Skip to main content
Log in

Differential Sensitivity of Genetically Related Potato Cultivars to Treatments Designed to Alter Apical Dominance, Tuber Set and Size Distribution

  • Published:
American Journal of Potato Research Aims and scope Submit manuscript

Abstract

The cultivar, Bondi, was selected from a cross between Ranger Russet (maternal parent) and Karaka and is currently being evaluated as a frozen processing cultivar. Relative to Ranger, Bondi produces vigorous foliar growth, low tuber set and high yields of large tubers that frequently exceed optimum size for seed and processing markets. We evaluated the relative efficacies of gibberellin (GA), cytokinin (benzyladenine (BA)) and seed aging for altering apical dominance, tuber set and size distribution of these genetically related cultivars. GA applied to cut seed prior to planting hastened emergence, reduced apical dominance, increased tuber set and decreased average tuber size; however, the optimal concentration to maximally shift tuber size distribution without decreasing marketable yield was 4–5-fold greater for Bondi than Ranger. BA marginally hastened plant emergence (Bondi) and decreased apical dominance (both cultivars) only when combined with GA, but had no further effects on tuber set, yields or tuber size distributions in either cultivar. Age-priming Ranger seed for 700 degree days (DD) at 32 °C during storage shifted the tuber size distribution to a much greater extent than 2 mg L−1 GA (optimal concentration) without reducing marketable yield. The combined age and GA treatment resulted in no further shift in size distribution for Ranger beyond that induced by the 700-DD treatment alone, but reduced the marketable yield by 9.6 MT ha−1. In contrast to GA, the mechanism by which age-priming altered tuber size distribution in Ranger could not be explained by effects on stem number/tuber set relationships alone. Bondi, however, exhibited an even greater shift toward smaller tubers with no reduction in yield with the combined 700-DD/GA (2 mg L−1) treatment, reflecting its decreased sensitivity to GA. Moreover, the shift in tuber size distribution induced by aging Bondi seed for 700 DD was approximately equal to that observed by treating seed with 8 mg L−1 GA (optimal concentration). The reduced sensitivity of Bondi to GA was likely inherited from its paternal parent Karaka, which displays similar morphological traits, including high yield of large tubers.

Resumen

La variedad Bondi se seleccionó de una cruza entre Ranger Russet (progenitor maternal) y Karaka, y actualmente está siendo evaluada como una variedad para procesamiento de congelación. En relación a Ranger, Bondi produce crecimiento foliar vigoroso, baja tuberización y altos rendimientos de tubérculos grandes que frecuentemente exceden el tamaño óptimo para semilla y para mercado de procesamiento. Evaluamos las eficacias relativas de giberelina (GA), citocinina (benziladenina, BA) y envejecimiento de la semilla, para la alteración de la dominancia apical, tuberización y distribución del tamaño de estas variedades relacionadas genéticamente. El GA aplicado a la semilla cortada antes de la siembra aceleró la emergencia, redujo la dominancia apical, aumentó la tuberización y disminuyó el promedio del tamaño de tubérculo; no obstante, la concentración óptima para maximizar el cambio de la distribución del tamaño del tubérculo sin disminuir el rendimiento comercial fue de 4 a 5 veces mayor para Bondi que para Ranger. La BA aceleró marginalmente la emergencia de la planta (Bondi) y disminuyó la dominancia apical (ambas variedades) solo cuando se combinó con GA, pero no tuvo efectos posteriores en tuberización, rendimientos, o distribuciones de tamaños de tubérculo en las dos variedades. La semilla de Ranger estimulada por la edad por 700 grados-día (DD) a 32° C durante el almacenamiento cambió la distribución del tamaño del tubérculo en mucha mayor medida que 2 mg L−1 de GA (concentración óptima) sin reducir el rendimiento comercial. El tratamiento combinado de edad y GA resultó sin cambio posterior en la distribución del tamaño para Ranger, mas alla que el inducido por el tratamiento de 700-DD solo, pero redujo el tamaño comercial por 9.6 MT ha−1. En contraste al GA, el mecanismo por el cual la inducción por edad alteró la distribución del tamaño de tubérculo en Ranger no pudo explicarse por los efectos en las relaciones número de tallos/tuberización solamente. No obstante, Bondi exhibió un cambio aun mayor hacia tubérculos más pequeños sin reducción en el rendimiento con el tratamiento combinado 700-DD/GA (2 mg L−1), reflejando su reducción en sensibilidad al GA. Más aun, el cambio en la distribución del tamaño de tubérculo inducido por la semilla Bondi envejecida por 700-DD fue aproximadamente igual al observado tratando la semilla con 8 mg L−1 de GA (concentración óptima). La reducida sensibilidad de Bondi al GA fue probablemente heredada de su progenitor paterno Karaka, que presenta caracteres morfológicos similares, incluyendo alto rendimiento de tubérculos grandes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aksenova, N.P., T.N. Konstantinova, S.A. Golyanovskaya, L.I. Sergeeva, and G.A. Romanov. 2012. Hormonal regulation of tuber formation in potato plants. Russian Journal of Plant Physiology 59(4): 451–466.

    Article  CAS  Google Scholar 

  • Arpiwi, N.L. 2003. The application of novel methods for increasing the yield of small round seed potatoes (Solanum tuberosum L.) varieties atlantic and granola. MS Thesis, University of Western Australia: School of Plant Biology.

  • Arsenault, W.J., D.A. LeBlanc, G.C.C. Tai, and P. Boswall. 2001. Effects of nitrogen application and seed-piece spacing on yield and tuber size distribution in eight potato cultivars. American Journal of Potato Research 78(4): 301–309.

    Article  Google Scholar 

  • Blauer, J.M., L.O. Knowles, and N.R. Knowles. 2013a. Manipulating stem number, tuber set and size distribution in specialty potato cultivars. American Journal of Potato Research 90: 470–496.

    Article  Google Scholar 

  • Blauer, J.M., L.O. Knowles, and N.R. Knowles. 2013b. Evidence that tuber respiration is the pacemaker of physiological aging in seed potatoes (Solanum tuberosum L.). Journal of Plant Growth Regulation 32: 708–720.

    Article  CAS  Google Scholar 

  • Bolotova, Y., and P.E. Patterson. 2009. An analysis of contracts in the Idaho processing-potato industry. Journal of Food Research 40: 1.

    Google Scholar 

  • Booth, A. 1963. The role of growth substances in the development of stolons. In The growth of the potato, eds. J.D. Ivins, and F.L. Milthorpe, 99–113. London: Butterworth.

    Google Scholar 

  • Bou-Torrent, J., J.F. Martinez-Garcia, J.L. Garcia-Martinez, and P. Salome. 2011. Gibberellin A1 metabolism contributes to the control of photoperiod-mediated tuberization in potato. PLoS ONE 6(9): e24458. doi:10.1371/journal.pone.0024458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bussan, A.J., P.D. Mitchell, M.E. Copas, and M.J. Drilias. 2007. Evaluation of the effect of density on potato yield and tuber size distribution. Crop Science 47: 2462–2472.

    Article  Google Scholar 

  • Caldiz, D.O. 2009. Physiological age research during the second half of the twentieth century. Potato Research 52: 295–304.

    Article  Google Scholar 

  • Carrera, E., J. Bou, J.L. Garcia-Martinez, and S. Prat. 2000. Changes in GA 20-oxidase gene expression strongly affect stem length, tuber induction and tuber yield of potato plants. The Plant Journal 22(3): 247–256.

    Article  CAS  PubMed  Google Scholar 

  • Cline, M.G. 1991. Apical dominance. Botanical Review 57(4): 318–358.

    Article  Google Scholar 

  • Eshel, D., and P. Teper-Bamnolker. 2012. Can loss of apical dominance in potato serve as a marker of physiological age? Plant Signal & Behavior 7(9): 1158–1162.

    Article  Google Scholar 

  • Ewing, E.E. 1987. The role of hormones in potato (Solanum tuberosum L.) tuberization. In Plant hormones and their role in plant growth and development, ed. P.J. Davies, 515–538. Boston: Martinus Nijhoff Publishers.

    Chapter  Google Scholar 

  • Hartmann, A., M. Senning, P. Hedden, U. Sonnewald, and S. Sonnewald. 2011. Reactivation of meristem activity and sprout growth in potato tubers require both cytokinin and gibberellin. Plant Physiology 155: 776–796.

    Article  CAS  PubMed  Google Scholar 

  • Hussey, G., and N.J. Stacey. 1984. Factors affecting the formation of In Vitro tubers of potato (Solanum tuberosum L.). Annals of Botany 53: 565–578.

    CAS  Google Scholar 

  • Iritani, W.M. 1968. Factors affecting physiological ageing (degeneration) of potato tubers used as seed. American Journal of Potato Research 45: 111–116.

    Article  Google Scholar 

  • Iritani, W.M. and R.E. Thornton. 1984. Potatoes. Influencing seed tuber behavior. Pacific Northwest Extension Publication, PNW 248.

  • Iritani, W.M., R. Thornton, L. Weller, and G. O’Leary. 1972. Relationships of seed size, spacing and stem numbers on yield of Russet Burbank potatoes. American Journal of Potato Research 49: 463–469.

    Article  Google Scholar 

  • Iritani, W.M., L.D. Weller, and N.R. Knowles. 1983. Relationships between stem number, tuber set and yield of Russet Burbank potatoes. American Journal of Potato Research 60(6): 423–431.

    Article  Google Scholar 

  • Jackson, S.D., and S. Prat. 1996. Control of tuberization in potato by gibberellins and phytochrome B. Physiologia Plantarum 98: 407–412.

    Article  CAS  Google Scholar 

  • Kloosterman, B., and C. Bachem. 2014. Tuber development. In The potato: Botany, production and uses, eds. M.J. Pavek, and R. Navarre, 45–63. Boston: CABI.

    Google Scholar 

  • Knowles, N.R., and G.I. Botar. 1991. Modelling the effects of potato seed-tuber age on plant establishment. Canadian Journal of Plant Science 71: 1219–1232.

    Article  Google Scholar 

  • Knowles, N.R., and G.I. Botar. 1992. Effect of altering the physiological age of potato seed-tubers in the fall on subsequent production in a short-season environment. Canadian Journal of Plant Science 72: 275–287.

    Article  Google Scholar 

  • Knowles, N.R., and L.O. Knowles. 2006. Manipulating stem number, tuber set, and yield relationships for northern- and southern-grown potato seed lots. Crop Science 46: 284–296.

    Article  Google Scholar 

  • Knowles, N.R., and L.O. Knowles. 2015. Optimizing tuber set and size distribution for potato seed (Solanum tuberosum L.) expressing varying degrees of apical dominance. Journal of Plant Growth Regulation. doi:10.1007/s00344-015-9562-1.

  • Knowles, N.R., W.M. Iritani, and L.D. Weller. 1985. Plant growth response from aged potato seed-tubers as affected by meristem selection and NAA. American Journal of Potato Research 62(6): 289–300.

    Article  CAS  Google Scholar 

  • Krijthe, N. 1962. Observations on the sprouting of seed potatoes. Potato Research 5: 316–333.

    Article  Google Scholar 

  • Kumar, G.N.M., and N.R. Knowles. 1993. Involvement of auxin in the loss of apical dominance and plant growth potential accompanying aging of potato seed tubers. Canadian Journal of Botany 71: 541–550.

    Article  CAS  Google Scholar 

  • Kumar, D., and P.F. Wareing. 1974. Studies on tuberization of Solanum andigena. II. Growth hormones and tuberization. New Phytologist 73: 833–840.

    Article  CAS  Google Scholar 

  • Lenfesty, C.M. 1967. Soil Survey: Adams County, Washington. Washington D.C.

  • Menzel, C.M. 1980. Tuberization in potato at high temperatures: responses to gibberellin and growth inhibitors. Annals of Botany 55: 35–39.

    Google Scholar 

  • Mikitzel, L.J. 1993. Influencing seed tuber yield of Ranger Russet and Shepody potatoes with gibberellic acid. American Potato Journal 70: 667–676.

    Article  CAS  Google Scholar 

  • Mikitzel, L.J., and N.R. Knowles. 1990. Effect of potato seed-tuber age on plant establishment and amelioration of age-linked effects with auxin. Plant Physiology 93: 967–975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Brien, P.J., E.J. Allen, J.N. Bean, R.L. Griffith, S.A. Jones, and J.L. Jones. 1983. Accumulated day-degrees as a measure of physiological age and the relationships with growth and yield in early potato varieties. Journal of Agricultural Science 101: 613–631.

    Article  Google Scholar 

  • Oliveira, J.S. 2015. Growth and development of potato (Solanum tuberosum L.) crops after different cool season storage. PhD dissertation, Lincoln University, Department of Agricultural Sciences.

  • Pavek M.J., and N.R. Knowles. (2009). Potato cultivar yield and postharvest quality evaluations for 2009. Washington State University Special Report. 15. http://potatoes.wsu.edu/wp-content/uploads/2014/11/2009-WSU-Potato-Cultivar-Yield-and-Postharvest-Evaluations-Researchers-Edition.pdf. Accessed 3 Feb 2016.

  • Pavek, M.J., and R.E. Thornton. 2006. Agronomic and economic impact of missing and irregularly spaced potato plants. American Journal of Potato Research 86: 56–67.

  • Pillay, I., and I.D. Raiton. 1983. Complete release of axillary buds from apical dominance in intact, light-grown seedlings of Pisum sativum L. following a single application of cytokinin. Plant Physiology 71(4): 972–974.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prat, S. 2010. Hormonal and daylength control of potato tuberization. In Plant hormones, ed. P.J. Davies, 574–596. The Netherlands: Springer.

    Chapter  Google Scholar 

  • Romanov, G.A., N.P. Aksenova, T.N. Konstantinova, S.A. Golyanovskaya, J. Kossmann, and L. Willmitzer. 2000. Effect of indole-3-acetic acid and kinetin on tuberisation parameters of different cultivars and transgenic lines of potato In Vitro. Plant Growth Regulation 32: 245–251.

    Article  CAS  Google Scholar 

  • Smeltzer, G.G., and D.C. Mackay. 1963. The influence of gibberellic acid seed treatment and seed spacing on yield and tuber size profile of potatoes. American Potato Journal 40: 377–380.

    Article  CAS  Google Scholar 

  • Struik, P.C. 2007. Responses of the potato plant to temperature. In Potato biology and biotechnology: Advances and perspectives, ed. D. Vreugenhill, 366–396. New York: Elsevier.

    Google Scholar 

  • Struik, P.C., A.J. Haverkort, D. Vreugdenhil, C.B. Bus, and R. Dankert. 1990. Manipulation of tuber-size dstribution of a potato crop. Potato Research 33(4): 417–432.

    Article  Google Scholar 

  • Struik, P.C., D. Vreugdenhil, H.J. van Eck, B.W. Bachem, and R.G.F. Visser. 1999. Physiological and genetic control of tuber formation. Potato Research 42(2): 313–331.

    Article  CAS  Google Scholar 

  • Struik, P.C., P.E.L. van der Putten, D.O. Caldiz, and K. Scholte. 2006. Response of stored potato seed tubers from contrasting cultivars to accumulated day-degrees. Crop Science 46: 1156–1168.

    Article  Google Scholar 

  • Thornton, M., M.J. Pavek, and W.H. Bohl. 2007. Importance of tuber set and bulking rate. Proceedings of the Winter Commodity Schools, University of Idaho Cooperative Ext. 39: 5–10.

  • Timm, H., L. Rappaport, J.C. Bishop, and B.J. Hoyle. 1962. Sprouting, plant growth, and tuber production as affected by chemical treatment of white potato seed pieces. IV Responses of dormant and sprouted seed potatoes to gibberellic acid. American Journal of Potato Research 39: 107–115.

    Article  CAS  Google Scholar 

  • Van Loon, C.D. 1987. Effect of physiological age on growth vigour of seed potatoes of two cultivars for influence of storage temperature on growth and yield in the field. Potato Research 30: 441–450.

    Article  Google Scholar 

Download references

Acknowledgments

Financial support was provided by the USDA Specialty Crop Block Grant program through the Washington State Department of Agriculture, Simplot Australia Pty Ltd., and the Northwest Potato Research Consortium. We thank Jacob Blauer, Agronomy Scientist Manager, J.R. Simplot Co. and Mark Heap, Biosciences Manager, Simplot Australia Pty. Ltd. for their insight and advice during the course of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Richard Knowles.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herman, D.J., Knowles, L.O. & Knowles, N.R. Differential Sensitivity of Genetically Related Potato Cultivars to Treatments Designed to Alter Apical Dominance, Tuber Set and Size Distribution. Am. J. Potato Res. 93, 331–349 (2016). https://doi.org/10.1007/s12230-016-9507-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12230-016-9507-7

Keywords

Navigation