Skip to main content
Log in

Apical dominance

  • Published:
The Botanical Review Aims and scope Submit manuscript

Abstract

Apical dominance is the control exerted by the apical portions of the shoot over the outgrowth of the lateral buds. The classical explanations for correlative inhibition have focused on hormone/nutrient hypotheses. The remarkable progress that has been made in the technology of endogenous hormone quantification in plant tissue has not been accompanied by comparable progress in the elucidation of mechanisms of hormone action in apical dominance. Evidence from hormonal studies suggests that apically produced auxin indirectly suppresses axillary bud outgrowth that is promoted by cytokinin originating from roots/shoots. Significant involvement with other hormones, although less likely, has not been ruled out. Possible changes in tissue sensitivity to hormones should not be overlooked. Auxin-induced oligosaccharide signals originating from the cell walls of shoot tips or polyamines may function as secondary inhibitors to bud growth. Alternatively, apically produced auxin may suppress lateral bud growth by inhibiting auxin export from these buds. Support for a critical role for nutrients in apical dominance keeps resurfacing, especially for auxin-directed nutrient transport and for water as a possible inducing signal for bud outgrowth. Histological and biochemical analyses of lateral buds recently released from apical dominance are urgently needed. The feasibility of manipulating endogenous auxin/cytokinin content in plant tissue by gene insertion and modulation opens the door to exciting approaches as does the use of hormone insensitive/resistant mutants. There is also need to recognize the existence of variability of apical dominance mechanisms among different plant types. The aesthetic and economic implications of understanding apical dominance for the modification of plant structure and form are extremely significant.

Résumé

La dominance apicale est le contrôle exercé par les portions apicales de la pousse sur la croissance des bourgeons latéraux. Les explications classiques jusque là invoquées dans les cas d’inhibition corrélative ont imputé les hormones/substances nutritives. Les progrés technologiques remarquables réalisés dans la quantification des hormones endogènes des tissus végétaux n’ont pas été suivis de progrès comparables concernant la compréhension des mécanismes d’action des hormones dans la dominance apicale. Les résultats des études hormonales suggèrent que l’auxine produite apicalement supprime indirectement la croissance des bourgeons axillaires activée par la cytokinine qui se forme dans les racines et les tiges. Bien que moins probable, l’action significative d’autres hormones n’a pas été écartée. Des changements possibles dans la sensibilité des tissus aux hormones ne doivent pas être negligés. Des signaux oligosaccharides induits par l’auxine et produits par les parois cellulaires des extremités de la pousse ou polyamines peuvent fonctionner comme inhibiteurs secondaires de la croissance des bourgeons. Alternativement, l’auxine produite apicalement peut supprimer la croissance des bourgeons latéraux en inhibitant la sortie d’auxine de ces bourgeons. Des éléments refont surface en faveur d’un rôle critique des substances nutritives dans la dominance apicale, et particuliérement en faveur d’un transport de ces substances dirigé par l’auxine ainsi que de l’eau comme agent inducteur d’un signal pour la croissance des bourgeons. Il devient urgent de procéder à des analyses histologiques et biochimiques de bourgeons latéraux récemment libérés de la dominance apicale. La possibilité de manipuler le contenu d’auxine/cytokinine endogènes dans les tissus végétaux par insertion et modulation de gènes de même que l’utilisation de mutants insensibles aux hormones ouvrent la porte à d’excitantes approches. Les implications économiques et esthétiques résultant de la compréhension de la dominance apicale via la manipulation de la structure et de la forme des plantes sont extrêmement importantes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Abdel-Rahman, A. M. &M. G. Cline. 1989. Timing of growth inhibition following shoot inversion inPharbitis nil. Pl. Physiol.91: 464–465.

    CAS  Google Scholar 

  • Abeles, F. B. &H. E. Gahagan. 1968. Accelerated abscission ofColeus petioles by placing plants in a horizontal position. Life Sci.7: 634–654.

    Google Scholar 

  • Ackerson, R. C. &D. O. Chilcote. 1978. Effects of defoliation and TIBA (triiodobenzoic acid) on tillering, dry matter production and carbohydrate reserves of two cultivars of Kentucky Bluegrass. Crop Sci.18: 705–708.

    CAS  Google Scholar 

  • Andersen, A. S. 1976. Regulation of apical dominance by ethephon, irradiance and CO2. Physiol. Pl.37: 303–308.

    CAS  Google Scholar 

  • Argali, J. F. &K. A. Stewart. 1984. Effects of decapitation and benzyladenine on growth and yield of cowpea (Vigna unguiculata (L.) Walp). Ann. Bot.54: 439–444.

    Google Scholar 

  • Baker, F. A., D. W. French &G. W. Hudler. 1981. Development ofArceuthobium pusillum on inoculated black spruce. Forest Sci.27: 203–205.

    Google Scholar 

  • Bangerth, F. 1989. Dominance among fruits/sinks and the search for a correlative signal. Physiol. Pl.76: 608–614. A minireview.

    CAS  Google Scholar 

  • Bapat, V. A. &P. S. Rao. 1977. Shoot apical meristem cultureof Pharbitis nil. Pl. Sci. Letters10: 327.

    CAS  Google Scholar 

  • Baur, J. R. 1979. Effect of glyphosate on auxin transport in corn and cotton tissues. Pl. Physiol.63: 882–886.

    CAS  Google Scholar 

  • R. W. Bovey &J. A. Veech. 1977. Growth responses in sorghum and wheat induced by glyphosate. Weed Sci.25: 238–240.

    CAS  Google Scholar 

  • Berghage, R. D., R. D. Heins, M. Karlsson, J. Erwin &W. Carlson. 1989. Pinching technique influences lateral shoot development in poinsettia. J. Amer. Hort. Sci.114: 909–914.

    Google Scholar 

  • Blake, T. J., R. P. Pharis &D. M. Reid. 1980. Ethylene, gibberellins, auxin and the apical control of branch angle in a conifer,Cupressus arizonica. Planta148: 64–68. A minireview.

    CAS  Google Scholar 

  • D. M. Reid &S. B. Rood. 1983. Ethylene, indoleacetic acid and apical dominance in peas: A reappraisal. Physiol. Pl.59: 481–487. A minireview.

    CAS  Google Scholar 

  • — &T. J. Tschaplinski. 1986. Role of water relations and photosynthesis in the release of buds from apical dominance and the early reinvigoration of decapitated poplars. Physiol. Pl.68: 287–293.

    Google Scholar 

  • Blonstein, A. D., T. Vahala, M. Koornneef &P. J. King. 1988. Plants regenerated from auxin-auxotrophic variants are inviable. Mol. Gen. Genetics215: 58–67.

    CAS  Google Scholar 

  • Boswell, S. B., E. M. Nauer &W. B. Storey. 1981. Axillary buds sprouting inMacadamia induced by two cytokinins and a growth inhibitor. HortSci.16: 46.

    CAS  Google Scholar 

  • Brenner, M. L., D. J. Wolley, V. Sjut &D. Salerno. 1987. Analysis of apical dominance in relation to IAA transport. HortSci.22: 833–835.

    CAS  Google Scholar 

  • Brown, B. T., C. Foster, J. N. Phillips &B. M. Rattigan. 1979. The indirect role of 2,4-D in the maintenance of apical dominance in decapitated sunflower seedlings (Helianthus annuus L.). Planta146: 475–480.

    CAS  Google Scholar 

  • — &J. N. Phillips 1982. The transport behaviour of the synthetic auxin 2,4-Dichlor-phenoxyacetic acid in decapitated seedlings of sunflower (Helianthus annuus L.). Austral. J. Pl. Physiol.9: 5–13.

    CAS  Google Scholar 

  • Brown, C. L., R. G. McAlpine &P. P. Kormanik. 1967. Apical dominance and form in woody plants: A reappraisal. Amer. J. Bot.54: 153–162.

    Google Scholar 

  • Burg, S. B. &E. A. Burg. 1968. Ethylene formation in pea seedlings; its relationship to the inhibition of bud growth caused by indole-3-acetic acid. Pl. Physiol.43: 1069–1074.

    CAS  Google Scholar 

  • Burg, S. P. 1971. Page 397in H. Kaldewey & Y. Vardar (eds.), Hormonal regulation of plant growth and development. Verlag Chemie, GmbH, Weinheim, Bergstr., Germany.

    Google Scholar 

  • — 1973. Ethylene in plant growth. Proc. Nat. Acad. Sci. USA70: 591–597.

    PubMed  CAS  Google Scholar 

  • Burrows, G. E. 1989. Developmental anatomy of axillary meristems ofAraucaria cunninghamii released from apical dominance following shoot apex decapitationin vitro andin vivo. Bot. Gaz.150: 369–377.

    Google Scholar 

  • Burtin, D., J. Martin-Tanguy &D. Tepfer. 1991. α-DL-difluoromethylornithine, a specific, irreversible inhibitor of putrescine biosynthesis, induces a phenotype in tobacco similar to that ascribed to the root-inducing, left-hand transferred DNA ofAgrobacterium rhizogenes. Pl. Physiol.95: 461–468.

    CAS  Google Scholar 

  • Carmi, A. &J. Van Staden. 1983. Role of roots in regulating the growth rate and cytokinin content in leaves. Pl. Physiol.73: 76–78.

    CAS  Google Scholar 

  • Casal, J. J., V. A. Deregibus &R. A. Sanchez. 1985. Variations in tiller dynamics and morphology inLolium multiflorum Lam. vegetative and reproductive plants as affected by differences in red/far-red irradiation. Ann. Bot.56: 553–559.

    Google Scholar 

  • —,R. A. Sanchez &V. A. Deregibus. 1986. The effect of plant density on tillering: The involvement of R/FR ratio and the proportions of radiation intercepted per plant. Environ. and Exp. Bot.28: 365–371.

    Google Scholar 

  • —. 1987. Tillering responsesof Lolium multiflorum plants to changes of R/FR ratio typical of sparse canopies. J. Exp. Bot.38: 1432–1439.

    Google Scholar 

  • — &D. Gibson. 1990. The significance of changes in the red/far-red ratio, associated with either neighbour plants or twilight, for tillering inLolium multiflorum Lam. New Phytol.116: 565–572.

    Google Scholar 

  • Catchpole, A. H. &J. R. Hillman. 1976. The involvement of ethylene in the coiled-sprout disorder of potato. Ann. Appl. Biol.83: 413–423.

    Google Scholar 

  • Clifford, P. E. 1977. Tiller bud suppression in reproductive plantsof Lolium multiflorum Lam. cv. Westerwoldicum. Ann. Bot.41: 605–615.

    CAS  Google Scholar 

  • —,D. M. Reid &R. P. Pharis. 1983. Endogenous ethylene does not initiate but may modify geobending—a role for ethylene in autotropism. Plant, Cell Environ.6: 433–436.

    CAS  Google Scholar 

  • Cline, M. G. 1983. Apical dominance inPharbitis nil: Effects induced by inverting the apex of the main shoot. Ann. Bot.52: 217–227.

    Google Scholar 

  • — &L. Riley. 1984. The presentation time for shoot inversion release of apical dominance inPharbitis nil. Ann. Bot.53: 897–900.

    Google Scholar 

  • Cottignies, A. &A. Jennane. 1988. Water content, water potential and transition from the non-cycling state in pea cotyledonary bud. J. Pl. Physiol.132: 1–4.

    Google Scholar 

  • Crabbe, J. J. 1984. Correlative effects modifying the course of bud dormancy in woody plants. Z. Pflanzenphysiol.113: 465–469.

    Google Scholar 

  • Crabbe, P. J. &H. Lakhoua. 1978. Arcure et gravimorphisme chez le pommier. Mise en evidence d’effets gravimorphiques sur bourgeons isoles, apres induction de ces effets en diverses conditions. Ann. Sci. Nat. Bot.19: 125–140.

    Google Scholar 

  • Crane, J. C. &B. J. Iwakiri. 1985. Vegetative and reproductive apical dominance in pistachio. HortSci.20: 1092–1093.

    Google Scholar 

  • Croxdale, J. G. 1976. Hormones and apical dominance in the fernDavallia. J. Exp. Bot.27: 801–815.

    CAS  Google Scholar 

  • — 1977. Accumulation of32P and [−14C] sucrose in decapitated and intact shoots of the fernDavallia trichomanoides Blume. Planta133: 111–115.

    CAS  Google Scholar 

  • Cutter, E. G. &H. Chiu. 1975. Differential responses of buds along the shoot to factors involved in apical dominance. J. Exp. Bot.26: 828–839.

    CAS  Google Scholar 

  • Cutting, J. G. M. 1991. Determination of the cytokinin complement in healthy and witchesbroom malformed Proteas. J. Plant Growth Regul.10: 85–89.

    CAS  Google Scholar 

  • Da Cruz, G. S. &L. J. Audus. 1978. Studies of hormone-directed transport in decapitated stolons ofSaxifraga sarmentosa. Ann. Bot.42: 1009–1027.

    Google Scholar 

  • Dalton, S. J. &P. J. Dale. 1985. The application ofin vitro tiller induction inLolium multiflorum. Euphytica34: 897–904.

    Google Scholar 

  • Daniels, R. E. 1986. Studies in the growth ofPteridium aquilinum (L.) Kuhn (bracken). 2. Effects of shading and nutrient application. Weed Res.26: 121–126.

    Google Scholar 

  • Davis, T. D. &E. A. Curry. 1991. Chemical regulation of vegetative growth. Crit. Revs. Pl. Sci.10: 151–188.

    CAS  Google Scholar 

  • Denny, F. G. 1936. Gravity-position of tomato stems and their production of the emanation causing leaf epinasty. Contr. Boyce Thompson Inst. Pl. Res.8: 99–104.

    CAS  Google Scholar 

  • Deregibus, V. A., R. A. Sanchez &J. J. Casal. 1983. Effects of light quality on tiller production inLolium spp. Pl. Physiol.72: 900–902.

    CAS  Google Scholar 

  • Dicks, J. W. &A. A. Abdel-Kawi. 1979. Antagonistic and synergistic interactions between ancymidol and gibberellins in shoot growth of cucumber (Cucumis sativus). J. Exp. Bot.30: 779–793.

    CAS  Google Scholar 

  • Dörffling, K. 1976. Correlative bud inhibition and abscisic acid inAcer pseudoplatanus andSyringa vulgaris. Physiol. Pl.38: 319–322.

    Google Scholar 

  • Dua, I. S., U. K. Kohli &K. S. Chark. 1982. Effect of morphactin, AMO-1618 and DPX-1840 on endogenous levels of hormones and its implication on apical dominance inGlycine max Linn. Proc. Indian Acad. Sci.91: 501–508.

    CAS  Google Scholar 

  • Duhoux, E. &D. Davies. 1985. Shoot production from cotyledonary buds ofAcacia albida and influence of sucrose on rhizogenesis. J. Plant Physiol.121: 175–180.

    CAS  Google Scholar 

  • Einset, J. W. 1984. Apical dominance in relation to ethylene in tobacco shoot cultures. Amer. J. Bot.71(Part 2): 25. Abstract.

    Google Scholar 

  • Elfving, D. C. 1985. Comparison of cytokinin and apical dominance-inhibitory growth regulation for lateral branch induction in nursery and orchard apple trees. J. HortSci.60: 447–454.

    CAS  Google Scholar 

  • Eliasson, L. 1975. Effect of indoleacetic acid on the abscisic acid level in stem tissue. Physiol. Pl.34: 117–120.

    CAS  Google Scholar 

  • El-Kady, M., E. Zayed, M. Hassan &S. El-Ashkar. 1982. Effect of some synthetic growth regulators on endogenous phytohormones in relation to apical dominance ofCoffea arabica L. Angew. Bot.56: 343–347.

    CAS  Google Scholar 

  • Estelle, M. A. &C. Somerville. 1987. Auxin-resistant mutants ofArabidopsis thaliana with an altered morphology. Mol. General Genetics206: 200–206.

    CAS  Google Scholar 

  • Everat-Bourbouloux, A. 1981. Effect of local cooling of the stem on exogenous IAA transport from the apical bud and on the growth rate of axillary buds. Physiol. Pl.53: 1–8.

    CAS  Google Scholar 

  • — &J-L. Bonnemain. 1980. Distribution of labelled auxin and derivatives in stem tissues of intact and decapitated broad-bean plants in relation to apical dominance. Physiol. Pl.50: 145–152.

    CAS  Google Scholar 

  • — &D. Charnay. 1982. Endogenous abscisic acid levels in stems and axillary buds of intact or decapitated broadbean plant (Vicia faba L.). Physiol. Pl.54: 440–445.

    CAS  Google Scholar 

  • Fann, Y. S., F. T. Davis, Jr. &D. R. Paterson. 1983. Correlative effects of bench chip budded ‘Mirandy’ roses. J. Amer. Soc. Hort. Sci.108: 180–183.

    Google Scholar 

  • Fernandez, C. H. 1976. Studies on penetration and translocation of glyphosate (N-phosphonomethylglycine) onCynodon dactylon L. Pers. M.Sc. Thesis. University of California, Davis.

    Google Scholar 

  • Field, R. J. &D. I. Jackson. 1974. A hormone balance theory of apical dominance. Pages 655–657in R. L. Bieski, A. R. Ferguson & M. M. Cresswell (eds.), Mechanisms of regulation of plant growth, Bull. 17. Royal Soc. of N.Z., Wellington.

    Google Scholar 

  • Firn, R. D. 1986. Growth substance sensitivity: The need for clearer ideas, precise terms and purposeful experiments. Physiol. Pl.67: 267–272.

    CAS  Google Scholar 

  • Fisher, J. B. 1972. Control of shoot-rhizome dimorphism in the woody monocotyledon, cordyline (Agavaceae). Amer. J. Bot.59: 1000–1010.

    Google Scholar 

  • —,S. P. Burg &B. G. Kang. 1974. Relationship of auxin transport to branch dimorphism inCordyline, a woody monocotyledon. Physiol. Plant.31: 284–287.

    CAS  Google Scholar 

  • Fisher, J. E. 1957. Effect of gravity on flowering of soybeans. Science125: 396.

    Google Scholar 

  • Foster, K. R., D. M. Reid &J. S. Taylor. 1991. Tillering and yield responses to ethephon in three barley cultivars. Crop Sci.31: 130–134.

    CAS  Google Scholar 

  • Gaither, D. H. 1975. Auxin and the response of pea roots to auxin transport inhibitors: Morphactin. Pl. Physiol.55: 1082–1086.

    CAS  Google Scholar 

  • Garvey, E. J. &P. M. Lyrene. 1987. Inheritance of compact growth habit in rabbiteye blueberry. J. Amer. Soc. Hort. Sci.112: 1004–1008.

    Google Scholar 

  • Gocal, G. F. W., R. P. Pharis, E. C. Young &D. Pearce. 1991. Changes after decapitation of indole-3-acetic acid and abscisic acid in the larger axillary bud ofPhaseolus vulgaris L. CV Tender Green. Pl. Physiol.95: 344–350.

    CAS  Google Scholar 

  • Goldsmith, M. H. M. &P. M. Ray. 1973. Intracellular localization of the active process in polar transport of auxin. Planta111: 297–314.

    CAS  Google Scholar 

  • Gollin, D. J., P. Albersheim, A. G. Darvill, S. H. Doares &W. S. York. 1984. Plant cell wall fragments act as regulatory molecules. J. Cell Biochem.8B: 259.

    Google Scholar 

  • Gould, K. S., E. G. Putter, J. P. W. Young &W. A. Charlton. 1987. Positional differences in size, morphology andin vitro performance of pea axillary buds. Canad. J. Bot.65: 406–411.

    Google Scholar 

  • Grayburn, W. S., P. B. Green &G. Stoucek. 1982. Bud induction with cytokinin. A local response to local application. Pl. Physiol.69: 682–686.

    CAS  Google Scholar 

  • Gregory, F. G. &J. A. Veale. 1957. A reassessment of the problem of apical dominance. Symp. Soc. Exp. Biol.XI: 1–20.

    Google Scholar 

  • Guern, J. 1987. Regulation from within: The hormone dilemma. Ann. Bot. Suppl.4: 75–102.

    Google Scholar 

  • Hagen, P. &R. Moe. 1981. Effect of temperature and light on lateral branching in poinsettia (Euphorbia pulcherrima Willd.). Acta Hort.128: 47–54.

    Google Scholar 

  • Hall, S. M. &J. R. Hillman. 1975. Correlative inhibition of lateral bud growth inPhaseolus vulgaris L. Timing of bud growth following decapitation. Planta123: 137–143.

    Google Scholar 

  • Hall, W. C., G. B. Truchelut, C. L. Leinweber &F. A. Herrero. 1957. Ethylene production by the cotton plant and its effects under experimental and field conditions. Physiol. Pl.10: 305–317.

    Google Scholar 

  • Halle, F., R. A. A. Oldeman &P. B. Tomlinson. 1978. Tropical trees and forests: An architectural analysis. Springer-Verlag, New York.

    Google Scholar 

  • Hansen, J. &K. Kristensen. 1990. Axillary bud growth in relation to adventitious root formation in cuttings. Physiol. Pl.79: 39–44.

    Google Scholar 

  • Harmer, R. 1991. The effect of bud position on branch growth and bud abscission inQuercus petraea (Matt.) Liebl. Ann. Bot.67: 463–468.

    Google Scholar 

  • Harrison, M. A. &P. B. Kaufman. 1980. Hormonal regulation of lateral bud (tiller) release in oats (Arena sativa L.). Pl. Physiol.66: 1123–1127.

    CAS  Google Scholar 

  • ——. 1982. Does ethylene play a role in the release of lateral buds (tillers) from the apical dominance in oats? Pl. Physiol.70: 811–814.

    CAS  Google Scholar 

  • ——. 1983. Estimates of free and bound indole-3-acetic acid and zeatin levels in relation to regulation of apical dominance and tiller release in oat shoots. J. Pl. Growth Regul.2: 215–223.

    CAS  Google Scholar 

  • ——. 1984. The role of hormone transport and metabolism in apical dominance in oats. Bot. Gaz.145: 293–297.

    PubMed  CAS  Google Scholar 

  • Hartung, W. &C. Fünfer. 1981. ABA and apical dominance in bean. The role of tissue age. Ann. Bot.47: 371–375.

    CAS  Google Scholar 

  • — &F. Steigerwald. 1977. Abscisic acid and apical dominance inPhaseolus coccineus L. Planta134: 295–299.

    CAS  Google Scholar 

  • Hawkins, C. D. B., M. I. Whitecross &M. J. Aston. 1988. Similarities between the effects of apical infestation and cytokinin application on dark respiration and plant growth of legumes. Canad. J. Bot.66: 1896–1900.

    Google Scholar 

  • Healy, W. E., R. D. Heins &H. F. Wilkins. 1980. Influence of photoperiod and light quality on lateral branching and flowering of selected vegetatively-propagated plants. J. Amer. Soc. Hort. Sci.105: 812–816.

    Google Scholar 

  • Heins, R. D. &H. F. Wilkins. 1979. The influence of node number, light source, and time of irradiation during darkness on lateral branching and cutting production in “Bright Golden Anne” chrysanthemum. J. Amer. Soc. Hort. Sci.104: 265–270.

    Google Scholar 

  • —— &W. E. Healy. 1979. The effect of photoperiod on lateral shoot development inDianthus caryophyllus L. cv. Improved white sim. J. Am. Soc. Hort. Sci.104: 314–319.

    Google Scholar 

  • Hertel, R. &A. C. Leopold. 1963. Versuche zur analyse des auxin transports in der Koleoptile vonZea mays L. Planta59: 535–562.

    CAS  Google Scholar 

  • Hicks, G. R., D. L. Rayle &T. L. Lomax. 1989. Thediageotropica mutant of tomato lacks high specific activity auxin binding sites. Science245: 52–54.

    PubMed  CAS  Google Scholar 

  • Hillman, J. R. 1984. Apical dominance. Pages 127–148in M. B. Wilkins (ed.), Hormonal plant physiology. Pittman, London.

    Google Scholar 

  • — 1986. Apical dominance and correlations by hormones. Pages 341–349in M. Bopp (ed.), Plant growth substances. Springer-Verlag, Berlin.

    Google Scholar 

  • —,V. B. Math &G. C. Medlow 1977. Apical dominance and the levels of indole acetic acid inPhaseolus lateral buds. Planta134: 191–193.

    CAS  Google Scholar 

  • — &H. Y. Yeang. 1979. Correlative inhibition of lateral bud growth inPhaseolus vulgarus L. Ethylene and the physical restriction of apical growth. J. Exp. Bot.30: 1075–1083.

    CAS  Google Scholar 

  • —,H. Y. Yeang &V. J. Fairhurst. 1985. Pages 213–227in J. A. Roberts & G. A. Tucker (eds.), Ethylene and plant development. Butterworths, London.

    Google Scholar 

  • Hillman, S. K. 1968. Translocation in plants with special reference to the role of growth hormones. Ph.D. Thesis. University of Wales, Aberystwyth.

    Google Scholar 

  • Hoque, E. 1985. Norway spruce dieback: Occurrence, isolation and biological activity of p-hydroxy acetophenone and p-hydroxy acetophonone-o-glucoside and their possible roles during stress phenomena. Eur. J. Forest Pathol.15: 129–145.

    CAS  Google Scholar 

  • Hosokawa, Z., L. Shi, T. K. Prasad &M. G. Cline. 1990. Apical dominance control inIpomoea nil: The influence of the shoot apex, leaves and stem. Ann. Bot.65: 547–556.

    Google Scholar 

  • Husain, S. M. 1977. Effect of prolonged geo-stimulation and presence of32P on the elongation of lateral shoots of decapitated pea seedlings. Physiol. Pl.39: 252–256.

    CAS  Google Scholar 

  • — &A. J. Linck. 1966. Relationship of apical dominance to the nutrient accumulation pattern inPisum sativum var. Alaska. Physiol. Pl.19: 992–1010.

    CAS  Google Scholar 

  • Hussey, G. 1976.In vitro release of axillary shoots from apical dominance in monocotyledonous plantlets. Ann. Bot.40: 1323–1325.

    Google Scholar 

  • Isbell, V. R. &P. W. Morgan. 1982. Manipulation of apical dominance in sorghum with growth regulators. Crop Sci.22: 30–34.

    Google Scholar 

  • Jablanovic, M. &M. Neskovic. 1977. Changes in endogenous level of auxins and cytokinins in axillary buds ofPisum sativum L. in relation to apical dominance. Biol. Pl.19: 34–39.

    CAS  Google Scholar 

  • Jackson, M. B. 1985. Ethylene and responses of plants to soil waterlogging and submergence. Annual Rev. Pl. Physiol.36: 145–174.

    CAS  Google Scholar 

  • Jankiewicz, L. S. 1963. Gravimorphism in higher plants.In S. A. Gordon (ed.), Space biology. Proc. of 24th Biol. Colloquium. Oregon State University Press, Corvallis.

    Google Scholar 

  • Jennane, A., P. Landre &A. Nougarède. 1987. Nucleolus activation in pea cotyledonary buds during 24 hours after decapitation of the main stem: Cytochemical studies. Protoplasma136: 29–36.

    Google Scholar 

  • Johnson, C. F. &D. A. Morris. 1989. Applicability of the chemiosmotic polar diffusion theory to the transport of indol-3yl-acetic acid in the intact pea (Pisum sativum L.). Planta178: 242–248.

    CAS  Google Scholar 

  • Katekar, G. F. &A. E. Geissler. 1977. Auxin transport inhibitors. II. 2-(l-pyrenoyl)benzoic acid, a potent inhibitor of polar auxin transport. Austral. J. Pl. Physiol.4: 321–325.

    CAS  Google Scholar 

  • —. 1980. Auxin transport inhibitors. Pl. Physiol.66: 1190–1195.

    CAS  Google Scholar 

  • Kaur-Sawhney, R., H. E. Flores &A. W. Galston. 1980. Polyamine-induced DNA synthesis and mitosis in oat leaf protoplasts. Pl. Physiol.65: 368–371.

    CAS  Google Scholar 

  • —,L. Shih &A. W. Galston. 1982. Relation of polyamine biosynthesis to the initiation of sprouting in potato tubers. Pl. Physiol.69: 411–415.

    CAS  Google Scholar 

  • King, R. A. &J. Van Staden. 1988. Differential responses of buds along the shoot ofPisum sativum to isopentenyladenine and zeatin application. Pl. Physiol. Biochem.20: 253–259.

    Google Scholar 

  • Klee, H. J., R. B. Horsch &S. G. Rogers. 1987. Agrobacterium-mediated plant transformation and its further applications to plant biology. Annual Rev. Plant Physiol.38: 467–486.

    CAS  Google Scholar 

  • Knox, J. P. &P. F. Wareing. 1984. Apical dominance inPhaseolus vulgaris L. The possible roles of ABA and IAA. J. Exp. Bot.35: 239–244.

    CAS  Google Scholar 

  • Kohyama, T. 1980. Growth pattern ofAbies mariesii under conditions of open growth and suppression. Bot. Mag. Tokyo93: 13–24.

    Google Scholar 

  • Kothari, S. L. &N. Chandra. 1986. Adventitious shoot production from stem internode and callus cuttings ofArtemisia scoparia. J. Pl. Physiol.124: 409–412.

    CAS  Google Scholar 

  • Kramer, D., M.-O. Desbiez, J. P. Garrec, M. Thellier, A. Fourcy &J. P. Bossy. 1980. The possible role of potassium in the activation of axillary buds ofBidens pilosus L. after decapitation of the apex. J. Exp. Bot.31: 771–776.

    CAS  Google Scholar 

  • LaMotte, C. E., X. Li &N. Cloud. 1991. The results of a 1977 paper showing an increased IAA level in bean axillary buds, as measured by GCMS 24 hr after plant decapitation. Pl. Physiol.96(Suppl.): 76.

    Google Scholar 

  • Leaky, R. R. B. &K. A. Longman. 1986. Physiological, environmental and genetic variation in apical dominance as determined by decapitation inTriplochiton scleroxylon. Tree Physiol.1: 193–207.

    Google Scholar 

  • Lee, J. M. &N. E. Looney. 1977. Branching habit and apical dominance of compact and normal apple seedlings as influenced by TIBA and GA3. J. Amer. Soc. Hort. Sci.102: 619–622.

    CAS  Google Scholar 

  • Lee, P. K.-W., B. Kessler &K. V. Thimann. 1974. The effect of hadacidin on bud development and its implications for apical dominance. Physiol. Pl.31: 11–14.

    CAS  Google Scholar 

  • Lee, T. T. 1984. Release of lateral buds from apical dominance by glyphosphate in soybean and pea seedlings. J. Pl. Growth Regul.3: 227–235.

    CAS  Google Scholar 

  • Lim, R. &I. A. Tamas. 1989. The transport of radiolabeled indoleacetic acid and its conjugates in nodal stem segments ofPhaseolus vulgaris L. Pl. Growth Regul.8: 151–164.

    CAS  Google Scholar 

  • Lincoln, C., J. H. Britton &M. Estelle. 1990. Growth and development of the axr1 mutants ofArabidopsis. The Plant Cell2: 1071–1080.

    PubMed  CAS  Google Scholar 

  • Little, C. H. A. &M. H. M. Goldsmith. 1967. Effect of inversion on growth and movement of indole-3-acetic acid in coleoptiles. Pl. Physiol.42: 1239–1245.

    CAS  Google Scholar 

  • Longman, K. A. 1968. Effects of orientation and root position on apical dominance in a tropical woody plant. Ann. Bot.32: 553–566.

    Google Scholar 

  • Loreti, F. &P. L. Pisani. 1990. Structural manipulation for improved performance in woody plants. HortSci.25: 64–70.

    Google Scholar 

  • Lyon, C. J. 1962. Gravity as a factor in auxin transport. Science137: 432.

    PubMed  Google Scholar 

  • Maheshwari, R. &S. Sreekrishna. 1982. The apical control of lateral bud development in excised shoot tips ofCuscuta reflexa culturedin vitro. Physiol. Pl.56: 474–481.

    Google Scholar 

  • Maldiney, R., F. Pelese, G. Pilate, B. Sotta, L. Sossountzov &E. Miginiac. 1986. Endogenous levels of abscisic acid, indole-3-acetic acid, zeatin and zeatin-riboside during the course of adventitious roof formation in cuttings of Craigella and Craigella lateral suppressor tomatoes. Physiol. Pl.68: 426–430.

    CAS  Google Scholar 

  • Mapelli, S. &L. Lombardi. 1982. A comparative auxin and cytokinin study in normal and to-2 instant tomato plants. Pl. & Cell Physiol.23: 751.

    CAS  Google Scholar 

  • Martin, G. C. 1987. Apical dominance. HortSci.22: 824–833.

    CAS  Google Scholar 

  • Mattoo, A. K., J. D. Anderson, E. Chalutz &M. Lieberman. 1979. Influence of enol ether amino-acids, inhibitors of ethylene biosynthesis, on aminoacyl transfer RNA synthetases and protein synthesis. Pl. Physiol.64: 289–292.

    CAS  Google Scholar 

  • McIntyre, G. I. 1968. Nutritional control of the correlative inhibition between lateral shoots in the flax seedling (Linum usitatissimum). Canad. J. Bot.46: 147–155.

    Google Scholar 

  • -. 1977. The role of nutrition in apical dominance. Pages 251–273in D. H. Jennings (ed.), Integration of activity in the higher plants. Symp. Soc. Exp. Biol. Cambridge.

  • — 1987. The role of water in plant development. Canad. J. Bot.65: 1287–1298.

    Google Scholar 

  • — &E. Damson 1988. Apical dominance inPhaseolus vulgaris. The triggering effect of shoot decapitation and leaf excision on growth of lateral buds. Physiol. Pl.74: 607–614.

    Google Scholar 

  • — &A. I. Hsiao. 1990. The role of expanded leaves in the correlative inhibition of axillary buds in milkweed (Asclepias syriaca). Canad. J. Bot.68: 1280–1285.

    Google Scholar 

  • McNaughton, S. J. 1979. Grazing as an optimization process: Grass-ungulate relationships in the Serengeti. Amer. Naturalist113: 691–703.

    Google Scholar 

  • Medford, J. I., R. Horgan, Z. El-Sawi &H. J. Klee. 1989. Alterations of endogenous cytokinins in transgenic plants using a chimeric isopentenyl transferase gene. The Plant Cell1: 403–413.

    PubMed  CAS  Google Scholar 

  • — &H. Klee. 1989. Manipulation of endogenous auxin and cytokinin levels in transgenic plants. Pages 211–220in R. Goldberg (ed.), The molecular bases of plant development. Alan R. Liss, Inc., New York.

    Google Scholar 

  • Memelink, J., J. H. C. Hoge &R. A. Schilperoort. 1987. Cytokinin stress changes the developmental regulation of several defence-related genes in tobacco. EMBO J.6: 3579–3583.

    PubMed  CAS  Google Scholar 

  • Minocha, S. C. 1979. The role of auxin and abscisic acid in the induction of cell division in Jerusalem artichoke. Z. Pflanzenphysiol.92: 431–441.

    CAS  Google Scholar 

  • Mor, Y. &A. H. Halevy. 1984. Dual effect of light on flowering and sprouting of rose shoots. Physiol. Pl.61: 119–124.

    CAS  Google Scholar 

  • Morey, P. R. &B. E. Dahl. 1975. Histological and morphological effects of auxin transport inhibitors on honey mesquite. Bot. Gaz.136: 274–280.

    CAS  Google Scholar 

  • Morgan, D. C. &H. Smith. 1986. Non-photosynthetic responses to light quality. Pages 109–134in T. O. L. Lange, P. S. Nobel, C. B. Osmond & H. Ziegler (eds.), Encyclopedia of plant physiology. New series Vol. 12A Physiological Plant Ecology I. Springer-Verlag, New York.

    Google Scholar 

  • Morris, D. A. 1977. Transport of exogenous auxin in two-branched dwarf pea seedlings (Pisum sativum L.). Planta136: 91–96.

    CAS  Google Scholar 

  • — 1981. Incorporation of label from root-applied N6 (8-14C) furfuryladenine into the guanine nucleotide fraction of pea bud ribonucleic acid. Physiol. Plant.52: 315–319.

    CAS  Google Scholar 

  • — 1982. Hormonal regulation of sink invertase activity: Implications for the control of assimilate partitioning. Pages 659–668in P. F. Wareing (ed.), Plant growth substances. Academic Press, London.

    Google Scholar 

  • — &E. D. Arthur. 1987. Auxin-induced assimilate translocation in the bean stem (Phaseolus vulgaris L.). Pl. Growth Regul.5: 169–181.

    CAS  Google Scholar 

  • — &C. F. Johnson. 1990. The role of auxin efflux carriers in the reversible loss of polar auxin transport in the pea (Pisum sativum L.) stem. Planta181: 117–124.

    CAS  Google Scholar 

  • — &A. G. Thomas. 1978. A microautoradiographic study of auxin transport in the stem of intact pea seedlings (Pisum sativum L.). J. Exp. Bot.29: 147–153.

    CAS  Google Scholar 

  • Muleba, N., T. G. Hart &G. M. Paulsen. 1983. Physiological factors affecting maize (Zea mays L.). Yields under tropical and temperate conditions. Trop. Agric.60: 3–10.

    Google Scholar 

  • Mullins, M. G. 1965. Lateral shoot growth in horizontal apple stems. Ann. Bot.29: 73–78.

    Google Scholar 

  • Nagao, M. A. &B. Rubinstein. 1975. Relationship of cytokinin to lateral bud growth at early stages after decapitation. Bot. Gaz.136: 366–371.

    CAS  Google Scholar 

  • —. 1976. Early events associated with lateral bud growth ofPisum sativum L. Bot. Gaz.137: 39–44.

    CAS  Google Scholar 

  • Nagarajah, S. 1975. Effect of debudding on photosynthesis in leaves of cotton. Physiol. Pl.33: 28–31.

    CAS  Google Scholar 

  • Naqvi, S. M. &S. A. Gordon. 1966. Auxin transport inZea mays L. Coleoptiles I. Influence of gravity on the transport of indoleacetic acid-2-14C. Pl. Physiol.41: 1113–1118.

    CAS  Google Scholar 

  • Newaz, M. A. &D. A. Lawes. 1980. Differential response ofVicia faba L. genotypes to 2,3,5-triiodobenzoic acid (TIBA). Euphytica29: 419–424.

    Google Scholar 

  • Nougarède, A., P. Landré &A. Jennane. 1990. Intranucleolar visualization of nucleic acids and acidic proteins in inhibited and reactivated pea cotyledonary buds. Protoplasma156: 183–191.

    Google Scholar 

  • — &J. Rembur. 1983. Activités ATPasiques du noeud cotylédonaire et du bourgeon cotylédonaire du Pois inhibe, réactive ou soumis a la fusicoccine. Canad. J. Bot.61: 119–134.

    Google Scholar 

  • — &M. N. Hernandez. 1985. Des variations d’activités de la 5’-nucleotidase et de l’adenylate-cyclase sont-elles des composantes de la levée d’inhibition du bourgeon cotyledonaire du Pois? Canad. J. Bot.63: 309–323.

    Google Scholar 

  • —,J. Rembur &P. Rondet. 1981. Réactivation du bourgeon cotylédonaire du Pois en réponse à la kinétine. Canad. J. Bot.59: 590–603.

    Google Scholar 

  • — &P. Rondet. 1975. Synthèse et utilisation de l’amid on dans les axillaires duPisum sativum L. (var. nain hâtif d’Annonay), apres la levée de dominance apicale. Rev. Cyt. Biol. Veget.38: 197–215.

    Google Scholar 

  • — 1978. Événements structuraux et métaboliques dans les entre-noeuds de bourgeons axillaires du Pois, en réponse a la levée de dominance. Canad. J. Bot.56: 1213–1228.

    Google Scholar 

  • P. Landré &J. Rembur. 1987. Effects of abscisic acid on cell division, DNA concentrations and cotyledonary bud elongation of decapitated pea plants. Canad. J. Bot.65: 907–915.

    Google Scholar 

  • — &R. Saint-Côme. 1990. Impact d’un traitement par le cycloheximide sur la reprise du cycle et sur les teneurs en protéines du bourgeon cotylédonaire du Pois réactivé par décapitation. Canad. J. Bot.68: 420–427.

    Google Scholar 

  • —,P. Rondet &J. Rembur. 1982. Effets compares de la fusicoccine, de la kinétine et de l’ablation de l’axe principal sur le bourgeon cotylédonaire inhibe du Pois nain. Canad. J. Bot.60: 210–218.

    Google Scholar 

  • Osborne, D. J. 1974. Mechanism of regulation of plant growth. Pages 645–654in Plant Growth Bulletin 12. Royal Soc. of N.Z., Wellington, N.Z.

    Google Scholar 

  • Parker, C. 1976. Effects on the dormancy of plant organs. Pages 165–190in L. J. Audus (ed.), Herbicides: Physiology, biochemistry, ecology, 2nd Ed. Vol. 1. Academic Press. ISBN 0-12-067702-4.

  • Patrick, J. W. 1979. An assessment of auxin-promoted transport in decapitated stems and whole shoots ofPhaseolus vulgaris L. Planta146: 107–112.

    CAS  Google Scholar 

  • — 1987. Are hormones involved in assimilate transport? Pages 175–187in G. V. Hood, J. R. Lenton, M. B. Jackson & R. K. Atkin (eds.), Hormone action in plant development: A critical appraisal. Butterworths, London.

    Google Scholar 

  • — &K. H. Steins. 1987. Auxin-promoted transport of metabolites in stemsof Phaseolus vulgaris L.: Auxin dose-response curves and effects of inhibitors of polar-auxin transport. J. Exp. Bot.38: 203–210.

    CAS  Google Scholar 

  • — &P. F. Wareing. 1978. Auxin-promoted transport of metabolites in stems ofPhaseolus vulgaris L. J. Exp. Bot.29: 359–366.

    CAS  Google Scholar 

  • Petersen, S. G., B. M. Stummann, P. Olesen &K. W. Henningsen. 1989. Structure and function of root-inducing (Ri) plasmids and their relation to tumor-inducing (Ti) plasmids. Physiol. Pl.77: 427–435.

    CAS  Google Scholar 

  • Peterson, C. A. &R. A. Fletcher. 1975. Lateral bud growth on excised stem segments: Effect of the stem. Canad. J. Bot.53: 243–248.

    Google Scholar 

  • Phillips, I. D. J. 1975. Apical dominance. Annual Rev. Pl. Physiol.26: 342–367.

    Google Scholar 

  • Pickard, B. C. 1985. Early events in geotropism of seedling shoots. Annual Rev. Pl. Physiol.36: 55–76.

    CAS  Google Scholar 

  • Pilate, G., L. Sossountzov &E. Miginiac. 1989. Hormone levels and apical dominance in the aquatic fernMarsilea drummondii A. Br. Pl. Physiol.90: 907–912.

    CAS  Google Scholar 

  • Pillay, I. &I. D. Railton. 1983. Complete release of axillary buds from apical dominance in intact, light-grown seedlings ofPisum sativum L. following a single application of cytokinin. Pl. Physiol.71: 972–974.

    CAS  Google Scholar 

  • Prakash, G., P. K. Sharma, R. K. Sharma &Vidhu. 1985. Correlative control of apex and lateral organs inVaccaria pyramidata in response to certain physical and chemical factors. Acta Bot. Indica13: 246–256.

    Google Scholar 

  • Prasad, T. K. &M. G. Cline. 1985a. Shoot inversion induced ethylene inPharbitis nil induces the release of apical dominance by restricting shoot elongation. Plant Sci.38: 163–172.

    PubMed  CAS  Google Scholar 

  • ——. 1985b. Gravistimulus direction, ethylene production and shoot elongation in the release of apical dominance inPharbitis nil. J. Exp. Bot.36: 1969–1975.

    PubMed  CAS  Google Scholar 

  • ——. 1985c. Mechanical perturbation-induced ethylene releases apical dominance inPharbitis nil by restricting shoot growth. Plant Sci.41: 217–222.

    PubMed  CAS  Google Scholar 

  • ——. 1986a. Control of apical dominance: Localization of the ethylene-sensitive growth region of thePharbitis nil shoot. J. Pl. Physiol.125: 185–190.

    CAS  Google Scholar 

  • ——. 1986b. Kinetics of shoot inversion-induced ethylene production inPharbitis nil. Bot. Gaz.147: 437–442.

    PubMed  CAS  Google Scholar 

  • ——. 1987a. The role of gravity in apical dominance; effects of clinostating on shoot inversion induced, ethylene production, shoot elongation and lateral bud growth. Pl. Physiol.83: 505–509.

    CAS  Google Scholar 

  • ——. 1987b. Gibberellin-enhanced elongation of invertedPharbitis nil shoot prevents the release of apical dominance. Pl. Sci.49: 175–179.

    CAS  Google Scholar 

  • ——. 1987c. Shoot inversion inhibition of stem elongation inPharbitis nil. A possible role for ethylene-induced glycoprotein and lignin. Pl. Physiol.85: 104–108.

    CAS  Google Scholar 

  • ——. 1989. Shoot inversion-induced ethylene production: A general phenomenon? J. Pl. Growth Regul.8: 71–77.

    CAS  Google Scholar 

  • —,Z. Hosokawa &M. G. Cline. 1989. Effects of auxin, auxin-transport inhibition and mineral nutrients on apical dominance inPharbitis nil. J. Pl. Physiol.135: 472–477.

    CAS  Google Scholar 

  • Procházka, S. 1981. Transport of benzyl-8-14C-adenine in pea seedlings in relation to stem apical dominance. Biologia Pl.23: 68–71.

    Google Scholar 

  • —,V. Cernoch, J. Blazkova &M. Dundelova. 1983. Morphoregulative effects of phenylacetic acid in pea seedlings (Pisum sativum L.). Biochem. Physiol. Pflanzen.178: 493–501.

    Google Scholar 

  • — &W. P. Jacobs. 1984. Transport of benzyladenine and gibberellin acid from roots in relation to the dominance between axillary buds of pea (Pisum sativum L.) cotyledons. Pl. Physiol.76: 224–227.

    Google Scholar 

  • Quinlan, J. D. &K. R. Tobutt. 1990. Manipulating fruit tree structure chemically and genetically for improved performance. HortSci.25: 60–64.

    CAS  Google Scholar 

  • Rehm, S., E. A. Zayed &G. Espeg. 1978. Effect of gibberellic acid on the sprouting and growth of secondary buds ofCoffea arabica stimulated by other growth regulators. Z. Pflanzenphysiol.89: 1–10.

    CAS  Google Scholar 

  • Robitaille, H. A. &A. C. Leopold. 1974. Ethylene and the regulation of apple stem growth under stress. Physiol. Pl.32: 301–304.

    CAS  Google Scholar 

  • Romano, C. P., M. B. Hein &H. J. Klee. 1991. Inactivation of auxin in tobacco transformed with the indoleacetic acid-lysine synthetase gene ofPseudomonas savastanoi. Genes & Developm.5: 438–446.

    CAS  Google Scholar 

  • Rood, S. B. 1985. Application of gibberellic acid to control tillering in early-maturing maize. Canad. J. Bot.65: 901–911.

    CAS  Google Scholar 

  • Rorabaugh, P. A. &F. B. Salisbury. 1989. Gravitropism in higher plant shoots. VI. Changing sensitivity to auxin in gravistimulated soybean hypocotyls. Pl. Physiol.91: 1329–1338.

    CAS  Google Scholar 

  • Rubinstein, B. &M. A. Nagao. 1976. Lateral bud outgrowth and its control by the apex. Bot. Rev.42: 83–113.

    CAS  Google Scholar 

  • Russell, W. &K. V. Thimann. 1988. The second messenger in apical dominance controlled by auxin. Pages 419–427 in R. P. Pharis and S. B. Rood (eds.), Plant growth substances 1988. Springer-Verlag, New York.

    Google Scholar 

  • Sachs, J. 1887. On the physiology of plants. Clarendon Press, Oxford.

    Google Scholar 

  • Sachs, R. M. &W. P. Hackett. 1972. Chemical inhibition of plant height. HortSci.7: 440–447.

    CAS  Google Scholar 

  • Sachs, T. 1991. Pattern formation in plant tissues. Cambridge University Press, New York.

    Google Scholar 

  • — &K. V. Thimann. 1967. The role of auxins and cytokinins in the release of buds from dominance. Amer. J. Bot.54: 136–144.

    CAS  Google Scholar 

  • Salerno, D. C. &M. L. Brenner. 1983. Apical dominance. IAA mobility in the tomato isogenia lines Craigella Blind. Pl. Physiol. Suppl.72: 27.

    Google Scholar 

  • Salomon, E. 1976. Formation of adventitious buds in decapitated citrus seedlings and the effect of some growth regulators. J. Exp. Bot.27: 69–75.

    CAS  Google Scholar 

  • Saltveit, M. E., Jr. &W. C. Fonteno. 1983. Auxin transport inDracaena marginata stems. J. Amer. Soc. Hort. Sci.108: 183–186.

    CAS  Google Scholar 

  • Sandhu, A. S. &Z. Singh. 1983. Effect of (2-chloroethyl) phosphonic acid on apical dominance of peach (Prunus persica Batsch). Indian J. Pl. Physiol.26: 105–107.

    Google Scholar 

  • Schupp, J. R. &D. C. Ferree. 1990. Influence of time of root pruning on growth, mineral nutrition, net photosynthesis and transpiration of young apple trees. Sci. Hort.42: 299–306.

    Google Scholar 

  • Scott, I. M. 1988. Effects of gibberellin on shoot development in thedgt mutant of tomato. Ann. Bot.61: 389–392.

    CAS  Google Scholar 

  • Sebanek, J. &J. Hradilik. 1978. The role of endogenous abscisic acid in the correlation between the cotyledon and the axillary bud in pea (Pisum sativum L.). Biol. Pl.20: 299–302.

    CAS  Google Scholar 

  • — &B. Jandakov. 1984. The effect of jasmonic and 2,3,5-triiodo-benzoic acid on the correlation between cotyledons and their axillary buds. Biochem. Physiol. Pflanzen.179: 341–357.

    Google Scholar 

  • Semeniuk, P. &R. J. Griesbach. 1985. Bud applications of benzyladenine induce branching of a nonbranching poinsettia. HortSci.20: 120–121.

    CAS  Google Scholar 

  • Shen, W. H., A. Petit, J. Guern &J. Tempé. 1988. Hairy roots are more sensitive to auxin than normal roots. Proc. Natl. Acad. Sci. USA85: 3417–3421.

    PubMed  CAS  Google Scholar 

  • Shi, L. & M. Cline. 1991. Shoot inversion-induced ethylene production in thediageotropica tomato mutant. Ann. Bot. (In press).

  • Shu, L.-J. &K. C. Sanderson. 1980. Dikegulac sodium influences shoot growth of greenhouse azaleas. HortSci.15: 813–814.

    CAS  Google Scholar 

  • Sisler, E. C. &S. F. Yang. 1984. Ethylene, the gaseous plant hormone. BioScience34: 234–238.

    CAS  Google Scholar 

  • Skoog, F. &A. K. B. Abdul Ghani. 1981. Relative activities of cytokinins and antagonists in releasing lateral buds ofPisum from apical dominance compared with their relative activities in the regulation of growth of tobacco callus. Pages 140–150in S. Guern & C. PeaudLenoël (eds.), Metabolism and molecular activities of cytokinins. Springer-Verlag, New York.

    Google Scholar 

  • Smigocki, A. C. &L. D. Owens. 1990. Cytokinin-to-auxin ratios and morphology of shoots and tissues transformed by a chimeric isopentenyl transferase gene. Pl. Physiol.91: 808–811.

    Google Scholar 

  • Smith, H. &P. F. Wareing. 1964a. Gravimorphism in trees. 2. The effect of gravity on budbreak in osier willow. Ann. Bot.28: 283–295.

    Google Scholar 

  • Smith, H. &P. F. Wareing. 1964b. Gravimorphism in trees. 3. The possible implication of a root factor in the growth and dominance relationships of the shoots. Ann. Bot.28: 297–309.

    Google Scholar 

  • Smith, H. &P. F. Wareing. 1966. Apical dominance and the effect of gravity on nutrient distribution. Planta70: 87–94.

    Google Scholar 

  • Snow, R. 1937. On the nature of correlative inhibition. New Phytol.36: 283–300.

    CAS  Google Scholar 

  • Sossountzov, L., R. Maldiney, B. Sotta, I. Sabbagh &E. Miginiac. 1988. Immunocytochemical localization of cytokinins in Craigella tomato and a side shootless mutant. Planta175: 291–304.

    CAS  Google Scholar 

  • Spano, L., D. Mariotti, M. Cardarelli, C. Branca &P. Constantino. 1988. Morphogenesis and auxin sensitivity of transgenic tobacco with different complements of Ri T-DNA. Pl. Physiol.87: 479–483.

    CAS  Google Scholar 

  • Stafstrom, J. P. 1991. Expression of a ribosomal protein gene in pea axillary buds. Pl. Physiol.96(Suppl): 20.

    Google Scholar 

  • — &I. M. Sussex. 1988. Patterns of protein synthesis in dormant and growing vegetative buds of pea. Planta176: 497–505.

    CAS  Google Scholar 

  • Steeves, T. A. &I. M. Sussex. 1989. Patterns in plant development. Cambridge University Press, Cambridge.

    Google Scholar 

  • Stimart, D. P. 1983. Promotion and inhibition of branching in poinsettia in grafts between self-branching and non-branching cultivars. J. Amer. Soc. Hort. Sci.108: 419–422.

    Google Scholar 

  • Suzuki, T. 1990a. Apical dominance in mulberry (Morus alba): Effects of position of lateral and accessory buds and leaves. Physiol. Pl.78: 468–474.

    Google Scholar 

  • — 1990b. Apical control of lateral bud development and shoot growth in mulberry (Morus alba). Physiol. Pl.80: 350–356.

    Google Scholar 

  • — &M. Kitano. 1989a. Dormancy and spring development of lateral buds in mulberry (Morus alba). Physiol. Pl.75: 188–194.

    Google Scholar 

  • ——. 1989b. Lateral bud development and shoot growth on low-prunedMorus alba as affected by stem orientation. Physiol. Pl.76: 493–499.

    Google Scholar 

  • —— &K. Kohno. 1988. Lateral bud outgrowth on decapitated shoots of low-pruned mulberry. Tree Physiol.4: 53–60.

    PubMed  Google Scholar 

  • Svenson, S. E. 1991. Rooting and lateral shoot elongation ofVerbena following benzylaminopurine application. HortSci.26: 391–392.

    CAS  Google Scholar 

  • Swennen, R., G. F. Wilson &E. De Langhe. 1984. Preliminary investigation of the effects of gibberellic acid (GA3) on sucker development in plantain (Musa cv AAB) under field conditions. Trop. Agric.61: 253–256.

    CAS  Google Scholar 

  • Tamas, I. A. 1987. Hormonal regulation of apical dominance. Pages 393–410in P. J. Davies (ed.), Plant hormones and their role in plant growth and development. Mertinus Nijhoff Publishers, Boston.

    Google Scholar 

  • —,J. Ozbun, D. Wallace, L. Powell &C. Engels. 1979. Effect of fruits on dormancy and abscisic acid concentration in the axillary buds ofPhaseolus vulgaris L. Pl. Physiol.64: 615–619.

    CAS  Google Scholar 

  • —,J. Schlossberg-Jacobs, R. Lim, L. Friedman &C. Barone. 1989. Effect of plant growth substances on the growth of axillary buds in cultured stem segmentsof Phaseolus vulgaris L. Pl. Growth Regul.8: 165–183.

    CAS  Google Scholar 

  • Tayo, T. O. 1982. Growth, development and yield of pigeon pea (Cajanus cajan (L.) Millsp.) in the lowland tropics. 3. Effect of early loss of apical dominance. J. Agric. Sci.98: 79–84.

    Google Scholar 

  • Tepfer, D. 1984. Transformation of several species of higher plants byAgrobacterium rhizogenes: Sexual transmission of the transformed genotype and phenotype. Cell37: 959–967.

    PubMed  CAS  Google Scholar 

  • Theron, K. I., G. Jacobs &D. K. Strydom. 1987. Correlative inhibition of axillary buds in apple nursery trees in relation to node position, defoliation, and Promalin application. J. Amer. Soc. Hort. Sci.112: 732–734.

    CAS  Google Scholar 

  • Thimann, K. V. 1977. Hormone action in the whole life of plants. University of Massachusetts Press, Amherst.

    Google Scholar 

  • Tomar, Y. S. 1983. Reflections on apical dominance in relation to mineral nutrients inNicotiana tobacum L. cv Calcutti. Proc. Nat. Acad. Sci. India53(B)2: 109–114.

    CAS  Google Scholar 

  • — 1985. Hormonal regulation of apical dominance inWithania somnifera (L.). Dunal. Acta Bot. Indica13: 18–25.

    Google Scholar 

  • Tomlinson, P. B. 1983. Tree architecture. Amer. Sci.7: 141–149.

    Google Scholar 

  • Trewavas, A. J. 1981. How do plant growth substances work? Plant, Cell & Environ.4: 203–228.

    CAS  Google Scholar 

  • Tucker, D. J. 1975. Far-red light as a suppressor of side shoot growth in the tomato. Pl. Sci. Lett.5: 127–130.

    Google Scholar 

  • — 1976a. Endogenous growth regulators in relation to side shoot development in the tomato. New Phytol.77: 561–568.

    CAS  Google Scholar 

  • — 1976b. Effect of far-red light on the normal control of side shoot growth in the tomato. Ann. Bot.40: 1033–1042.

    CAS  Google Scholar 

  • — 1977a. Hormonal regulation of lateral bud growth in the tomato. Pl. Sci. Lett.8: 105–111.

    CAS  Google Scholar 

  • — 1977b. Apical dominance in the rogue tomato. Ann. Bot.41: 181–190.

    Google Scholar 

  • — 1977c. The effects of far-red light on lateral bud outgrowth in decapitated tomato plants and the associated changes in the levels of auxin and abscisic acid. Pl. Sci. Lett.8: 339–344.

    CAS  Google Scholar 

  • — 1979. Apical dominance in the tomato. Some further observations on isogenic lines showing varying degrees of side shoot development. Ann. Bot.43: 571–577.

    Google Scholar 

  • — 1980a. Some observations on factors controlling apical dominance in the rogue tomato. Ann. Bot.45: 555–560.

    CAS  Google Scholar 

  • — 1980b. Apical dominance. A personal view. Br. Pl. Growth Reg. Group News Bull.4: 1–9.

    Google Scholar 

  • — 1981. Axillary bud formation in two isogenic lines of tomato showing different degrees of apical dominance. Ann. Bot.48: 837.

    Google Scholar 

  • — &T. A. Mansfield. 1972. Effects of light quality on apical dominance inXanthium strumarium and the associated changes in endogenous levels of abscisic acid and cytokinins. Planta102: 140–151.

    CAS  Google Scholar 

  • Van Dijck, R., M. De Proft &J. De Greef. 1988. Role of ethylene and cytokinins in the initiation of lateral shoot growth in bromeliads. Pl. Physiol.86: 836–840.

    Google Scholar 

  • Van Onckelen, H. A., S. Horemans &J. A. De Greef. 1981. Functional aspects of abscisic acid metabolism in cotyledons ofPhaseolus vulgaris L. seedlings. Pl. and Cell Physiol.22: 507–515.

    Google Scholar 

  • Van Staden, J. 1982. Transport of (814C) zeatin from mature rose leaves after shoot decapitation. Bot. Gaz.143: 201–205.

    Google Scholar 

  • — &G. G. Dimalla. 1978. Endogenous cytokinin and the breaking of dormancy and apical dominance in potato tubers. J. Exp. Bot.29: 1077–1084.

    Google Scholar 

  • —. 1981. The production and utilization of cytokinins in rootless dormant almond shoots maintained at low temperature. Z. Pflanzenphysiol.103: 121–129.

    Google Scholar 

  • —,H. Spiegelstein, N. Zieslin &A. H. Halevy. 1981. Endogenous cytokinins and lateral bud outgrowth in roses. Bot. Gaz.142: 177–182.

    Google Scholar 

  • Vince-Prue, D. 1977. Photocontrol of stem elongation in light-grown plants ofFuchsia hybrida. Planta133: 149–156.

    Google Scholar 

  • Waithaka, K., A. C. Hildebrandt &M. N. Dana. 1980. Hormonal control of strawberry axillary bud developmentin vitro. J. Amer. Soc. Hort. Sci.105: 428–430.

    CAS  Google Scholar 

  • Wang, T. L. &P. F. Wareing. 1979. Cytokinins and apical dominance inSolanum andigena. Lateral shoot growth and endogenous cytokinin levels in the absence of roots. New Phytol.82: 19–28.

    CAS  Google Scholar 

  • Wardlaw, I. F. &D. C. Mortimer. 1970. Carbohydrate movement in pea plants in relation to axillary bud growth and vascular development. Canad. J. Bot.48: 229–237.

    CAS  Google Scholar 

  • Wareing, P. F. &T. A. A. Nasr. 1958. Gravimorphism in trees. Effects of gravity on growth, apical dominance and flowering in fruit trees. Nature, London182: 379–380.

    Google Scholar 

  • Wareing, P. F. &T. A. A. Nasr. 1961. Gravimorphism in trees. Effects of gravity on growth, apical dominance in fruit trees. Ann. Bot.25: 321–340.

    Google Scholar 

  • — &I. D. J. Phillips. 1981. Growth and differentiation in plants, 3rd ed. Pergamon, Oxford.

    Google Scholar 

  • Watson, M. A., J. C. Carrier &G. L. Cook. 1982. Effects of exogenously supplied gibberellic acid (GA3) on patterns of water hyacinth development. Aquatic Bot.13: 57–68.

    CAS  Google Scholar 

  • Weiss, D. &R. Shillo. 1988. Axillary bud inhibition induced by young leaves or bract inEuphorbia pulcherrima Willd. Ann. Bot.62: 435–440.

    Google Scholar 

  • Wertheim, S. J. 1978. Manual and chemical induction of side-shoot formation in apple trees in the nursery. Sci. Hort.9: 337–345.

    Google Scholar 

  • Wheeler, R. M., R. G. White &F. B. Salisbury. 1986. Gravitropism in higher shoots IV. Further studies on participation of ethylene. Pl. Physiol.82: 534–542.

    CAS  Google Scholar 

  • White, J. C. 1976. Correlative inhibition of lateral bud growth inPhaseolus vulgaris L. Effect of application of indol-3yl-acetic acid to decapitated plants. Ann. Bot.40: 521–529.

    CAS  Google Scholar 

  • — &J. R. Hillman. 1972. On the use of morphactin and triiodo-benzoic acid in apical dominance studies. Planta107: 257–260.

    CAS  Google Scholar 

  • — &T. A. Mansfield. 1977. Correlative inhibition of lateral bud growth inPisum sativum L. andPhaseolus vulgaris L. Studies of the role of abscisic acid. Ann. Bot.41: 1163–1170.

    Google Scholar 

  • —,G. C. Medlow, J. R. Hillman &M. B. Wilkins. 1975. Correlative inhibition of lateral bud growth inPhaseolus vulgaris L. Isolation of indoleacetic acid from inhibitory region. J. Exp. Bot.26: 419–424.

    CAS  Google Scholar 

  • Wilson, B. F. 1990. The development of tree form. HortSci.25: 52–54.

    Google Scholar 

  • Wright, M. 1981. Reversal of the polarity of IAA transport in the leaf sheath base ofEchinochloa colonum. J. Exp. Bot.32: 159–169.

    CAS  Google Scholar 

  • —,D. M. Mousdale &D. J. Osborne. 1978. Evidence for a gravity-regulated level of endogenous auxin controlling cell elongation and ethylene production during geotropic bending in grass nodes. Biochem. Physiol. Pflanzen.172: 581–596.

    Google Scholar 

  • Yang, S. F. &N. E. Hoffman. 1984. Ethylene biosynthesis and its regulation in higher plants. Annual Rev. Pl. Physiol.35: 155–189.

    CAS  Google Scholar 

  • Yeang, H. Y. &J. R. Hillman. 1981a. Internodal extension in the first trifoliate leaf axillary bud of bean following shoot decapitation. Ann. Bot.48: 25–32.

    Google Scholar 

  • Yeang, H. Y. &J. R. Hillman. 1981b. Control of lateral bud growth inPhaseolus vulgaris L. by ethylene in the apical shoot. J. Exp. Bot.32: 395–404.

    CAS  Google Scholar 

  • Yeang, H. Y. &J. R. Hillman. 1982. Lateral bud growth in bean and levels of ethylene in bud and adjacent tissue. J. Exp. Bot.33: 111–117.

    CAS  Google Scholar 

  • Yeang, H. Y. &J. R. Hillman. 1984. Ethylene and apical dominance. Physiol. Pl.60: 275–282.

    CAS  Google Scholar 

  • Zieslin, N., N. Haaze &A. H. Halevy. 1976. II. The effect of bud position on degree of inhibition. Bot. Gaz.137: 297–300.

    Google Scholar 

  • — &A. H. Halevy. 1976. Components of axillary bud inhibition in rose plants. 1. The effect of different plant parts (correlative inhibition). Bot. Gaz.137: 291–296.

    Google Scholar 

  • —. 1978. Components of axillary bud inhibition in rose plants. III. Effect of stem orientation and changes of bud position in the stem by budding. Bot. Gaz.139: 60–63.

    Google Scholar 

  • —,H. Spiegelstein &A. H. Halevy. 1978. Components of axillary bud inhibition in rose plants. IV. Inhibitory activity of plant extracts. Bot. Gaz.139: 64–68.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cline, M.G. Apical dominance. Bot. Rev 57, 318–358 (1991). https://doi.org/10.1007/BF02858771

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02858771

Keywords

Navigation