Skip to main content
Log in

Yeasts associated with an abandoned mining area in Pernek and their tolerance to different chemical elements

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Four plants, Cirsium arvense (creeping thistle), Equisetum arvense (field horsetail), Oxalis acetosella (wood sorrel) and Phragmites australis (common reed), which grew in an abandoned Sb-mining area in Pernek (Malé Karpaty Mts., Slovakia), were investigated for the yeast species. Yeasts were isolated from both the leaves of the plants and the soil adjacent to the plants. In total, 65 yeast cultures, belonging to 11 ascomycetous and 5 basidiomycetous yeast species, were isolated. The species most frequently isolated from both the soil and leaf samples were Trichosporon porosum, Galactomyces candidus and Candida solani, whereas Aureobasidium pullulans, Candida tsuchiyae and Sporidiobolus metaroseus were isolated exclusively from the plant leaves. All the yeast species isolated were tested for their tolerance to two heavy metals (Cd, Zn) and three metalloids (As, Sb and Si). The yeasts isolated from both the leaves and soils exhibited a high tolerance level to both As and Sb, present in elevated concentrations at the locality. Among the yeast species tested, Cryptococcus musci, a close relative to Cryptococcus humicola, was the species most tolerant to all the chemical elements tested, with the exception of Si. It grew in the presence of 200 mmol/L Zn, 200 mmol/L Cd, 60 mmol/L As and 50 mmol/L Sb, and therefore, it can be considered as a multi-tolerant species. Some of the yeast species were tolerant to the individual chemical elements. The yeast-like species Trichosporon laibachii exhibited the highest tolerance to Si of all yeasts tested, and Cryptococcus flavescens and Lindnera saturnus showed the same tolerance as Cryptococcus musci to Zn and As, respectively. The majority of the yeasts showed a notably low tolerance to Cd (not exceeded 0.5 mmol/L), which was present in small amounts in the soil. However, Candida solani, isolated from the soil, exhibited a higher tolerance to Cd (20 mmol/L) than to As (2 mmol/L).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andreeva N, Ryazanova L, Dmitriev V, Kulakovskaya T, Kulaev I (2014) Cytoplasmic inorganic polyphosphate participates in the heavy metal tolerance of Cryptococcus humicola. Folia Microbiol 59:381–389

    Article  CAS  Google Scholar 

  • Antosiewitz DM, Escudě-Duran C, Wierzbowska E, Skłodowska A (2008) Indigenous plant species with the potential for the phytoremediation of arsenic and metals contaminated soil. Water Air Soil Pollut 193:197–210

    Article  Google Scholar 

  • Balsalobre L, De Silóniz MI, Valderrama MJ, Benito T, Larrea MT, Peinado JM (2003) Occurrence of yeasts in municipal wastes and their behaviour in presence of cadmium, copper and zinc. J Basic Microbiol 43:185–193

    Article  CAS  PubMed  Google Scholar 

  • Baroni F, Boscagli A, Protano G, Riccobono F (2000) Antimony accumulation in Achillea ageratum, Plantago lanceolata and Silene vulgaris growing in an old Sb-mining area. Environ Pollut 109:347–352

    Article  CAS  PubMed  Google Scholar 

  • Baroni F, Boscagli A, Di Lella LA, Protano G, Riccobono F (2004) Arsenic in soil and vegetation of contaminated areas in southern Tuscany (Italy). J Geochem Explor 81:1–14

    Article  CAS  Google Scholar 

  • Bentley R, Chasteen TG (2002) Microbial methylation of metalloids: arsenic, antimony, and bismuth. Microbiol Mol Biol Rev 66:250–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Botha A (2006) Yeasts in soil. In: Rosa CA, Péter G (eds) The yeasts handbook—biodiversity and ecophysiology of yeasts. Springer, Berlin, pp 221–240

    Chapter  Google Scholar 

  • Botha A (2011) The importance and ecology of yeasts in soil. Soil Biol Biochem 43:1–8

    Article  CAS  Google Scholar 

  • Brasser HJ, Krijger GC, van Meerten TG, Wolterbeek HT (2006) Influence of silicon on cobalt, zinc, and magnesium in baker’s yeast, Saccharomyces cerevisiae. Biol Trace Elem Res 112:175–189

    Article  CAS  PubMed  Google Scholar 

  • Breierová E, Vajcziková I, Sasinková V, Stratilová E, Fišera M, Gregor T, Šajbidor J (2002) Biosorption of cadmium ions by different yeast species. Z Naturforsch 57c:634–639

    Google Scholar 

  • Deng Z, Wang W, Tan H, Cao L (2012) Characterization of heavy metal-resistant endophytic yeast Cryptococcus sp. CBSB78 from rapes (Brassica chinensis) and its potential in promoting the growth of Brassica spp. in metal-contaminated soils. Water Air Soil Pollut 223:5321–5329

    Article  CAS  Google Scholar 

  • Farahani L, Etebarian HR, Sahebani N, Aminian H (2012) Effect of two strains of antagonistic yeasts in combination with silicon against two isolates of Penicillium expansum on apple fruit. Int Res J Appl Basic Sci 3:18–23

    CAS  Google Scholar 

  • Filella M, Belzile N, Chen YW (2002) Antimony in the environment: a review focused on natural waters I. Occurrence. Earth-Sci Rev 57:125–176

    Article  CAS  Google Scholar 

  • Fonseca Á, Inácio J (2006) Phylloplane yeasts. In: Rosa CA, Péter G (eds) The yeasts handbook—biodiversity and ecophysiology of yeasts. Springer, Berlin, pp 263–302

    Chapter  Google Scholar 

  • Fonseca Á, Boekhout T, Fell JW (2011) Cryptococcus Vuillemin (1901). In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts, a taxonomic study, 5th edn. Elsevier, London, pp 1661–1745

    Chapter  Google Scholar 

  • Gadd GM, Sayer GM (2000) Fungal transformation of metals and metalloids. In: Lovely DR (ed) Environmental microbe–metal interactions. American Soc Microbiol (ASM) Press, Washington, pp 237–256

    Chapter  Google Scholar 

  • Glushakova AM, Chernov IY (2004) Seasonal dynamics in a yeast population on leaves of the common wood sorrel Oxalis acetosella L. Microbiology 73:184–188

    Article  CAS  Google Scholar 

  • Glushakova AM, Chernov IY (2007) Seasonal dynamic of the numbers of epiphytic yeasts. Microbiology 76:590–595

    Article  CAS  Google Scholar 

  • Hartmann LM, Craig PJ, Jenkins RO (2003) Influence of arsenic on antimony methylation by the aerobic yeast Cryptococcus humicolus. Arch Microbiol 180:347–352

    Article  CAS  PubMed  Google Scholar 

  • Jurkovič Ľ, Šottník P, Fľaková R, Jankulár M, Ženišová Z, Vaculík M (2010) Abandoned Sb-deposit poproč: source of contamination of natural constituents in Olšava river catchment. Mineralia Slovaca (Bratislava) 42:109–120

    Google Scholar 

  • Kavamura VN, Esposito E (2010) Biotechnological strategies applied to the decontamination of soils polluted with heavy metals. Biotechnol Adv 28:61–69

    Article  CAS  PubMed  Google Scholar 

  • Kidd PS, Lluugan M, Poschhenrieder C, Gunsĕ B, Barceló J (2001) The role of root exudates in aluminum resistance and silicon induced amelioration of aluminum toxicity in three varieties of maize (Zea mays L.). Exp Bot 52:1339–1352

    Article  CAS  Google Scholar 

  • Kurtzman CP, Robnett CJ (1997) Identification of clinically important ascomycetous yeasts based on nucleotide divergence in the 5’-end of the large-subunit (26S) ribosomal DNA gene. J Clin Microbiol 35:1216–1223

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kurtzman CP, Fell JW, Boekhout T, Robert V (2011a) Methods for isolation, phenotypic characterization and maintenance of yeasts. In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts, a taxonomic study, 5th edn. Elsevier, London, pp 87–110

    Chapter  Google Scholar 

  • Kurtzman CP, Fell JW, Boekhout T (2011b) The yeasts, a taxonomic study, 5th edn. Elsevier, London

    Google Scholar 

  • Lachance MA (2011) Metschnikowia Kamienski (1899). In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts, a taxonomic study, 5th edn. Elsevier, London, pp 575–620

    Chapter  Google Scholar 

  • Lindow SE, Brandl MT (2003) Microbiology of the phyllosphere. Appl Environ Microbiol 69:1875–1883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malik A (2004) Metal bioremediation through growing cells. Environ Int 30:261–278

    Article  CAS  PubMed  Google Scholar 

  • Marschner P, Crowley D, Yang CH (2004) Development of specific rhizosphere bacterial communities in relation to plant species, nutrition and soil type. Plant Soil 261:199–208

    Article  CAS  Google Scholar 

  • Massa N, Andreucci F, Poli M, Aceto M, Barbato R, Berta G (2010) Screening for heavy metal accumulators amongst autochthonous plants in polluted site in Italy. Ecotoxicol Environ Saf 73:1988–1997

    Article  CAS  PubMed  Google Scholar 

  • Mestre MC, Rosa CA, Safar SV, Libkind D, Fontenla SB (2011) Yeast communities associated with the bulk-soil, rhizosphere and ectomycorrhizosphere of a Nothofagus pumilio forest in northwestern Patagonia, Argentina. FEMS Microbiol Ecol 78:531–541

    Article  CAS  PubMed  Google Scholar 

  • Middelhoven WJ (1997) Identity and biodegradative abilities of yeasts isolated from plants growing in an arid climate. Antonie Van Leeuwenhoek 72:81–89

    Article  CAS  PubMed  Google Scholar 

  • Middelhoven WJ, Scorzetti G, Fell JW (2001) Trichosporon porosum comb. nov., an anamorphic basidiomycetous yeast inhabiting soil, related to the loubieri/laibachii group of species that assimilate hemicelluloses and phenolic compounds. FEMS Yeast Res 1:15–22

    CAS  PubMed  Google Scholar 

  • Mitani N, Ma JF, Iwashita T (2005) Identification of silicon form in xylem sap of rice (Oryza sativa L.). Plant Cell Physiol 46:279–283

    Article  CAS  PubMed  Google Scholar 

  • Muñoz AJ, Ruiz E, Abriouel H, Gálvez A, Ezzouhri L, Lairini K, Espínola F (2012) Heavy metal tolerance of microorganisms isolated from wastewaters: identification and evaluation of its potential for biosorption. Chem Eng J 210:325–332

    Article  Google Scholar 

  • Nakayan P, Hameed A, Singh S, Young LS, Hung MH, Young CC (2013) Phosphate-solubilizing soil yeast Meyerozyma guilliermondii CC1 improves maize (Zea mays L.) productivity and minimizes requisite chemical fertilization. Plant Soil 373:301–315

    Article  CAS  Google Scholar 

  • Nassar AH, El-Tarabily KA, Sivasithamparam K (2005) Promotion of plant growth by an auxin-producing isolate of the yeast Williopsis saturnus endophytic in maize (Zea mays L.) roots. Biol Fertil Soils 42:97–108

    Article  CAS  Google Scholar 

  • Nwugo CC, Huerta AJ (2008) Silicon-induced cadmium resistance in rice (Oryza sativa). J Plant Nutr Soil Sci 171:841–848

    Article  CAS  Google Scholar 

  • Qin GZ, Tian SP (2005) Enhancement of biocontrol activity of Cryptococcus laurentii by silicon and the possible mechanisms involved. Phytopathology 95:69–75

    Article  PubMed  Google Scholar 

  • Raspor P, Zupan J (2006) Yeasts in extreme environments. In: Rosa CA, Péter G (eds) The yeasts handbook—biodiversity and ecophysiology of yeasts. Springer, Berlin, pp 371–417

    Chapter  Google Scholar 

  • Roepke CBS, Vandenberghe LPS, Soccol CR (2011) Optimized production of Pichia guilliermondii biomass with zinc accumulation by fermentation. Anim Feed Sci Technol 163:33–42

    Article  Google Scholar 

  • Seyedmousavi S, Badali H, Chlebicki A, Zhao J, Prenafeta-Boldú FX, De Hoog GS (2011) Exophiala sideris, a novel black yeast isolated from environments polluted with toxic alkyl benzenes and arsenic. Fungal Biol 115:1030–1037

    Article  CAS  PubMed  Google Scholar 

  • Sigel A, Sigel H, Sigel RKO (2010) Organometallics in environment and toxicology metal ions. Life Sci 7:523–577

    Google Scholar 

  • Singh P, Raghukumar C, Parvatkar RR, Mascarenhas-Pereira MB (2013) Heavy metal tolerance in the psychrotolerant Cryptococcus sp. isolated from deep-sea sediments of the Central Indian Basin. Yeast 30:93–101

    Article  CAS  PubMed  Google Scholar 

  • Sláviková E, Vadkertiová R (2000) The occurrence of yeasts in the forest soils. J Basic Microbiol 40:207–212

    Article  PubMed  Google Scholar 

  • Sláviková E, Vadkertiová R (2003a) The diversity of yeasts in the agricultural soil. J Basic Microbiol 43:430–436

    Article  PubMed  Google Scholar 

  • Sláviková E, Vadkertiová R (2003b) The occurrence of yeasts in grass-grown soils. Czech Mycol 54:239–247

    Google Scholar 

  • Sláviková E, Vadkertiová R, Kocková-Kratochvilová A (1992) Yeasts isolated from artificial lake waters. Can J Microbiol 38:1206–1209

    Article  Google Scholar 

  • Sláviková E, Vadkertiová R, Vránová D (2007) Yeast colonizing the leaf surfaces. J Basic Microbiol 47:344–350

    Article  PubMed  Google Scholar 

  • Sláviková E, Vadkertiová R, Vránová D (2009) Yeasts colonizing the leaves of fruit trees. Ann Microbiol 59:419–424

    Article  Google Scholar 

  • Stoltz E, Greger M (2002) Accumulation properties of As, Cd, Cu, Pb and Zn by four wetland plant species growing on submerged mine tailings. Environ Exp Bot 47:271–280

    Article  CAS  Google Scholar 

  • Tamaki S, Frankenberger WT Jr (1992) Environmental biochemistry of arsenic. Rev Environ Contam Toxicol 124:79–110

    CAS  PubMed  Google Scholar 

  • Teixidó N, Usall J, Magan N, Viňas I (1999) Microbial population dynamics on Golden Delicious apples from bud to harvest and effect of fungicide application. Ann Appl Biol 134:109–116

    Article  Google Scholar 

  • Vaculík M, Landberg T, Greger M, Luxová M, Stoláriková M, Lux A (2012) Silicon modifies root anatomy, and uptake and subcellular distribution of cadmium in young maize plants. Ann Bot 110:433–443

    Article  PubMed  PubMed Central  Google Scholar 

  • Vaculík M, Jurkovič Ľ, Matejkovič P, Molnárová M, Lux A (2013) Potential risk of arsenic and antimony accumulation by medicinal plants naturally growing on old mining sites. Water Air Soil Pollut 224:1546

    Article  Google Scholar 

  • Vadkertiová R, Sláviková E (2006) Metal tolerance of yeasts isolated from water, soil and plant environments. J Basic Microbiol 46:145–152

    Article  PubMed  Google Scholar 

  • Vadkertiová R, Molnárová J, Vránová D, Sláviková E (2012) Yeasts and yeast-like organisms associated with fruits and blossoms of different fruit trees. Can J Microbiol 58:1344–1352

    Article  PubMed  Google Scholar 

  • Wainwright M, Falih AMK (1996) Involvement of yeasts in urea hydrolysis and nitrification in soil amended with a natural source of sucrose. Mycol Res 100:307–310

    Article  CAS  Google Scholar 

  • Waqas M, Khan AL, Lee IJ (2014) Bioactive chemical constituents produced by endophytes and effects on rice plant growth. J Plant Interact 9:478–487

    Article  CAS  Google Scholar 

  • Winding A, Hund-Rinke K, Rutgers M (2005) The use of microorganisms in ecological soil classification and assessment concepts. Ecotoxicol Environ Saf 62:230–248

    Article  CAS  PubMed  Google Scholar 

  • Wuczkowski M, Prillinger H (2004) Molecular identification of yeasts from soils of the alluvial forest national park along the river Danube downstream of Vienna, Austria (“National Park Donauauen”). Microbiol Res 159:263–275

    Article  CAS  PubMed  Google Scholar 

  • Yaghmour MA, Bostock RM, Morgan DP, Michailides TJ (2012) Biology and sources of inoculum of Geotrichum candidum causing sour rot of peach and nectarine fruit in California. Plant Dis 96:204–210

    Article  Google Scholar 

  • Yoshida S (1965) Chemical aspects of the role of silicon in physiology of the rice plant. Bull Natl Inst Agric Sci Ser B 15:1–58

    Google Scholar 

  • Yurkov AM, Kemler M, Begerow D (2012) Assessment of yeast diversity in soils under different management regimes. Fungal Ecol 5:24–35

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Slovak grant agencies APVV 0140-10 and VEGA 2/0023/14. The authors are grateful to Miss Jana Guthová for her excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renáta Vadkertiová.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vadkertiová, R., Molnárová, J., Lux, A. et al. Yeasts associated with an abandoned mining area in Pernek and their tolerance to different chemical elements. Folia Microbiol 61, 199–207 (2016). https://doi.org/10.1007/s12223-015-0424-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-015-0424-9

Keywords

Navigation