Skip to main content

Advances in Structural Bioinformatics

  • Chapter
  • First Online:
Advances in Bioinformatics

Abstract

Structural bioinformatics is a captivating discipline that delves into the intricate realm related to proteins, RNA, and DNA, the macromolecules of life. Its primary focus lies in comprehending and foreseeing the enigmatic three-dimensional (3D) architecture of these fundamental entities. By employing cutting-edge computational techniques and advanced algorithms, structural bioinformatics unravels the complex interplay between structure and function, shedding light on the inner workings of life’s molecular machinery. Bioinformatics is an interdisciplinary field that combines experimental and computational approaches to investigate various aspects of macromolecular 3D structure. By utilizing experimentally determined structures and computational models, bioinformatics aims to explore diverse inquiries related to macromolecules. These inquiries encompass understanding the distinctions and similarities between macro and micro structures, understanding the rules of molecular interaction, evolution, and folding, and revealing the complexity of structure-function correlations. Structural bioinformatics, a specialized domain within the realm of computational structural biology, encompasses the study and analysis of biological structures. The term “structural” in this context aligns with its definition in the field of structural biology. The field of structural bioinformatics is dedicated to addressing biological challenges and unveiling novel insights through the development of innovative methodologies for the analysis of data pertaining to biological macromolecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alder BJ, Wainwright TE (1959) Studies in molecular dynamics. I. General method. J Chem Phys 31(2):459–466. Bibcode:1959JChPh, 31.459A. ISSN 0021-9606. https://doi.org/10.1063/1.1730376

    Article  CAS  Google Scholar 

  • Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The Protein Data Bank. Nucleic Acids Res 28(1):235–242. https://doi.org/10.1093/nar/28.1.235. PMID: 10592235; PMCID: PMC102472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bosso A, Pirone L, Gaglione R, Pane K, Del Gatto A, Zaccaro L, Di Gaetano S, Diana D, Fattorusso R, Pedone E, Cafaro V (2017) A new cryptic host defense peptide identified in human 11-hydroxysteroid dehydrogenase-1 β-like: from in silico identification to experimental evidence. Biochim Biophys Acta Gen Subj 1861(9):2342–2353

    Article  CAS  PubMed  Google Scholar 

  • Chen VB, Davis IW, Richardson DC (2009) KING (Kinemage, next generation): a versatile interactive molecular and scientific visualization program. Protein Sci 18(11):2403–2409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chothia C, Lesk AM (1986) The relation between the divergence of sequence and structure in proteins. EMBO J 5(4):823–826. https://doi.org/10.1002/j.1460-2075.1986.tb04288.x. PMC 1166865. PMID 3709526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costa LS, Mariano DC, Rocha RE, Kraml J, Silveira CH, Liedl KR et al (2019) Molecular dynamics gives new insights into the glucose tolerance and inhibition mechanisms on β-glucosidases. Molecules 24(18):3215. https://doi.org/10.3390/molecules24183215. PMC 6766793. PMID 31487855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • da Silveira CH, Pires DEV, Minardi RC, Ribeiro C, Veloso CJM, Lopes JCD, Meira W, Neshich G, Ramos CHI, Habesch R, Santoro MM (2009) Protein cutoff scanning: a comparative analysis of cutoff dependent and cutoff free methods for prospecting contacts in proteins. Proteins Struct Funct Bioinform 74(3):727–743. https://doi.org/10.1002/prot.22187

    Article  CAS  Google Scholar 

  • Dhasmana A, Raza S, Jahan R, Lohani M, Arif JM (2019) Chapter 19—high-throughput virtual screening (HTVS) of natural compounds and exploration of their biomolecular mechanisms: an in silico approach. In: Ahmad Khan MS, Ahmad I, Chattopadhyay D (eds.) New look to phytomedicine. Academic, pp 523–548. https://doi.org/10.1016/b978-0-12-814619-4.00020-3. isbn:978-0-12-814619-4. S2CID 69534557

  • Gauthier J, Vincent AT, Charette SJ, Derome N (2019) A brief history of bioinformatics. Brief Bioinformatics 20(6):1981–1996

    Article  PubMed  Google Scholar 

  • Gong S, Worth CL, Cheng TM, Blundell TL (2011) Meet me halfway: when genomics meets structural bioinformatics. J Cardiovasc Transl Res 4:281–303

    Article  PubMed  Google Scholar 

  • Gu J, Bourne PE (2011) Structural bioinformatics. Wiley. Gu J, Bourne PE (2009-03-16). Structural bioinformatics. Wiley. 978-0-470:18105-8

    Google Scholar 

  • Hildebrandt A, Dehof AK, Rurainski A, Bertsch A, Schumann M, Toussaint NC, Moll A, Stöckel D, Nickels S, Mueller SC, Lenhof HP (2010) BALL-biochemical algorithms library 1.3. BMC Bioinformatics 11(1):1–5

    Article  Google Scholar 

  • Ilyin VA, Abyzov A, Leslin CM (2004) Structural alignment of proteins by a novel TOPOFIT method, as a superimposition of common volumes at a topomax point. Protein Sci 13(7):1865–1874. https://doi.org/10.1110/ps.04672604. PMC 2279929. PMID 15215530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaczanowski S, Zielenkiewicz P (2010) Why similar protein sequences encode similar three-dimensional structures? Theor Chem Accounts 125(3–6):643–650. https://doi.org/10.1007/s00214-009-0656-3. issn:1432-881X. S2CID 95593331

    Article  CAS  Google Scholar 

  • Klebe G (2015) Protein-ligand interactions as the basis for drug action. In: Scapin G, Patel D, Arnold E (eds) Multifaceted roles of crystallography in modern drug discovery. NATO science for peace and security series a: chemistry and biology. Springer, Dordrecht, pp 83–92. https://doi.org/10.1007/978-3-642-17907-5_4. isbn:978-3-642-17906-8

    Chapter  Google Scholar 

  • Kocincová L, Jarešová M, Byška J, Parulek J, Hauser H, Kozlíková B (2017) Comparative visualization of protein secondary structures. BMC Bioinformatics 18:23. https://doi.org/10.1186/s12859-016-1449-z. PMID: 28251875; PMCID: PMC5333176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Chang YY, Lee JY, Bahar I, Yang LW (2017) DynOmics: dynamics of structural proteome and beyond. Nucleic Acids Res 45(W1):W374–W380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mackoy T, Kale B, Papka ME, Wheeler RA (2021) View Sq, a visual molecular dynamics (VMD) module for calculating, analyzing, and visualizing X-ray and neutron structure factors from atomistic simulations. Comput Phys Commun 264:107881

    Article  CAS  Google Scholar 

  • Manjasetty BA, Büssow K, Panjikar S, Turnbull AP (2012) Current methods in structural proteomics and its applications in biological sciences. 3 Biotech 2:89–113

    Article  Google Scholar 

  • Mariano DC, Santos LH, Machado KD, Werhli AV, de Lima LH, de Melo-Minardi RC (2019) A computational method to propose mutations in enzymes based on structural signature variation (SSV). Int J Mol Sci 20(2):333. https://doi.org/10.3390/ijms20020333. PMC 6359350. PMID 30650542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin OA, Vila JA, Scheraga HA (2012) Che Shift-2: graphic validation of protein structures. Bioinformatics 28(11):1538–1539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martins PM, Mayrink VD, de Silveira S, da Silveira CH, de Lima LH, de Melo-Minardi RC (2018) How to compute protein residue contacts more accurately? Proceedings of the 33rd annual ACM symposium on applied computing. Pau: ACM Press, pp 60–67. isbn:978-1-4503-5191-1. S2CID 49562347 https://doi.org/10.1145/3167132.3167136

  • Matarazzo TJ, Pakzad SN (2014) Modal identification of golden gate bridge using pseudo mobile sensing data with STRIDE. In: Dynamics of civil structures, vol. 4: proceedings of the 32nd IMAC, a conference and exposition on structural dynamics. Springer International Publishing, pp 293–298

    Google Scholar 

  • Meyers J, Fabian B, Brown N (2021) De novo molecular design and generative models. Drug Discov Today 26(11):2707–2715

    Article  CAS  PubMed  Google Scholar 

  • Nickels S, Stöckel D, Mueller SC, Lenhof HP, Hildebrandt A, Dehof AK (2013) Presenta BALL—A powerful package for presentations and lessons in structural biology. In: 2013 IEEE symposium on biological data visualization (BioVis) 2013 Oct 13. IEEE, pp 33–40

    Google Scholar 

  • Pagadala NS, Syed K, Tuszynski J (2017) Software for molecular docking: a review. Biophys Rev 9:91–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel B, Singh V, Patel D (2019) Structural bioinformatics. In: Essentials of bioinformatics, vol I: Understanding bioinformatics: genes to proteins, pp 169–199

    Google Scholar 

  • Pires DE, de Melo-Minardi RC, dos Santos MA, da Silveira CH, Santoro MM, Meira W (2011) Cutoff scanning matrix (CSM): structural classification and function prediction by protein inter-residue distance patterns. BMC Genomics 12 Suppl 4(S4):S12. https://doi.org/10.1186/1471-2164-12-S4-S12. PMC 3287581. PMID 22369665

    Article  CAS  PubMed  Google Scholar 

  • Rego N, Koes D (2015) 3Dmol. js: molecular visualization with WebGL. Bioinformatics 31(8):1322–1324

    Article  PubMed  Google Scholar 

  • Rigden DJ (2009) From protein structure to function with bioinformatics. In: Rigden DJ (ed) Springer, Berlin

    Google Scholar 

  • Rosignoli S, Paiardini A (2022) Boosting the full potential of PyMOL with structural biology plugins. Biomolecules 12(12):1764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saoudi N, Latcu DG, Rinaldi JP, Ricard P (2011) Graphical analysis of pH-dependent properties of proteins predicted using PROPKA. Bull Acad Natl Med 192:1029–1041

    Google Scholar 

  • Sekihara K, Kawabata Y, Ushio S, Sumiya S, Kawabata S, Adachi Y, Nagarajan SS (2016) Dual signal subspace projection (DSSP): a novel algorithm for removing large interference in bio magnetic measurements. J Neural Eng 13(3):036007

    Article  PubMed  PubMed Central  Google Scholar 

  • Shi M, Gao J, Zhang MQ (2017) Web3DMol: interactive protein structure visualization based on WebGL. Nucleic Acids Res 45(W1):W523–W527. https://doi.org/10.1093/nar/gkx383. PMID: 28482028; PMCID: PMC5570197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shkurti A, Goni R, Andrio P, Breitmoser E, Bethune I, Orozco M, Laughton CA (2016) pyPcazip: a PCA-based toolkit for compression and analysis of molecular simulation data. SoftwareX 1(5):44–50

    Article  Google Scholar 

  • Stanfield RL, Wilson IA (1995) Protein-peptide interactions. Curr Opin Struct Biol 5(1):103–113. https://doi.org/10.1016/0959-440X(95)80015-S. PMID: 7773739

    Article  CAS  PubMed  Google Scholar 

  • Travers A, Muskhelishvili G (2015) DNA structure and function. FEBS J 282(12):2279–2295

    Article  CAS  PubMed  Google Scholar 

  • Vila JA, Arnautova YA, Martin OA, Scheraga HA (2009) Quantum-mechanics-derived 13Cα chemical shift server (Che shift) for protein structure validation. Proc Natl Acad Sci U S A 106(40):16972–16977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vilar S, Cozza G, Moro S (2008) Medicinal chemistry and the molecular operating environment (MOE): application of QSAR and molecular docking to drug discovery. Curr Top Med Chem 8(18):1555–1572

    Article  CAS  PubMed  Google Scholar 

  • Webb B, Sali A (2014) Comparative protein structure modeling using Modeller. Curr Protoc Bioinformatics 47(1):5.6.1–32. PMC: 4186674. PMID: 25199792 https://doi.org/10.1002/0471250953.bi0506s47

  • Wei D, Xu Q, Zhao T, Dai H (2014) Advance in structural bioinformatics. Springer

    Google Scholar 

  • Wermuth CG, Villoutreix B, Grisoni S, Olivier A, Rocher JP (2015) Strategies in the search for new lead compounds or original working hypotheses. In: Wermuth CG, Aldous D, Raboisson P, Rognan D (eds) The practice of medicinal chemistry. Academic, pp 73–99. https://doi.org/10.1016/B978-0-12-417205-0.00004-3. isbn:978-0-12-417205-0

  • Williams CJ, Headd JJ, Moriarty NW, Prisant MG, Videau LL, Deis LN, Verma V, Keedy DA, Hintze BJ, Chen VB, Jain S (2018) MolProbity: more and better reference data for improved all-atom structure validation. Protein Sci 27(1):293–315

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y (2015) The I-TASSER suite: protein structure and function prediction. Nat Methods 12(1):7–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao Z, Cao D (2023) 4.3.9 Prochek module. PyBioMed Documentation 10:53

    Google Scholar 

  • Yousif RH (2020) Exploring the molecular interactions between neoculin and the human sweet taste receptors through computational approaches. Sains Malays 49(3):517–525. https://doi.org/10.17576/jsm-2020-4903-06

    Article  CAS  Google Scholar 

  • Yu J, Vavrusa M, Andreani J, Rey J, Tufféry P, Guerois R (2016) InterEvDock: a docking server to predict the structure of protein–protein interactions using evolutionary information. Nucleic Acids Res 44(W1):W542–W549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan S, Chan HS, Hu Z (2017) Using PyMOL as a platform for computational drug design. Wiley Interdiscipl Rev Comput Mol Sci 7(2):e1298

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Israr, J., Alam, S., Siddiqui, S., Misra, S., Singh, I., Kumar, A. (2024). Advances in Structural Bioinformatics. In: Singh, V., Kumar, A. (eds) Advances in Bioinformatics. Springer, Singapore. https://doi.org/10.1007/978-981-99-8401-5_2

Download citation

Publish with us

Policies and ethics