structural effects on protein NMR chemical shifts: an ab initio approach. Science 260(5113):1491–1496

    Article  PubMed  Google Scholar 

  • De Simone A, Richter B, Salvatella X, Vendruscolo M (2009) Toward an accurate determination of free energy landscapes in solution states of proteins. J Am Chem Soc 131(11):3810–3811

    Article  PubMed  CAS  Google Scholar 

  • Dedmon MM, Lindorff-Larsen K, Christodoulou J, Vendruscolo M, Dobson CM (2005) Mapping long-range interactions in alpha-synuclein using spin-label NMR and ensemble molecular dynamics simulations. J Am Chem Soc 127(2):476–477

    Article  CAS  PubMed  Google Scholar 

  • Dolenc J, Missimer JH, Steinmetz MO, van Gunsteren WF (2010) Methods of NMR structure refinement: molecular dynamics simulations improve the agreement with measured NMR data of a C-terminal peptide of GCN4-p1. J Biomol NMR 47(3):221–235

    Article  CAS  PubMed  Google Scholar 

  • Donaldson LW, Skrynnikov NR, Choy WY, Muhandiram DR, Sarkar B, Forman-Kay JD, Kay LE (2001) Structural characterization of proteins with an attached ATCUN motif by paramagnetic relaxation enhancement NMR spectroscopy. J Am Chem Soc 123(40):9843–9847

    Article  CAS  PubMed  Google Scholar 

  • Duan Y, Wu C, Chowdhury S, Lee MC, Xiong G, Zhang W, Yang R, Cieplak P, Luo R, Lee T, Caldwell J, Wang J, Kollman P (2003) A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J Comput Chem 24(16):1999–2012

    Article  CAS  PubMed  Google Scholar 

  • Edmondson SP (1992) NOE R-factors and structural refinement using FIRM, an iterative relaxation matrix program. J Magn Reson 98(2):283–298

    CAS  Google Scholar 

  • Eghbalnia HR, Wang L, Bahrami A, Assadi A, Markley J (2005) Protein energetic conformational analysis from NMR chemical shifts (PECAN) and its use in determining secondary structural elements. J Biomol NMR 32(1):71–81

    Article  CAS  PubMed  Google Scholar 

  • Eichenberger AP, Smith LJ, van Gunsteren WF (2012) Ester-linked hen egg white lysozyme shows a compact fold in a molecular dynamics simulation - possible causes and sensitivity of experimentally observable quantities to structural changes maintaining this compact fold. FEBS J 279(2):299–315

    Article  CAS  PubMed  Google Scholar 

  • Eriksson MAL, Berglund H, Härd T, Nilsson L (1993) A comparison of 15N NMR relaxation measurements with a molecular dynamics simulation: backbone dynamics of the glucocorticoid receptor DNA-binding domain. Proteins Struct Funct Bioinform 17(4):375–390

    Article  CAS  Google Scholar 

  • Esteban-Martín S, Fenwick RB, Salvatella X (2010) Refinement of ensembles describing unstructured proteins using NMR residual dipolar couplings. J Am Chem Soc 132(13):4626–4632

    Article  PubMed  CAS  Google Scholar 

  • Fawzi NL, Phillips AH, Ruscio JZ, Doucleff M, Wemmer DE, Head-Gordon T (2008) Structure and dynamics of the Aβ21-30 peptide from the interplay of NMR experiments and molecular simulations. J Am Chem Soc 130(19):6145–6158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fennen J, Torda AE, van Gunsteren WF (1995) Structure refinement with molecular dynamics and a Boltzmann-weighted ensemble. J Biomol NMR 6(2):163–70

    Article  CAS  PubMed  Google Scholar 

  • Fenwick RB, Esteban-Martíın S, Richter B, Lee D, Walter KFA, Milovanovic D, Becker S, Lakomek NA, Griesinger C, Salvatella X (2011) Weak long-range correlated motions in a surface patch of ubiquitin involved in molecular recognition. J Am Chem Soc 133(27):10,336–10,339

    Article  CAS  Google Scholar 

  • Francis C, Lindorff-Larsen K, Best RB, Vendruscolo M (2006) Characterization of the residual structure in the unfolded state of the Δ131Δ fragment of staphylococcal nuclease. Proteins Struct Funct Bioinform 65(1):145–152

    Article  CAS  Google Scholar 

  • Frank A, Möller HM, Exner TE (2012) Toward the quantum chemical calculation of NMR chemical shifts of proteins. 2. Level of theory, basis set, and solvents model dependence. J Chem Theory Comput 8(4):1480–1492

    Article  CAS  PubMed  Google Scholar 

  • Gillespie JR, Shortle D (1997) Characterization of long-range structure in the denatured state of staphylococcal nuclease. I. Paramagnetic relaxation enhancement by nitroxide spin labels. J Mol Biol 268(1):158–169

    Article  CAS  PubMed  Google Scholar 

  • Glättli A, van Gunsteren WF (2004) Are NMR-derived model structures for β-peptides representative for the ensemble of structures adopted in solution? Angew Chem Int Ed 43(46):6312–6316

    Article  CAS  Google Scholar 

  • Haasnoot CAG, de Leeuw FAAM, de Leeuw HPM, Altona C (1979) Interpretation of vicinal proton-proton coupling constants by a generalized Karplus relation. conformational analysis of the exocyclic C4’-C5’ bond in nucleosides and nucleotides: Preliminary communication. Recl Trav Chim Pays-Bas 98(12):576–577

    Article  CAS  Google Scholar 

  • Haasnoot CAG, De Leeuw FAAM, De Leeuw HPM, Altona C, (1981) Relationship between proton-proton NMR coupling constants and substituent electronegativities. III. Conformational analysis of proline rings in solution using a generalized Karplus equation. Biopolymers 20(6):1211–1245

    Article  CAS  Google Scholar 

  • Habeck M, Rieping W, Nilges M (2005) Bayesian estimation of Karplus parameters and torsion angles from three-bond scalar couplings constants. J Magn Reson 177(1):160–165

    Article  CAS  PubMed  Google Scholar 

  • Hamelberg D, Mongan J, McCammon JA (2004) Accelerated molecular dynamics: a promising and efficient simulation method for biomolecules. J Chem Phys 120(24):11,919–11,929

    Article  CAS  Google Scholar 

  • Han B, Liu Y, Ginzinger S, Wishart D (2011) SHIFTX2: significantly improved protein chemical shift prediction. J Biomol NMR 50(1):43–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hansen MR, Mueller L, Pardi A (1998) Tunable alignment of macromolecules by filamentous phage yields dipolar coupling interactions. Nat Struct Mol Biol 5(12):1065–1074

    Article  CAS  Google Scholar 

  • Hess B, Scheek RM (2003) Orientation restraints in molecular dynamics simulations using time and ensemble averaging. J Mag Reson 164(1):19–27

    Article  CAS  Google Scholar 

  • Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C (2006) Comparison of multiple amber force fields and development of improved protein backbone parameters. Proteins Struct Funct Bioinform 65(3):712–725

    Article  CAS  Google Scholar 

  • Huber T, Torda AE, van Gunsteren WF (1994) Local elevation: A method for improving the searching properties of molecular dynamics simulation. J Comput Aided Mol Des 8(6):695–708

    Article  CAS  PubMed  Google Scholar 

  • Imai K, Osawa E (1990) An empirical extension of the Karplus equation. Magn Reson Chem 28(8):668–674

    Article  CAS  Google Scholar 

  • Kalk A, Berendsen HJC (1976) Proton magnetic relaxation and spin diffusion in proteins. J Magn Reson 24(3):343–366

    CAS  Google Scholar 

  • Kaminski GA, Friesner RA, Tirado-Rives J, Jorgensen WL (2001) Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J Phys Chem B 105(28):6474–6487

    Article  CAS  Google Scholar 

  • Karplus M (1959) Contact electron-spin coupling of nuclear magnetic moments. J Chem Phys 30(1):11–15

    Article  CAS  Google Scholar 

  • Keepers JW, James TL (1984) A theoretical study of distance determinations from NMR. Two-dimensional nuclear Overhauser effect spectra. J Magn Reson 57(3):404–426

    CAS  Google Scholar 

  • Keller B, Christen M, Oostenbrink C, van Gunsteren WF (2007) On using oscillating time-dependent restraints in MD simulation. J Biomol NMR 37(1):1–14

    Article  CAS  PubMed  Google Scholar 

  • Kemmink J, van Mierlo CPM, Scheek RM, Creighton TE (1993) Local structure due to an aromatic-amide interaction observed by 1H-nuclear magnetic resonance spectroscopy in peptides related to the N terminus of bovine pancreatic trypsin inhibitor. J Mol Biol 230(1):312–322

    Article  CAS  PubMed  Google Scholar 

  • Kessler H, Griesinger C, Lautz J, Mueller A, van Gunsteren WF, Berendsen HJC (1988) Conformational dynamics detected by nuclear magnetic resonance NOE values and J coupling constants. J Am Chem Soc 110(11):3393–3396

    Article  CAS  Google Scholar 

  • Kjaergaard M, Poulsen FM (2012) Disordered proteins studied by chemical shifts. Prog Nucl Magn Reson Spectrosc 60:42–51

    Article  CAS  PubMed  Google Scholar 

  • Klepeis JL, Lindorff-Larsen K, Dror RO, Shaw DE (2009) Long-timescale molecular dynamics simulations of protein structure and function. Curr Opin Struct Biol 19(2):120–127

    Article  CAS  PubMed  Google Scholar 

  • Koenig B, Hu JS, Ottiger M, Bose S, Hendler R, Bax A (1999) NMR measurement of dipolar couplings in proteins aligned by transient binding to purple membrane fragments. J Am Chem Soc 121(6):1385–1386

    Article  CAS  Google Scholar 

  • Koerdel J, Teleman O (1992) Backbone dynamics of calbindin D9k: comparison of molecular dynamics simulations and 15N NMR relaxation measurements. J Am Chem Soc 114(12):4934–4936

    Article  CAS  Google Scholar 

  • Kohlhoff KJ, Robustelli P, Cavalli A, Salvatella X, Vendruscolo M (2009) Fast and accurate predictions of protein NMR chemical shifts from interatomic distances. J Am Chem Soc 131(39):13,894–13,895

    Article  CAS  Google Scholar 

  • Kristjansdottir S, Lindorff-Larsen K, Fieber W, Dobson CM, Vendruscolo M, Poulsen FM (2005) Formation of native and non-native interactions in ensembles of denatured ACBP molecules from paramagnetic relaxation enhancement studies. J Mol Biol 347(5):1053–1062

    Article  CAS  PubMed  Google Scholar 

  • Lange OF, van der Spoel D, de Groot BL (2010) Scrutinizing molecular mechanics force fields on the submicrosecond timescale with NMR data. Biophys J 99(2):647–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leeflang B, Kroon-Batenburg L (1992) CROSREL: Full relaxation matrix analysis for NOESY and ROESY NMR spectroscopy. J Biomol NMR 2(5):495–518

    Article  CAS  Google Scholar 

  • Li DW, Brüschweiler R (2009) Certification of molecular dynamics trajectories with NMR chemical shifts. J Phys Chem Lett 1(1):246–248

    Article  CAS  Google Scholar 

  • Lindorff-Larsen K, Vendruscolo M, Paci E, Dobson CM (2004) Transition states for protein folding have native topologies despite high structural variability. Nat Struct Mol Biol 11(5):443–449

    Article  CAS  PubMed  Google Scholar 

  • Lindorff-Larsen K, Best RB, Depristo MA, Dobson CM, Vendruscolo M (2005a) Simultaneous determination of protein structure and dynamics. Nature 433(7022):128–132

    Article  CAS  PubMed  Google Scholar 

  • Lindorff-Larsen K, Best RB, Vendruscolo M (2005b) Interpreting dynamically-averaged scalar couplings in proteins. J Biomol NMR 32(4):273–280

    Article  CAS  PubMed  Google Scholar 

  • Lindorff-Larsen K, Piana S, Palmo K, Maragakis P, Klepeis JL, Dror RO, Shaw DE (2010) Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins Struct Funct Bioinform 78(8):1950–1958

    CAS  Google Scholar 

  • Lindorff-Larsen K, Maragakis P, Piana S, Eastwood MP, Dror RO, Shaw DE (2012a) Systematic validation of protein force fields against experimental data. PLoS One 7(2):e32,131

    Article  CAS  Google Scholar 

  • Lindorff-Larsen K, Trbovic N, Maragakis P, Piana S, Shaw DE (2012b) Structure and dynamics of an unfolded protein examined by molecular dynamics simulation. J Am Chem Soc 134(8):3787–3791

    Article  CAS  PubMed  Google Scholar 

  • Linge JP, Habeck M, Rieping W, Nilges M (2004) Correction of spin diffusion during iterative automated NOE assignment. J Magn Reson 167(2):334–342

    Article  CAS  PubMed  Google Scholar 

  • Louhivuori M, Otten R, Lindorff-Larsen K, Annila A (2006) Conformational fluctuations affect protein alignment in dilute liquid crystal media. J Am Chem Soc 128(13):4371–4376

    Article  CAS  PubMed  Google Scholar 

  • Louhivuori M, Otten R, Salminen T, Annila A (2007) Evidence of molecular alignment fluctuations in aqueous dilute liquid crystalline media. J Biomol NMR 39(2):141–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mackerell ADJ (2004) Empirical force fields for biological macromolecules: overview and issues. J Comput Chem 25(13):1584–1604

    Article  CAS  PubMed  Google Scholar 

  • Mackerell AD, Bashford D, Bellott RL, Dunbrack RL, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiórkiewicz-Kuczera J, Yin D, Karplus M (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102(18):3586–3616

    Article  CAS  PubMed  Google Scholar 

  • Mackerell AD, Feig M, Brooks CL (2004) Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. J Comput Chem 25(11):1400–1415

    Article  CAS  PubMed  Google Scholar 

  • Manolikas T, Herrmann T, Meier BH (2008) Protein structure determination from 13C spin-diffusion solid-state NMR spectroscopy. J Am Chem Soc 130(12):3959–3966

    Article  CAS  PubMed  Google Scholar 

  • Maragakis P, Lindorff-Larsen K, Eastwood MP, Dror RO, Klepeis JL, Arkin IT, Jensen MO, Xu H, Trbovic N, Friesner RA, Palmer AG, Shaw DE (2008) Microsecond molecular dynamics simulation shows effect of slow loop dynamics on backbone amide order parameters of proteins. J Phys Chem B 112(19):6155–6158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marion D, Genest M, Ptak M (1987) Reconstruction of NOESY maps: a requirement for a reliable conformational analysis of biomolecules using 2D NMR. Biophys Chem 28(3):235–244

    Article  CAS  PubMed  Google Scholar 

  • Markwick PRL, Sprangers R, Sattler M (2002) Dynamic effects on J-couplings across hydrogen bonds in proteins. J Am Chem Soc 125(3):644–645

    Article  CAS  Google Scholar 

  • Markwick PRL, Bouvignies G, Blackledge M (2007) Exploring multiple timescale motions in protein GB3 using accelerated molecular dynamics and NMR spectroscopy. J Am Chem Soc 129(15):4724–4730

    Article  CAS  PubMed  Google Scholar 

  • Markwick PRL, Bouvignies G, Salmon L, McCammon JA, Nilges M, Blackledge M (2009) Toward a unified representation of protein structural dynamics in solution. J Am Chem Soc 131(46):16,968–16,975

    Article  CAS  Google Scholar 

  • Markwick PRL, Cervantes CF, Abel BL, Komives EA, Blackledge M, McCammon JA (2010) Enhanced conformational space sampling improves the prediction of chemical shifts in proteins. J Am Chem Soc 132(4):1220–1221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marsh JA, Singh VK, Jia Z, Forman-Kay JD (2006) Sensitivity of secondary structure propensities to sequence differences between α- and γ-synuclein: implications for fibrillation. Prot Sci 15(12):2795–2804

    Article  CAS  Google Scholar 

  • McCammon J, Gelin B, Karplus M (1977) Dynamics of folded proteins. Nature 267:585–590

    Article  CAS  PubMed  Google Scholar 

  • Meiler J (2003) PROSHIFT: protein chemical shift prediction using artificial neural networks. J Biomol NMR 26(1):25–37

    Article  CAS  PubMed  Google Scholar 

  • Mierke DF, Scheek RM, Kessler H (1994) Coupling constants as restraints in ensemble distance driven dynamics. Biopolymers 34(4):559–563

    Article  CAS  Google Scholar 

  • Missimer JH, Dolenc J, Steinmetz MO, van Gunsteren WF (2010) Exploring the trigger sequence of the GCN4 coiled-coil: biased molecular dynamics resolves apparent inconsistencies in NMR measurements. Prot Sci 19(12):2462–2474

    Article  CAS  Google Scholar 

  • Mulder FAA, Filatov M (2010) NMR chemical shift data and ab initio shielding calculations: emerging tools for protein structure determination. Chem Soc Rev 39(2):578–590

    Article  CAS  PubMed  Google Scholar 

  • Nanzer AP, Torda AE, Bisang C, Weber C, Robinson JA, van Gunsteren WF (1997) Dynamical studies of peptide motifs in the Plasmodium falciparum circumsporozoite surface protein by restrained and unrestrained MD simulations. J Mol Biol 267(4):1012–1025

    Article  CAS  PubMed  Google Scholar 

  • Neal S, Nip AM, Zhang H, Wishart DS (2003) Rapid and accurate calculation of protein 1 H, 13 C and 15 N chemical shifts. J Biomol NMR 26(3):215–240

    Article  CAS  PubMed  Google Scholar 

  • Nielsen JT, Eghbalnia HR, Nielsen NC (2012) Chemical shift prediction for protein structure calculation and quality assessment using an optimally parameterized force field. Prog Nucl Magn Reson Spectrosc 60:1–28

    Article  CAS  PubMed  Google Scholar 

  • Niggli DA, Ebert MO, Lin Z, Seebach D, van Gunsteren WF (2012) Helical content of a β3-octapeptide in methanol: molecular dynamics simulations explain a seemingdiscrepancy between conclusions derived from CD and NMR data. Chem Eur J 18(2):586–593

    Article  CAS  PubMed  Google Scholar 

  • Oldfield E (2002) Chemical shifts in amino acids, peptides, and proteins: from quantum chemistry to drug design. Annu Rev Phys Chem 53(1):349–378

    Article  CAS  PubMed  Google Scholar 

  • Osapay K, Case DA (1991) A new analysis of proton chemical shifts in proteins. J Am Chem Soc 113(25):9436–9444

    Article  CAS  Google Scholar 

  • Paci E, Vendruscolo M, Dobson CM, Karplus M (2002) Determination of a transition state at atomic resolution from protein engineering data. J Mol Biol 324(1):151–163

    Article  CAS  PubMed  Google Scholar 

  • Paci E, Friel CT, Lindorff-Larsen K, Radford SE, Karplus M, Vendruscolo M (2004) Comparison of the transition state ensembles for folding of Im7 and Im9 determined using all-atom molecular dynamics simulations with φ value restraints. Proteins Struct Funct Bioinform 54(3):513–525

    Article  CAS  Google Scholar 

  • Paci E, Greene LH, Jones RM, Smith LJ (2005) Characterization of the molten globule state of retinol-binding protein using a molecular dynamics simulation approach. FEBS J 272(18):4826–4838

    Article  CAS  PubMed  Google Scholar 

  • Palmer AG, Case DA (1992) Molecular dynamics analysis of NMR relaxation in a zinc-finger peptide. J Am Chem Soc 114(23):9059–9067

    Article  CAS  Google Scholar 

  • Pardi A, Billeter M, Wüthrich K (1984) Calibration of the angular dependence of the amide proton-Cα proton coupling constants, 3 J HNα, in a globular protein: use of 3 J HNα for identification of helical secondary structure. J Mol Biol 180(3):741–751

    Article  CAS  PubMed  Google Scholar 

  • Pastore A, Saudek V (1990) The relationship between chemical shift and secondary structure in proteins. J Magn Reson 90(1):165–176

    CAS  Google Scholar 

  • Pérez C, Löhr F, Rüterjans H, Schmidt J (2001) Self-consistent Karplus parametrization of 3J-couplings depending on the polypeptide side-chain torsion χ1. J Am Chem Soc 123(29):7081–7093

    Article  PubMed  CAS  Google Scholar 

  • Peter C, Rueping M, Wörner HJ, Jaun B, Seebach D, van Gunsteren WF (2003) Molecular dynamics simulations of small peptides: can one derive conformational preferences from ROESY spectra? Chem Eur J 9(23):5838–5849

    Article  CAS  PubMed  Google Scholar 

  • Peti W, Smith L, Redfield C, Schwalbe H (2001) Chemical shifts in denatured proteins: Resonance assignments for denatured ubiquitin and comparisons with other denatured proteins. J Biomol NMR 19(2):153–165

    Article  CAS  PubMed  Google Scholar 

  • Philippopoulos M, Mandel AM, Palmer AG, Lim C (1997) Accuracy and precision of NMR relaxation experiments and MD simulations for characterizing protein dynamics. Proteins: Struct Funct Bioinform 28(4):481–493

    Article  CAS  Google Scholar 

  • Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kalé L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26(16):1781–1802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piana S, Lindorff-Larsen K, Shaw D (2011) How robust are protein folding simulations with respect to force field parameterization? Biophys J 100(9):L47–L49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comp Phys 117(1):1–19

    Article  CAS  Google Scholar 

  • Post CB, Meadows RP, Gorenstein DG (1990) On the evaluation of interproton distances for three-dimensional structure determination by NMR using a relaxation rate matrix analysis. J Am Chem Soc 112(19):6796–6803

    Article  CAS  Google Scholar 

  • Richter B, Gsponer J, Várnai P, Salvatella X, Vendruscolo M (2007) The MUMO (minimal under-restraining minimal over-restraining) method for the determination of native state ensembles of proteins. J Biomol NMR 37(2):117–135

    Article  CAS  PubMed  Google Scholar 

  • Robustelli P, Kohlhoff K, Cavalli A, Vendruscolo M (2010) Using NMR chemical shifts as structural restraints in molecular dynamics simulations of proteins. Structure 18(8):923–933

    Article  CAS  PubMed  Google Scholar 

  • Robustelli P, Stafford KA, Palmer AG (2012) Interpreting protein structural dynamics from NMR chemical shifts. J Am Chem Soc 134(14):6365–6374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanders CR, Hare BJ, Howard KP, Prestegard JH (1994) Magnetically-oriented phospholipid micelles as a tool for the study of membrane-associated molecules. Prog Nucl Magn Reson Spectrosc 26(Part 5):421–444

    Article  CAS  Google Scholar 

  • Sass J, Cordier F, Hoffmann A, Rogowski M, Cousin A, Omichinski J, Lowen H, Grzesiek S (1999) Purple membrane induced alignment of biological macromolecules in the magnetic field. J Am Chem Soc 121(10):2047–2055

    Article  CAS  Google Scholar 

  • Sass HJ, Musco G, Stahl SJ, Wingfield PT, Grzesiek S (2000) Solution NMR of proteins within polyacrylamide gels: diffusional properties and residual alignment by mechanical stress or embedding of oriented purple membranes. J Biomol NMR 18(4):303–309

    Article  CAS  PubMed  Google Scholar 

  • Saupe A (1968) Recent results in the field of liquid crystals. Angew Chem Int Ed 7(2):97–112

    Article  CAS  Google Scholar 

  • Scheek R, Torda A, Kemmink J, van Gunsteren W (1991) Computational aspects of the study of biological macromolecules by NMR, NATO ASI Series A225. Plenum Press, New York, pp 209–217

  • Schmid N, Bötschi M, Van Gunsteren WF (2010) A GPU solvent-solvent interaction calculation accelerator for biomolecular simulations using the GROMOS software. J Comput Chem 31(8):1636–1643

    CAS  PubMed  Google Scholar 

  • Schmid N, Eichenberger A, Choutko A, Riniker S, Winger M, Mark A, van Gunsteren W (2011) Definition and testing of the GROMOS force-field versions 54A7 and 54B7. Eur Biophys J 40(7):843–856

    Article  CAS  PubMed  Google Scholar 

  • Schmidt J (2007) Asymmetric Karplus curves for the protein side-chain 3J couplings. J Biomol NMR 37(4):287–301

    Article  CAS  PubMed  Google Scholar 

  • Schmidt JM, Blümel M, Löhr F, Rüterjans H (1999) Self-consistent 3J-coupling analysis for the joint calibration of Karplus coefficients and evaluation of torsion angles. J Biomol NMR 14(1):1–12

    Article  CAS  PubMed  Google Scholar 

  • Schwalbe H, Grimshaw SB, Spencer A, Buck M, Boyd J, Dobson CM, Red-field C, Smith LJ (2001) A refined solution structure of hen lysozyme determined using residual dipolar coupling data. Prot Sci 10(4):677–688

    Article  CAS  Google Scholar 

  • Scott W, Mark A, van Gunsteren WF (1998) On using time-averaging restraints in molecular dynamics simulation. J Biomol NMR 12:501–508

    Article  CAS  PubMed  Google Scholar 

  • Shaw DE, Dror RO, Salmon JK, Grossman J, Mackenzie KM, Bank JA, Young C, Deneroff MM, Batson B, Bowers KJ, Chow E, Eastwood MP, Ierardi DJ, Klepeis JL, Kuskin JS, Larson RH, Lindorff-Larsen K, Maragakis P, Moraes MA, Piana S, Shan Y, Towles B (2009) Millisecond-scale molecular dynamics simulations on anton. In: Proceedings of the Conference on High Performance Computing, Networking, Storage and Analysis (SC09)

  • Shen Y, Bax A (2007) Protein backbone chemical shifts predicted from searching a database for torsion angle and sequence homology. J Biomol NMR 38(4):289–302

    Article  CAS  PubMed  Google Scholar 

  • Shen Y, Bax A (2010) SPARTA+: a modest improvement in empirical NMR chemical shift prediction by means of an artificial neural network. J Biomol NMR 48(1):13–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen Y, Delaglio F, Cornilescu G, Bax A (2009) TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J Biomol NMR 44(4):213–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Showalter SA, Brüschweiler R (2007) Quantitative molecular ensemble interpretation of NMR dipolar couplings without restraints. J Am Chem Soc 129(14):4158–4159

    Article  CAS  PubMed  Google Scholar 

  • Showalter SA, Johnson E, Rance M, Brüschweiler R (2007) Toward quantitative interpretation of methyl side-chain dynamics from NMR by molecular dynamics simulations. J Am Chem Soc 129(46):14,146–14,147

    Article  CAS  Google Scholar 

  • Siemer AB, Ritter C, Ernst M, Riek R, Meier BH (2005) High-resolution solid-state NMR spectroscopy of the prion protein HET-s in its amyloid conformation. Angew Chem Int Ed 44(16):2441–2444

    Article  CAS  Google Scholar 

  • Smith LJ, Sutcliffe MJ, Redfield C, Dobson CM (1991) Analysis of φ and χ1 torsion angles for hen lysozyme in solution from proton NMR spin-spin coupling constants. Biochemistry 30(4):986–996

    Article  CAS  PubMed  Google Scholar 

  • Smith LJ, Mark AE, Dobson M, van Gunsteren WF (1995) Comparison of MD simulations and NMR experiments for hen lysozyme. Analysis of local fluctuations, cooperative motions, and global changes. Biochemistry 34(34), 10,918-10,931

  • Smith PE, van Schaik RC, Szyperski T, Wüthrich K, van Gunsteren WF (1995b) Internal mobility of the basic pancreatic trypsin inhibitor in solution: a comparison of NMR spin relaxation measurements and molecular dynamics simulations. J Mol Biol 246(2):356–365

    Article  CAS  PubMed  Google Scholar 

  • Solomon I (1955) Relaxation processes in a system of two spins. Phys Rev 99(2):559–565

    Article  CAS  Google Scholar 

  • Spera S, Bax A (1991) Empirical correlation between protein backbone conformation and Cα and Cβ 13C nuclear magnetic resonance chemical shifts. J Am Chem Soc 113(14):5490–5492

    Article  CAS  Google Scholar 

  • Steiner D, Allison JR, van Gunsteren WF (2012) On the calculation of 3Jαβ -coupling constants for side chains in proteins. J Biomol NMR. doi:10.1007/s10858-012-9634-5

  • Stone JE, Hardy DJ, Ufimtsev IS, Schulten K (2010) GPU-accelerated molecular modeling coming of age. J Mol Graph Model 29(2):116–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suardıaz R, García de la Vega JM, Fabián JS, Contreras RH (2007) Theoretical Karplus relationships for vicinal coupling constants around χ1 in valine. Chem Phys Lett 442(13):119–123

    Article  CAS  Google Scholar 

  • Teilum, K, Kragelund BB, Poulsen FM (2002) Transient structure formation in unfolded acyl-coenzyme A-binding protein observed by site-directed spin labelling. J Mol Biol 324(2), 349–57. 0022–2836

    Google Scholar 

  • Tjandra N, Bax A (1997) Direct measurement of distances and angles in biomolecules by NMR in a dilute liquid crystalline medium. Science 278(5340):1111–1114

    Article  CAS  PubMed  Google Scholar 

  • Tong Y, Ji CG, Mei Y, Zhang JZH (2009) Simulation of NMR data reveals that proteins local structures are stabilized by electronic polarization. J Am Chem Soc 131(24):8636–8641

    Article  CAS  PubMed  Google Scholar 

  • Torda A, Scheek R, van Gunsteren WF (1989) Time-dependent distance restraints in molecular dynamics simulations. Chem Phys Lett 157(4):289–294

    Article  CAS  Google Scholar 

  • Torda AE, Scheek RM, van Gunsteren WF (1990) Time-averaged nuclear overhauser effect distance restraints applied to tendamistat. J Mol Biol 214(1):223–235

    Article  CAS  PubMed  Google Scholar 

  • Torda AE, Brunne RM, Huber T, Kessler H, van Gunsteren WF (1993) Structure refinement using time-averaged J-coupling constant restraints. J Biomol NMR 3(1):55–66

    Article  CAS  PubMed  Google Scholar 

  • Trbovic N, Kim B, Friesner RA, Palmer AG (2008) Structural analysis of protein dynamics by MD simulations and NMR spin-relaxation. Proteins Struct Funct Bioinform 71(2):684–694

    Article  CAS  Google Scholar 

  • Tropp J (1980) Dipolar relaxation and nuclear Overhauser effects in nonrigid molecules: the effect of fluctuating internuclear distances. J Chem Phys 72(11):6035–6043

    Article  CAS  Google Scholar 

  • Trzesniak D, Glättli A, Jaun B, van Gunsteren WF (2005) Interpreting NMR data for β-peptides using molecular dynamics simulations. J Am Chem Soc 127(41):14,320–14,329

    Article  CAS  Google Scholar 

  • Tycko R, Blanco F, Ishii Y (2000) Alignment of biopolymers in strained gels: a new way to create detectable dipole-dipole couplings in high-resolution biomolecular NMR. J Am Chem Soc 122(38):9340–9341

    Article  CAS  Google Scholar 

  • Van Melckebeke H, Wasmer C, Lange A, Ab E, Loquet A, Bockmann A, Meier BH (2010) Atomic-resolution three-dimensional structure of HET-s(218–289) amyloid fibrils by solid-state NMR spectroscopy. J Am Chem Soc 132(39):13,765–13,775

    Article  CAS  Google Scholar 

  • Vendruscolo M, Paci E, Dobson CM, Karplus M (2001) Three key residues form a critical contact network in a protein folding transition state. Nature 409(6820):641–645

    Article  CAS  PubMed  Google Scholar 

  • Vögeli B, Ying J, Grishaev A, Bax A (2007) Limits on variations in protein backbone dynamics from precise measurements of scalar couplings. J Am Chem Soc 129(30):9377–9385

    Article  PubMed  CAS  Google Scholar 

  • Wagner G, Pardi A, Wüthrich K (1983) Hydrogen bond length and proton NMR chemical shifts in proteins. J Am Chem Soc 105(18):5948–5949

    Article  CAS  Google Scholar 

  • Wang Y, Jardetzky O (2002) Investigation of the neighboring residue effects on protein chemical shifts. J Am Chem Soc 124(47):14,075–14,084

    Article  CAS  Google Scholar 

  • Williamson MP, Asakura T (1993) Empirical comparisons of models for chemical-shift calculation in proteins. J Magn Reson B 101(1):63–71

    Article  CAS  Google Scholar 

  • Wishart DS, Sykes BD, Richards FM (1991) Relationship between nuclear magnetic resonance chemical shift and protein secondary structure. J Mol Biol 222(2):311–333

    Article  CAS  PubMed  Google Scholar 

  • Wishart DS, Sykes BD, Richards FM (1992) The chemical shift index: a fast and simple method for the assignment of protein secondary structure through NMR spectroscopy. Biochemistry 31(6):1647–1651

    Article  CAS  PubMed  Google Scholar 

  • Wishart D, Bigam C, Holm A, Hodges R, Sykes B (1995) 1H, 13C and 15N random coil NMR chemical shifts of the common amino acids. I. Investigations of nearest-neighbor effects. J Biomol NMR 5(1):67–81

    Article  CAS  PubMed  Google Scholar 

  • Wrabl JO, Shortle D, Woolf TB (2000) Correlation between changes in nuclear magnetic resonance order parameters and conformational entropy: molecular dynamics simulations of native and denatured staphylococcal nuclease. Proteins Struct Funct Bioinform 38(2):123–133

    Article  CAS  Google Scholar 

  • Wüthrich K (1986) NMR of proteins and nucleic acids. Wiley, New York

    Google Scholar 

  • Xu XP, Case D (2001) Automated prediction of 15N, 13Cα, 13Cβ and 13C’ chemical shifts in proteins using a density functional database. J Biomol NMR 21(4):321–333

    Article  CAS  PubMed  Google Scholar 

  • Yao J, Chung J, Eliezer D, Wright PE, Dyson HJ (2001) NMR structural and dynamic characterization of the acid-unfolded state of apomyoglobin provides insights into the early events in protein folding. Biochemistry 40(12):3561–3571

    Article  CAS  PubMed  Google Scholar 

  • Yip P, Case DA (1989) A new method for refinement of macromolecular structures based on nuclear overhauser effect spectra. J Magn Reson 83(3):643–648

    CAS  Google Scholar 

  • Zagrovic B, van Gunsteren WF (2006) Comparing atomistic simulation data with the NMR experiment: how much can NOEs actually tell us? Proteins Struct Funct Bioinform 63(1):210–8

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I thank the very many people with whom I have discussed the issues involved in combining NMR data with MD simulations, in particular, Prof. Wilfred van Gunsteren, to whom this article is dedicated on the occasion of his 65th birthday.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jane R. Allison.

Additional information

Special issue: Computational Biophysics

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allison, J.R. Assessing and refining molecular dynamics simulations of proteins with nuclear magnetic resonance data. Biophys Rev 4, 189–203 (2012). https://doi.org/10.1007/s12551-012-0087-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12551-012-0087-6

Keywords

Navigation