Skip to main content

Molecular Dynamics Simulations: Concept, Methods, and Applications

  • Chapter
  • First Online:
Transdisciplinarity

Part of the book series: Integrated Science ((IS,volume 5))

Summary

Molecular dynamics (MD) is a computer simulation that deals with biological molecules, such as proteins and nucleic acid, and visualizes their movement in atoms and molecules. Computer simulation is executed with these atoms and molecules that are capable of interacting with each other over time and thereby can define the dynamic evolution of the system. MD simulation mimics the changes in biological molecules’ structures over a given time, giving us atomic insights into the change in structure. This data helps us understand biological functions. These simulations give us comprehensive information about the fluctuations and flexibility of the proteins and nucleic acids under study. These approaches are applied to thoroughly study the organization and dynamics of biological molecules, their complexes, and conformational changes in proteins and nucleic acids. Many mysteries, on the femtoseconds scale, have been revealed through the study of these conformational changes. These methods are applied in chemical physics, materials science, and biophysics. MD simulations are often used in computational biology to generate a comprehensive understanding of interactions between proteins and their ligands and address how much these interactions are flexible and shape conformational changes in molecules when a particular mutation is introduced. Currently, it is being used to determine the tertiary structure of proteins from x-ray crystallography and NMR (or Nuclear Magnetic Resonance, a technique used in analytical chemistry for determining the structural properties and purity of samples) experiments.

The molecular dynamics simulation process.

The code of this chapter is 01001101 01101111 01101100 01100101 01100011 01110101 01101100 01100001 01110010 00100000 01100100 01111001 01101110 01100001 01101101 01101001 01100011 01110011 00100000.

“Our future world will have to find equilibrium in the technology pendulum swing.”

Stephane Nappo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Durrant JD, McCammon JA (2011) Molecular dynamics simulations and drug discovery. BMC Biol 9(1):1–9

    Article  Google Scholar 

  2. Ma B, Kumar S, Tsai C-J, Nussinov R (1999) Folding funnels and binding mechanisms. Protein Eng 12(9):713–720

    Article  CAS  Google Scholar 

  3. Ma B, Shatsky M, Wolfson HJ, Nussinov R (2002) Multiple diverse ligands binding at a single protein site: a matter of pre-existing populations. Protein Sci 11(2):184–197

    Article  CAS  Google Scholar 

  4. Fischer E (1894) Einfluss der configuration auf die wirkung der enzyme. Ber Dtsch Chem Ges 27(3):2985–2993

    Article  CAS  Google Scholar 

  5. Teague SJ (2003) Implications of protein flexibility for drug discovery. Nat Rev Drug Discovery 2(7):527–541

    Article  CAS  Google Scholar 

  6. Tsai CJ, Kumar S, Ma B, Nussinov R (1999) Folding funnels, binding funnels, and protein function. Protein Sci 8(6):1181–1190

    Article  CAS  Google Scholar 

  7. Feynman RP, Leighton RB, Sands M (2011) The Feynman lectures on physics, Vol. I: the new millennium edition: mainly mechanics, radiation, and heat, vol 1. Basic books

    Google Scholar 

  8. Hollingsworth SA, Dror RO (2018) Molecular dynamics simulation for all. Neuron 99(6):1129–1143

    Article  CAS  Google Scholar 

  9. Karaa WBA (2015) Biomedical image analysis and mining techniques for improved health outcomes. IGI Global

    Google Scholar 

  10. González M (2011) Force fields and molecular dynamics simulations. École thématique de la Société Française de la Neutronique 12:169–200

    Article  Google Scholar 

  11. Jorgensen WL, Tirado-Rives J (1996) Monte Carlo versus molecular dynamics for conformational sampling. J Phys Chem 100(34):14508–14513

    Article  CAS  Google Scholar 

  12. Ishida H, Agag T (2011) Handbook of benzoxazine resins. Elsevier

    Google Scholar 

  13. Mayo SL, Olafson BD, Goddard WA (1990) DREIDING: a generic force field for molecular simulations. J Phys Chem 94(26):8897–8909

    Article  CAS  Google Scholar 

  14. Pearlman DA, Kollman PA (1991) The overlooked bond-stretching contribution in free energy perturbation calculations. J Chem Phys 94(6):4532–4545

    Article  CAS  Google Scholar 

  15. Tamar S (2002) Molecular modeling and simulation. Interdisciplinary applied mathematics. Springer, NY

    Google Scholar 

  16. Gullingsrud JR, Braun R, Schulten K (1999) Reconstructing potentials of mean force through time series analysis of steered molecular dynamics simulations. J Comput Phys 151(1):190–211

    Article  CAS  Google Scholar 

  17. Akimov AV, Kolomeisky AB (2011) Recursive taylor series expansion method for rigid-body molecular dynamics. J Chem Theory Comput 7(10):3062–3071

    Article  CAS  Google Scholar 

  18. Kutteh R (1999) New methods for incorporating nonholonomic constraints into molecular dynamics simulations. J Chem Phys 111(4):1394–1406

    Article  CAS  Google Scholar 

  19. Streett W, Tildesley D, Saville G (1978) Multiple time-step methods in molecular dynamics. Mol Phys 35(3):639–648

    Article  CAS  Google Scholar 

  20. Grubmüller H, Heller H, Windemuth A, Schulten K (1991) Generalized Verlet algorithm for efficient molecular dynamics simulations with long-range interactions. Mol Simul 6(1–3):121–142

    Article  Google Scholar 

  21. Martys NS, Mountain RD (1999) Velocity Verlet algorithm for dissipative-particle-dynamics- based models of suspensions. Phys Rev E 59(3):3733

    Article  CAS  Google Scholar 

  22. Toxvaerd S (1991) Algorithms for canonical molecular dynamics simulations. Mol Phys 72(1):159–168

    Article  CAS  Google Scholar 

  23. Van Gunsteren WF, Berendsen HJ (1988) A leap-frog algorithm for stochastic dynamics. Mol Simul 1(3):173–185

    Article  Google Scholar 

  24. Van Gunsteren W, Berendsen H (1982) Algorithms for Brownian dynamics. Mol Phys 45(3):637–647

    Article  Google Scholar 

  25. Rosenthal SJ, Jimenez R, Fleming GR, Kumar P, Maroncelli M (1994) Solvation dynamics in methanol: experimental and molecular dynamics simulation studies. J Mol Liq 60(1–3):25–56

    Article  CAS  Google Scholar 

  26. Jabbarzadeh Kaboli P, Ismail P, Ling K-H (2018) Molecular modeling, dynamics simulations, and binding efficiency of berberine derivatives: a new group of RAF inhibitors for cancer treatment. PLOS ONE 13(3): e0193941

    Google Scholar 

  27. Miao J, Hodgson KO, Sayre D (2001) An approach to three-dimensional structures of biomolecules by using single-molecule diffraction images. Proc Natl Acad Sci 98(12):6641–6645

    Article  CAS  Google Scholar 

  28. Terwilliger TC, Read RJ, Adams PD, Brunger AT, Afonine PV, Grosse-Kunstleve RW, Hung L-W (2012) Improved crystallographic models through iterated local density-guided model deformation and reciprocal-space refinement. Acta Crystallogr D Biol Crystallogr 68(7):861–870

    Article  CAS  Google Scholar 

  29. Mirjalili V, Feig M (2013) Protein structure refinement through structure selection and averaging from molecular dynamics ensembles. J Chem Theory Comput 9(2):1294–1303

    Article  CAS  Google Scholar 

  30. Lindorff-Larsen K, Best RB, DePristo MA, Dobson CM, Vendruscolo M (2005) Simultaneous determination of protein structure and dynamics. Nature 433(7022):128–132

    Article  CAS  Google Scholar 

  31. Bakan A, Bahar I (2009) The intrinsic dynamics of enzymes plays a dominant role in determining the structural changes induced upon inhibitor binding. Proc Natl Acad Sci 106(34):14349–14354

    Article  CAS  Google Scholar 

  32. Fribourg M, Moreno JL, Holloway T, Provasi D, Baki L, Mahajan R, Park G, Adney SK, Hatcher C, Eltit JM (2011) Decoding the signaling of a GPCR heteromeric complex reveals a unifying mechanism of action of antipsychotic drugs. Cell 147(5):1011–1023

    Article  CAS  Google Scholar 

  33. Peng Y, McCorvy JD, Harpsøe K, Lansu K, Yuan S, Popov P, Qu L, Pu M, Che T, Nikolajsen LF (2018) 5-HT2C receptor structures reveal the structural basis of GPCR polypharmacology. Cell 172(4): 719–730. e714

    Google Scholar 

  34. Lindorff-Larsen K, Piana S, Dror RO, Shaw DE (2011) How fast-folding proteins fold. Science 334(6055):517–520

    Article  CAS  Google Scholar 

  35. Snow CD, Nguyen H, Pande VS, Gruebele M (2002) Absolute comparison of simulated and experimental protein-folding dynamics. Nature 420(6911):102–106

    Article  CAS  Google Scholar 

  36. Dedmon MM, Lindorff-Larsen K, Christodoulou J, Vendruscolo M, Dobson CM (2005) Mapping long-range interactions in α-synuclein using spin-label NMR and ensemble molecular dynamics simulations. J Am Chem Soc 127(2):476–477

    Article  CAS  Google Scholar 

  37. Nguyen HD, Hall CK (2004) Molecular dynamics simulations of spontaneous fibril formation by random-coil peptides. Proc Natl Acad Sci 101(46):16180–16185

    Article  CAS  Google Scholar 

  38. Bernardi RC, Melo MC, Schulten K (2015) Enhanced sampling techniques in molecular dynamics simulations of biological systems. Biochimica et Biophysica Acta (BBA)-General Subjects 1850(5): 872–877

    Google Scholar 

  39. Harpole TJ, Delemotte L (2018) Conformational landscapes of membrane proteins delineated by enhanced sampling molecular dynamics simulations. Biochimica Et Biophysica Acta (BBA)-Biomembranes 1860(4):909–926

    Google Scholar 

  40. Hertig S, Latorraca NR, Dror RO (2016) Revealing atomic-level mechanisms of protein allostery with molecular dynamics simulations. PLoS Comput Biol 12(6):e1004746

    Article  Google Scholar 

  41. Schwantes CR, McGibbon RT, Pande VS (2014) Perspective: markov models for long- timescale biomolecular dynamics. J Chem Phys 141(9): 09B201_201

    Google Scholar 

  42. Kroemer RT (2007) Structure-based drug design: docking and scoring. Curr Protein Pept Sci 8(4):312–328

    Article  CAS  Google Scholar 

  43. Duan Y, Kollman PA (1998) Pathways to a protein folding intermediate observed in a 1- microsecond simulation in aqueous solution. Science 282(5389):740–744

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We would like to acknowledge Director (Admin), Mr. Syed Sharique Hussain, Salfia Paramedical Institute Darbhanga, (SPI) Darbhanga, (director_admin@salfiainstitute.edu.in), Dr. Naima Saman (pursuing MD), Dr. Syed Abdul Hakeem, Mrs. Siddiqua Khatoon, all members of Farid/Salfia family, Faridia Hospital, Dr. Faiyaz Ahmad, Chairman, Madhubani Medical College, Madhubani, Dr. Faraz Fatmi (JD(U)), Mr. Ashraf Ali Fatmi (JD(U)), Dr. Shakeel Ahmad (Congress), Mr. Salman Akhtar, Chief Functionary, Nalanda Minority Educational and Welfare Trust, Dr. Muhammad Nezamuddin (Jawed) and Dr. Arifa Nishat, Ruston, LA, USA, Mr. Prashant Kishore, (I-PAC), Dr. David K Mills and Dr. Thomas C Bishop (Louisiana Tech University, Ruston, LA, USA), Dr. Manzoor Alam, Chairman, AIMC, Brother Aman, Aligarh Bachchon Ka Ghar, Aligarh, Hafiz Hassan Badar, Secretary, Hazrat Umar Farooque Academy, Nazra-Ranipur, Mrs. Shahnaz Badar, and motivator for Abdur Razzaque Family, Mr. Saeeduzzafar, (IDB Jeddah) and my life partner, Mrs. Rana Kamal Sufian.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Sufian Badar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Badar, M.S., Shamsi, S., Ahmed, J., Alam, M.A. (2022). Molecular Dynamics Simulations: Concept, Methods, and Applications. In: Rezaei, N. (eds) Transdisciplinarity. Integrated Science, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-030-94651-7_7

Download citation

Publish with us

Policies and ethics