Skip to main content

Hormonal and Daylength Control of Potato Tuberization

  • Chapter
Plant Hormones

Abstract

Plants utilize light not only as source of energy in photosynthesis but also as a source of information of the environment in which they develop. An incident radiation enriched in FR light, such as that of sunlight filtered through a leaf canopy, is perceived by the plant as the competing presence of other plants for light. This induces an increased elongation response aimed at optimising the capture of incident light. By measuring the relative duration of the day and night plants can also recognise the season of the year in which they are growing. Moving from the equator towards the poles, the days become longer in summer and shorter in winter. The rate at which daylength changes varies during the year, with little change from day to day in mid summer or winter, and more rapid changes as days become longer during spring or shorter during fall.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Batutis EJ, Ewing EE (1982) Far-red reversal of red light effect during long-night induction of potato (Solanum tuberosum L.) tuberization. Plant Physiol 69: 672-674.

    Article  PubMed  Google Scholar 

  2. Bou J, Martínez-García J, García-Martínez JL, Prat, S (2003) Role of potato gibberellin 3beta-hydroxylase in the photoperiodic control of tuber induction, submitted for publication.

    Google Scholar 

  3. Carrera E, Jackson SD, Prat S (1999) Feedback control and diurnal regulation of gibberellin 20-oxidase transcript levels in potato. Plant Physiol 119: 765-74.

    Article  CAS  PubMed  Google Scholar 

  4. Carrera E, Bou J, García-Martínez JL, Prat S (2000) Changes in GA 20-oxidase gene expression strongly affect stem length, tuber induction and tuber yield of potato plants. Plant J 22: 247-256.

    Article  CAS  PubMed  Google Scholar 

  5. Chailakhyan MKh, Yanina LI, Devedzhyan AG, Lotova GN (1981) Photoperiodism and tuber formation in grafting of tobacco onto potato. Doklady Akademic Nauk SSSR 257: 1276.

    Google Scholar 

  6. Chapman HW (1958) Tuberization in the potato plant. Physiol Plant 11: 215–224.

    Article  Google Scholar 

  7. Coleman WK, Donnelly DJ, Coleman SE (2001) Potato microtubers as research tools: a review. Am J Potato Res 78: 47-55.

    Article  CAS  Google Scholar 

  8. Evans LT, King RW, Mander LN, Pharis RP (1994) The relative significance for stem elongation and flowering in Lolium temulentum of 3β-hydroxylation of gibberellins. Planta 192: 130-136.

    CAS  Google Scholar 

  9. Ewing EE, Struik PC (1992) Tuber formation in potato: induction, initiation and growth. Hortic Rev 14: 89-197.

    Google Scholar 

  10. Fernie AR, Willmitzer L (2001) Molecular and biochemical triggers of potato tuber development. Plant Physiol 127: 1459-1465.

    Article  CAS  PubMed  Google Scholar 

  11. Fladung M, Ballvora A, Schmülling T (1993) Constitutive or light regulated expression of the rolC gene in transgenic potato plants alters yield attributes and tuber carbohydrate composition. Plant Mol Biol 23: 749-757.

    Article  CAS  PubMed  Google Scholar 

  12. Fujino K, Koda Y, Kikuta Y (1995) Reorientation of cortical microtubules in the subapical region during tuberization in single node stem segments of potato in culture. Plant Cell Physiol 36: 891-895.

    CAS  Google Scholar 

  13. Frugis G, Giannino D, Mele G, Nicolodi C, Chiappetta A, Bitonti MB, Innocenti AM, Dewitte W, van Onckelen H, Mariotti D (2001) Overexpression of KNAT1 in lettuce shifts leaf determinate growth to a shoot-like indeterminate growth associated with an accumulation of isopentenyl-type cytokinins. Plant Physiol 126: 1370-1380.

    Article  CAS  PubMed  Google Scholar 

  14. Gális I, Macas J, Vlasák J, Ondrej M, van Onckelen H (1995) The effects of an elevated cytokinin level using the ipt gene and N6-benzyladenine on single node and intact potato plant tuberization in vitro. J Plant Growth Regul 14: 143-150.

    Article  Google Scholar 

  15. Gidda SK, Miersch O, Levitin A, Schmidt J, Wasternack C, Varin L (2003) Biochemical and molecular characterization of a hydroxyjasmonate sulfotransferase from Arabidopsis thaliana. J Biol Chem 278: 17895-17900.

    Article  CAS  PubMed  Google Scholar 

  16. Gregory LE (1956) Some factors for tuberization in the potato. Ann Bot 41: 281-288.

    Google Scholar 

  17. Guivarc’h A, Rembur J, Goetz M, Roitsch T, Noin M, Schmülling T, Chriqui D (2002) Local expression of the ipt gene in transgenic tobacco (Nicotiana tabacum L. cv. SR1) axillary buds establishes a role for cytokinins in tuberization and sink formation. J Exp Bot 53: 621-629.

    Article  PubMed  Google Scholar 

  18. Harms K, Atzorn R, Brash A, Kuhn H, Wasternack C, Willmitzer L, Peña-Cortes H (1995) Expression of a Flax Allene Oxide Synthase cDNA Leads to Increased Endogenous Jasmonic Acid (JA) Levels in Transgenic Potato Plants but Not to a Corresponding Activation of JA-Responding Genes. Plant Cell 7: 1645-1654.

    Article  CAS  PubMed  Google Scholar 

  19. Helder H, Miersch O, Vreugdenhil D, Sambdner G (1993) Occurrence of hydroxylated jasmonic acids in leaflets of Solanum demissum plants grown under long- and short-day conditions. Physiol Plant 88: 647-653.

    Article  CAS  Google Scholar 

  20. Jackson SD, Heyer A, Dietze J, Prat S (1996) Phytochrome B mediates the photoperiodic control of tuber formation in potato. Plant J 9: 159-166.

    Article  CAS  Google Scholar 

  21. Jackson SD (1999) Multiple signalling pathways control tuber induction in potato. Plant Physiol 119, 1-8.

    Article  CAS  PubMed  Google Scholar 

  22. Koda Y, Okazawa Y (1983) Influences of environmental, hormonal and nutritional factors on potato tuberization in vitro. Jpn J Crop Sci 52: 582-591.

    Google Scholar 

  23. Kolomiets MV, Hannapel DJ, Chen H, Tymeson M, Gladon RJ (2001) Lipoxygenase is involved in the control of potato tuber development. Plant Cell 13: 613-26.

    Article  CAS  PubMed  Google Scholar 

  24. Krauss A (1985) Interaction of nitrogen nutrition, phytohormones and tuberization. In PH Li, ed, Potato Physiology. Academic Press, London, pp 209–231.

    Google Scholar 

  25. Machackova I, Konstantinova TN, Seergeva LI, Lozhnikova VN,Golyanovskaya SA, Dudko ND, Eder J, Aksenova NP (1998) Photoperiodic control of growth, development and phytohormone balance in Solanum tuberosum. Physiol Plant 102: 272–278.

    Article  CAS  Google Scholar 

  26. Martínez-García JF, Virgós-Soler A, Prat S (2002) Control of photoperiod-regulated tuberization in potato by the Arabidopsis flowering-time gene CONSTANS. Proc Natl Acad Sci USA 99: 15211-15216.

    Article  PubMed  Google Scholar 

  27. Martínez-García J, García-Martínez JL, Bou J, Prat S (2002) The interaction of gibberellins and photoperiod in the control of potato tuberization. J Plant Growth Regul 20: 377-386.

    Google Scholar 

  28. Menzel CM (1983) Tuberization in potato at high temperatures: gibberellin content and transport from buds. Ann Bot 52: 697-702.

    CAS  Google Scholar 

  29. Müller-Röber B, Sonnewald U, Willmitzer L (1992) Inhibition of the ADPglucose pyrophosphorylase in transgenic potatoes leads to sugar storing tubers and influences tuber formation and expression of tuber storage protein genes. EMBO J 11: 1229-1238.

    PubMed  Google Scholar 

  30. Olszewski N, Sun TP, Gubler F (2002) Gibberellin signaling: biosynthesis, catabolism, and response pathways. Plant Cell 14: 61-80.

    Google Scholar 

  31. Pedros AR, MacLeod MR, Ross HA, McRae D, Tiburcio AF, Davies HV, Taylor MA (1999) Manipulation of S-adenosylmethionine decarboxylase activity in potato tubers. An increase in activity leads to an increase in tuber number and a change in tuber size distribution. Planta 209: 153-60.

    Article  CAS  PubMed  Google Scholar 

  32. Proebsting WM, Hedden P, Lewis ML, Croker SJ, Proebsting LN (1992) Gibberellin concentration and transport in genetic lines of pea. Plant Physiol 100: 1354-1360.

    Article  CAS  PubMed  Google Scholar 

  33. Putterill J, Robson F, Lee K, Simon R, Coupland G (1995) The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell 80: 847-857.

    Article  CAS  PubMed  Google Scholar 

  34. Regierer B, Fernie AR, Springer F, Perez-Melis A, Leisse A, Koehl K, Willmitzer L, Geigenberger P, Kossman J (2002) Starch content and yield increase as a result of altering adenylate pools in transgenic plants. Nat Biotech 20: 1256-1260.

    Article  CAS  Google Scholar 

  35. Roitsch T, Ehneβ R (2000) Regulation of source/sink relations by cytokinins. Plant Growth Regul 32: 359-367.

    Article  CAS  Google Scholar 

  36. Romanov GA, Aksenova NP, Konstantinova TN, Golyanovskaya SA, Kossman J, Willmitzer L (2000) Effect of indole-3-acetic acid and kinetin on tuberisation parameters of different cultivars and transgenic lines of potato in vitro. Plant Growth Regul 32: 245-251.

    Article  CAS  Google Scholar 

  37. Rosin FM, Hart JK, Horner HT, Davies PJ, Hannapel D (2003) Overexpression of a Knotted-like homeobox gene of potato alters vegetative development by decreasing gibberellin accumulation. Plant Physiol 132: 106-117.

    Article  CAS  PubMed  Google Scholar 

  38. Rupp HM, Frank M, Werner T, Strnad M, Schmülling T (1999) Increased steady state mRNA levels of the STM and KNAT1 homeobox genes in cytokinin overproducing Arabidopsis thaliana indicate a role for cytokinins in the shoot apical meristem. Plant J 18: 557-563.

    Article  CAS  PubMed  Google Scholar 

  39. Simpson GG, Dean C (2002) Arabidopsis, the Rosetta Stone of Flowering Time? Science 296: 285-289.

    Article  CAS  PubMed  Google Scholar 

  40. Snyder E, Ewing EE (1989) Interactive effects of temperature, photoperiod and cultivar on tuberization of potato cuttings. Hortic Sci 24: 336–338.

    Google Scholar 

  41. Sonnewald U, Hajirezaei MR, Kossmann J, Heyer A, Trethewey RN, Willmitzer L (1997) Increased potato tuber size resulting from apoplastic expression of a yeast invertase. Nat Biotechnol 15: 794-797.

    Article  CAS  PubMed  Google Scholar 

  42. Stark DM, Timmerman KP, Barry GF, Preis J, Kishore GM (1992) Regulation of the amount of starch in plant tissues by ADP glucose pyrophosphorylase. Science 258: 287-292.

    Article  CAS  PubMed  Google Scholar 

  43. Tjaden J, Mohlmann T, Kampfenkel K, Henrichs G, Neuhaus HE (1998) Altered plastidic ATP/ADP-transporter activity influences potato (Solanum tuberosum L.) tuber morphology, yield and composition of tuber starch. Plant J 16: 531-540.

    Article  CAS  Google Scholar 

  44. van den Berg JH, Simko I, Davies PJ, Ewing EE, Halinska A (1995) Morphology and (14C) gibberellin A12 aldehyde metabolism in wild-type and dwarf Solanum tuberosum ssp. andigena grown under long and short photoperiods. J Plant Physiol 146: 467-473.

    Google Scholar 

  45. van den Berg JH, Ewing E, Plaisted RL, McMurry S, Bonierbale MW (1996) QTL analysis of potato tuberization. Theor Appl Genet 93: 307-316.

    Article  Google Scholar 

  46. Viola R, Roberts AG, Haupt S, Gazzani S, Hancock RD, Marmiroli N, Machray GC, Oparka KJ (2001) Tuberization in potato involves a switch from apoplastic to symplastic phloem unloading. Plant Cell 13: 385-398.

    Article  CAS  PubMed  Google Scholar 

  47. Xu X, van Lammeren AAM, Vermeer E, Vreughdenhil D (1998) The role of gibberellin, abscisic acid and sucrose in the regulation of potato tuber formation in vitro. Plant Physiol 117: 575-584.

    Article  CAS  PubMed  Google Scholar 

  48. Xu X, Vreugdenhil D, van Lammeren AMM (1998) Cell division and cell enlargement during potato tuber formation. J Exp Bot 49: 573-582.

    Article  CAS  Google Scholar 

  49. Yanovsky MJ, Izaguirre M, Wagmaister JA, Jackson SD, Thomas B, Casal JJ (2000) Phytochrome A resets the circadian clock and delays tuber formation under long days in potato. Plant J 23: 223-232.

    Article  CAS  PubMed  Google Scholar 

  50. Zrenner R, Salanoubat M, Willmitzer L, Sonnewald U (1995) Evidence of the crucial role of sucrose synthase for sink strength using transgenic potato plants. Plant J 7: 97-107.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salomé Prat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Prat, S. (2010). Hormonal and Daylength Control of Potato Tuberization. In: Davies, P.J. (eds) Plant Hormones. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2686-7_25

Download citation

Publish with us

Policies and ethics