Skip to main content

Yeasts in Agricultural and Managed Soils

  • Chapter
  • First Online:
Yeasts in Natural Ecosystems: Diversity

Abstract

All managed soils (agricultural soil, orchard soil, vineyard soil, pasture soil) are exposed to human intervention. These include regular tillage, crop or plant seeding, harvesting and the application of fertilizers, herbicides and pesticides. Yeasts are present in all types of managed soil; some of them are restricted to an individual season, soil horizon or locality, while others are present at all times in all soils. The abundance of yeasts depends on the availability of water, the type of soil and plant diversity. The composition and quantity of soil yeast communities are influenced by the yeasts originating from aerial parts of plants, which enter the soil during tillage or with decaying plant material. The size of the yeast population ranges from a few to several thousands of CFU per gram of soil. The diversity of ascomycetous yeasts present in agricultural soil includes fermentative species (e.g. Candida spp., Metschnikowia sp.), soil-related yeasts (e.g. Cyberlindnera saturnus and Lipomyces sp.), black yeasts (Exophiala sp., Aureobasidium sp.) and basidiomycetous yeasts, mainly species previously classified in the genera Cryptococcus and Trichosporon. Vineyard soils are inhabited by basidiomycetous yeasts (mainly Naganishia spp., Sollicoccozyma spp., Filobasidium sp.) and also by grape yeasts including Aureobasidium pullulans, Metschnikowia sp. and Hanseniaspora uvarum. In orchard soils, fruit-related yeasts H’spora uvarum and Metschnikowia pulcherrima are associated with the upper layer of soil. Species previously classified in the genera Cryptococcus and Trichosporon dominate the soil of citrus orchards. Grassland soils are mainly occupied by soil-related ascomycetous species Schwanniomyces capriotti, Barnettozyma vustinii and Cyberlindnera suaveolens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aktar MW, Sengupta D, Chowdhury A (2009) Impact of pesticides use in agriculture: their benefits and hazards. Interdiscip Toxicol 2:1–12

    Article  PubMed  PubMed Central  Google Scholar 

  • Allison SD, Martiny JBH (2008) Resistance, resilience, and redundancy in microbial communities. Proc Natl Acad Sci U S A 105:11512–11519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Altieri MA (1999) The ecological role of biodiversity in agroecosystems. Agric Ecosyst Environ 74:19–31

    Article  Google Scholar 

  • Azcón R, Perálvarez MC, Roldán A, Barea JM (2010) Arbuscular mycorrhizal fungi, Bacillus cereus, and Candida parapsilosis from a multicontaminated soil alleviate metal toxicity in plants. Microb Ecol 59:668–677

    Article  PubMed  Google Scholar 

  • Babjeva IP, Belianin AI (1966) Yeasts in the rhizosphere. Mikrobiologiya 35:712–720

    Google Scholar 

  • Beeby A, Brennan AM (2008) First ecology: ecological principles and environmental issues, 3rd edn. Oxford University Press, Oxford

    Google Scholar 

  • Berendsen RL, Pieterse CM, Bakker PA (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17:478–486

    Article  CAS  PubMed  Google Scholar 

  • Boby VU, Balakrishna AN, Bagyaraj DJ (2008) Interaction between Glomus mosseae and soil yeasts on growth and nutrition of cowpea. Microbiol Res 163:693–700

    Article  CAS  PubMed  Google Scholar 

  • Botha A (2006) Yeasts in soil. In: Rosa CA, Péter G (eds) Biodiversity and ecophysiology of yeasts. Springer, Berlin, pp 221–240

    Chapter  Google Scholar 

  • Botha A (2011) The importance and ecology of yeasts in soil. Soil Biol Biochem 43:1–8

    Article  CAS  Google Scholar 

  • Breierová E, Gregor T, Márová I, Čertík M, Kogan G (2008) Enhanced antioxidant formula based on a selenium-supplemented carotenoidproducing yeast biomass. Chem Biodivers 5:440–446

    Article  PubMed  Google Scholar 

  • Busari MA, Kukal SS, Kaur A, Bhatt R, Dulazi AA (2015) Conservation tillage impacts on soil, crop and the environment. Int Soil Water Conserv Res 3:119–129

    Article  Google Scholar 

  • Buzzini P, Martini A (2002) Extracellular enzymatic activity profiles in yeast and yeast-like strains isolated from tropical environments. J Appl Microbiol 93:1020–1025

    Article  CAS  PubMed  Google Scholar 

  • Čadež N, Zupan J, Raspor P (2010) The effect of fungicides on yeast communities associated with grape berries. FEMS Yeast Res 10:619–630

    PubMed  Google Scholar 

  • Campbell CD, Grayston SJ, Hirst DJ (1997) Use of rhizosphere carbon sources in sole carbon source tests to discriminate soil microbial communities. J Microbiol Methods 30:33–41

    Article  Google Scholar 

  • Capriotti A (1957) New blastomycetes isolated from soils of Spain I: Schwanniomyces castellii nov. spec. Arch Mikrobiol 26:434–438

    Article  CAS  PubMed  Google Scholar 

  • Carr RJG, Bilton RF, Atkinson T (1985) Mechanism of biodegradation of paraquat by Lipomyces starkeyi. Appl Environ Microbiol 49:1290–1294

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen R, Wei SC, Jiang YM, Wang QM, Bai FY (2010) Kazachstania taianensis sp. nov., a novel ascomycetous yeast species from orchard soil. Int J Syst Evol Microbiol 60:1473–1476

    Article  CAS  PubMed  Google Scholar 

  • Chen R, Jiang YM, Wei SC, Wang QM (2012) Kwoniella shandongensis sp. nov., a basidiomycetous yeast isolated from soil and bark from an apple orchard. Int J Syst Evol Microbiol 62:2774–2777

    Article  CAS  PubMed  Google Scholar 

  • Chiarini L, Bevivino A, Dalmastri C, Nacamulli C, Tabacchioni S (1998) Influence of plant development, cultivar and soil type on microbial colonization of maize roots. Appl Soil Ecol 8:11–18

    Article  Google Scholar 

  • Cho DH, Chae HJ, Kim EY (2001) Synthesis and characterization of a novel extracellular polysaccharide by Rhodotorula glutinis. Appl Biochem Biotechnol 95:183–193

    Article  CAS  PubMed  Google Scholar 

  • Chowdhury A, Pradhan S, Monidipta S, Nilanjan S (2008) Impact of pesticides on soil microbiological parameters and possible bioremediation strategies. Indian J Microbiol 48:114–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ciccolini V, Bonari E, Pellegrino E (2015) Land-use intensity and soil properties shape the composition of fungal communities in Mediterranean peaty soils drained for agricultural purposes. Biol Fertil Soils 51:719–731

    Article  Google Scholar 

  • Cordero-Bueso G, Arroyo T, Serrano A, Valero E (2011) Influence of different floor management strategies of the vineyard on the natural yeast population associated with grape berries. Int J Food Microbiol 148:23–29

    Article  PubMed  Google Scholar 

  • Cordero-Bueso G, Arroyo T, Valero E (2014) A long term field study of the effect of fungicides penconazole and sulfur on yeasts in the vineyard. Int J Food Microbiol 189:189–194

    Article  CAS  PubMed  Google Scholar 

  • Cornelissen S, Botha A, Conradie WJ, Wolfaardt GM (2003) Shifts in community composition provide a mechanism for maintenance of activity of soil yeasts in the presence of elevated copper levels. Can J Microbiol 49:425–432

    Article  CAS  PubMed  Google Scholar 

  • de Azeredo LA, Gomes EA, Mendonça-Hagler LC, Hagler AN (1998) Yeast communities associated with sugarcane in Campos, Rio de Janeiro, Brazil. Int Microbiol 1:205–208

    PubMed  Google Scholar 

  • de Hoog GS, Zeng JS, Harrak MJ, Sutton DA (2006) Exophiala xenobiotica sp. nov., an opportunistic black yeast inhabiting environments rich in hydrocarbons. A van Leeuwenhoek 90:257–268

    Article  CAS  Google Scholar 

  • Deng J, Orner EP, Chau JF, Anderson EM, Kadilak AL, Rubinstein RL, Bouchillon GM, Goodwin RA, Gage DJ, Shor M (2015) Synergistic effects of soil microstructure and bacterial EPS on drying rate in emulated soil micromodels. Soil Biol Biochem 83:116–124

    Article  CAS  Google Scholar 

  • di Menna ME (1960) Biological studies of some tussock-grassland soils. N Z J Agric Res 1:939–942

    Article  Google Scholar 

  • El-Mehalawy AA, Hassanein NM, Khater HM, El-Din EAK, Youssef YA (2004) Influence of maize root colonization by the rhizosphere actinomycetes and yeast fungi on plant growth and on the biological control of late wilt disease. Int J Agric Biol 6:599–605

    Google Scholar 

  • El-Tarabily KA (2004) Suppression of Rhizoctonia solani diseases of sugar beet by antagonistic and plant growth-promoting yeasts. J Appl Microbiol 96:69–75

    Article  CAS  PubMed  Google Scholar 

  • Fonseca Á, Inácio J (2006) Phylloplane yeasts. In: Rosa C, Péter G (eds) Biodiversity and ecophysiology of yeasts. Springer, Berlin, pp 263–301

    Chapter  Google Scholar 

  • Fracchia S, Godeas A, Scervino JM, Sampedro I, Ocampo JA, Garcıa-Romera I (2003) Interaction between the soil yeast Rhodotorula mucilaginosa and the arbuscular mycorrhizal fungi Glomus mosseae and Gigaspora rosea. Soil Biol Biochem 35:701–707

    Article  CAS  Google Scholar 

  • Geisseler D, Scow KM (2014) Long-term effects of mineral fertilizers on soil microorganisms – a review. Soil Biol Biochem 75:54–63

    Article  CAS  Google Scholar 

  • Glushakova AM, Kachalkin AV, Chernov IY (2015a) Soil yeast communities under the aggressive invasion of Sosnowsky’ Hogweed (Heracleum sosnowskyi). Eurasian Soil Sci 48:201–207

    Article  Google Scholar 

  • Glushakova AM, Kachalkin AV, Chernov IY (2015b) Effect of invasive herb species on the structure of soil yeast complexes in mixed forests exemplified by Impatiens parviflora DC. Microbiology 84:717–721

    Article  CAS  Google Scholar 

  • Glushakova AM, Kachalkin AV, Chernov IY (2016) The influence of Aster x salignus Wiild. Invasion on the diversity of soil yeast communities. Eurasian Soil Sci 49:792–795

    Article  CAS  Google Scholar 

  • Gomes NCM, Fagbola O, Costa R, Rumjanek NG, Buchner A, Mendonca-Hagler L, Smalla K (2003) Dynamics of fungal communities in bulk and maize rhizosphere spoil in tropics. Appl Environ Microbiol 69:3758–3766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • González AM, Piñeiro AL, Fernández MR (2007) Culturable microbial populations in a vineyard soil under different management regimes: influence on spontaneous must fermentation. In: Mendez-Vilas A (ed) Current research topics in applied microbiology and microbial biotechnology: Proceedings of the II International Conference on Environmental, Industrial and Applied Microbiology (BioMicroWorld 2007). World Scientific, Singapore, pp 12–15

    Google Scholar 

  • Gulevskaya SA, Manukyan AR, Golubev WI (1982) Cytological studies of capsule formation in the yeast Cryptococcus magnus in the course of its growth. Mikrobiologiya 51:287–291 (in Russian)

    Google Scholar 

  • Gunina A, Kuzyakov Y (2015) Sugars in soil and sweets for microorganisms: review of origin, content, composition and fate. Soil Biol Biochem 90:87–100

    Article  CAS  Google Scholar 

  • Hanson BD, Roncoroni J, Hembree KJ, Molinar R, Elmore CI (2017) Weed control in orchards and vineyards. In: Thomas B, Murray BG, Murphy DJ (eds) Encyclopedia of applied plant sciences, vol 3, 2nd edn. Elsevier, Oxford, pp 479–484

    Chapter  Google Scholar 

  • Hong SG, Lee KH, Bae KS (2002) Diversity of yeasts associated with natural environments in Korea. J Microbiol 40:55–62

    CAS  Google Scholar 

  • Janušauskaite D, Kadžienė G, Auškalnienė O (2013) The effect of tillage system on soil microbiota in relation to soil structure. Pol J Environ Stud 22:1387–1391

    Google Scholar 

  • Johnson C, Albrecht G, Ketterings Q, Beckman J, Stockin K (2005) Nitrogen Basics – the Nitrogen Cycle. Agronomy Fact Sheet Series, Fact Sheet 2, Cornell University Cooperative Extension, New York

    Google Scholar 

  • Kachalkin AV, Abdullabekova DA, Magomedova ES, Magomedov GG, Chernov IY (2015) Yeasts of the vineyards in Dagestan and other regions. Microbiology 84:425–432

    Article  CAS  Google Scholar 

  • Karlsson I, Friberg H, Steinberg C, Persson P (2014) Fungicide effects on fungal community composition in the wheat phyllosphere. PLoS One 9:e111786

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Khan MS, Zaidi A, Ahemad M, Oves M, Wani PA (2010) Plant growth promotion by phosphate solubilizing fungi – current perspective. Arch Agron Soil Sci 56:73–98

    Article  CAS  Google Scholar 

  • Kijpornyongpan T, Aime MC (2017) Taxonomic revisions in the Microstromatales: two new yeast species, two new genera, and validation of Jaminaea and two Sympodiomycopsis species. Mycol Prog 16:495–505

    Article  Google Scholar 

  • Klaubauf S, Inselsbacher E, Zechmeister-Boltenstern S, Wanek W, Gottsberger R, Strauss J, Gorfer M (2010) Molecular diversity of fungal communities in agricultural soils from Lower Austria. Fungal Divers 44:65–75

    Article  PubMed  PubMed Central  Google Scholar 

  • Kurtzman CP, Robnett CJ (2013) Alloascoidea hylecoeti gen. nov., comb. nov., Alloascoidea africana comb. nov., Ascoidea tarda sp. nov., and Nadsonia starkeyi-henricii comb. nov., new members of the Saccharomycotina (Ascomycota). FEMS Yeast Res 13:423–432

    Article  CAS  PubMed  Google Scholar 

  • Kurtzman CP, Fell JW, Boekhout T (2011) The yeasts, a taxonomic study, 5th edn. Elsevier, Amsterdam

    Google Scholar 

  • Lawlor K, Knight BP, Barbosa-Jefferson VL, Lane PW, Lilley AK, Paton GI, McGrath SP, O’Flaherty SM, Hirsch PR (2000) Comparison of methods to investigate microbial populations in soils under different agricultural management. FEMS Microbiol Ecol 33:129–137

    Article  CAS  Google Scholar 

  • Lee CF, Lee FL, Hsu WH, Phaff HJ (1994) Arthroascus fermentans, a new yeast species isolated from soil in Taiwan. Int J Syst Bacteriol 44:303–307

    Article  CAS  Google Scholar 

  • Lemtiri A, Degrune F, Barbieux S, Hiel MP, Chélin M, Parvin N, Vandenbol M, Francis F, Colinet G (2016) Crop residue management in arable cropping systems under temperate climate. Part 1: soil biological and chemical (phosphorus and nitrogen) properties. A review. Biotechnol Agron Soc Environ 20:236–244

    Google Scholar 

  • Lieskovský J, Kenderessy P (2014) Modelling the effect of vegetation cover and different tillage practices on soil erosion in vineyards: a case study in Vráble (Slovakia) using WATEM/SEDEM. Land Degrad Dev 25:288–296

    Article  Google Scholar 

  • Liu XZ, Wang QM, Göker M, Groenewald M, Kachalkin AV, Lumbsch HT, Millanes AM, Wedin M, Yurkov AM, Boekhout T, Bai FY (2015) Towards and integrated phylogenetic classification of the Tremellomycetes. Stud Mycol 81:85–147

    Article  PubMed  Google Scholar 

  • López-Piñeiro A, Muñoz A, Zamora E, Ramírez M (2013) Influence of the management regime and phenological state of the vines on the physicochemical properties and the seasonal fluctuations of the microorganisms in a vineyard soil under semi-arid conditions. Soil Tillage Res 126:119–126

    Article  Google Scholar 

  • Lund A (1954) Studies on the ecology of yeasts. Munksgaard, Copenhagen

    Google Scholar 

  • Lund A (1956) Yeasts in nature. Wallerstein Lab Comm 19:221–236

    Google Scholar 

  • Lynch MDJ, Thorn RG (2006) Diversity of basidiomycetes in Michigan agricultural soils. Appl Environ Microbiol 72:7050–7056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magdoff F, van Es H (2009) Building soils for better crops: sustainable soil management, 3rd edn. SARE, Brentwood

    Google Scholar 

  • Mandl K, Schieck J, Silhavy-Richter K, Schneider V, Schmidt HP (2015) Vines take up yeasts from soil and transport them through the vine to the stem and grapes. Ithaka J, ISSN 1663-0521, pp 349–355

    Google Scholar 

  • McCauley A, Jones C, Jacobsen J (2005) Soil and water management module 1: basic soil properties. Montana State University Extension Service, Bozeman, pp 1–12

    Google Scholar 

  • Minter DW (2009) Cyberlindnera, a replacement name for Lindnera Kurtzman et al., nom. illegit. Mocotaxon 110:473–476

    Article  Google Scholar 

  • Moll J, Hoppe B, König S, Wubet T, Buscot F, Krüger D (2016) Spatial distribution of fungal communities in an arable soil. PLoS One 11:e0148130

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Molnárová J, Vadkertiová R, Stratilová E (2014) Extracellular enzymatic activities and physiological profiles of yeasts colonizing fruit trees. J Basic Microbiol 54:74–84

    Article  CAS  Google Scholar 

  • Narsian V, Samaha SMAA, Patel HH (2010) Rock phosphate dissolution by specific yeast. Indian J Microbiol 50:57–62

    Article  CAS  PubMed  Google Scholar 

  • Nassar AH, El-Tarabily KA, Sivasithamparam K (2005) Promotion of plant growth by an auxin-producing isolate of the yeast Williopsis saturnus endophytic in maize (Zea mays L.) roots. Biol Fertil Soils 42:97–108

    Article  CAS  Google Scholar 

  • Nielsen MN, Winding A (2002) Microorganisms as indicators of soil health. National Environmental Research Institute, NERI Technical Report No. 388, Denmark

    Google Scholar 

  • Parle JN, Di Menna ME (1966) The source of yeasts in New Zealand wines. N Z J Agric Res 9:98–107

    Article  Google Scholar 

  • Pezzolla D, Marconi G, Turchetti B, Zadra C, Agnelli A, Veronesi F, Onofri A, Benucci GMN, Buzzini P, Albertini E, Gigliotti G (2015) Influence of exogenous organic matter on prokaryotic and eukaryotic microbiota in an agricultural soil. A multidisciplinary approach. Soil Biol Biochem 82:9–20

    Article  CAS  Google Scholar 

  • Porras-Alfaro A, Herrera J, Natvig DO, Lipinski K, Sinsabaugh RL (2011) Diversity and distribution of soil fungal communities in a semiarid grassland. Mycologia 103:10–21

    Article  PubMed  Google Scholar 

  • Rinnan R, Stark S, Tolvanen A (2009) Responses of vegetation and soil microbial communities to warming and simulated herbivory in a subarctic heath. J Ecol 97:788–800

    Article  CAS  Google Scholar 

  • Sabate J, Cano J, Esteve-Zarzoso B, Guillamón JM (2002) Isolation and identification of yeasts associated with vineyard and winery by RFLP analysis of ribosomal genes and mitochondrial DNA. Microbiol Res 157:267–274

    Article  CAS  PubMed  Google Scholar 

  • Salam JA, Das N (2014) Lindane degradation by Candida VITJzN04, a newly isolated yeast strain from contaminated soil: kinetic study, enzyme analysis and biodegradation pathway. World J Microbiol Biotechnol 30:1301–1313

    Article  CAS  PubMed  Google Scholar 

  • Salam JA, Lakshmi V, Das D, Das N (2013) Biodegradation of lindane using a novel yeast strain, Rhodotorula sp. VITJzN03 isolated from agricultural soil. World J Microbiol Biotechnol 29:475–487

    Article  PubMed  CAS  Google Scholar 

  • Sampaio JP (1999) Utilization of low molecular weight aromatic compounds by heterobasidiomycetous yeasts: taxonomic implications. Can J Microbiol 45:491–512

    Article  CAS  PubMed  Google Scholar 

  • Sampedro I, Aranda E, Scervino JM, Fracchia S, García-Romera I, Ocampo JA, Godeas A (2004) Improvement by soil yeasts of arbuscular mycorrhizal symbiosis of soybean (Glycine max) colonized by Glomus mosseae. Mycorrhiza 14:229–234

    Article  CAS  PubMed  Google Scholar 

  • Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA (2013) Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus 2:587

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shennan C (2008) Biotic interactions, ecological knowledge and agriculture. Philos Trans R Soc B 363:717–739

    Article  Google Scholar 

  • Singh B, Ryan J (2015) Managing fertilizers to enhance soil health. International Fertilizer Industry Association, Paris, pp 1–24

    Google Scholar 

  • Singh BK, Dawson LA, Macdonald CA, Buckland SM (2009) Impact of biotic and abiotic interaction on soil microbial communities and functions: a field study. Appl Soil Ecol 41:239–248

    Article  Google Scholar 

  • Sipiczki M (2006) Metschnikowia strains isolated from botrytised grapes antagonize fungal and bacterial growth by iron depletion. Appl Environ Microbiol 72:6716–6724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sipiczki M (2016) Overwintering of vineyard yeasts: survival of interacting yeast communities in grapes mummified on vines. Front Microbiol 7:1–17

    Article  Google Scholar 

  • Sipilä TP, Yrjälä K, Alakukku L, Palojärvi A (2012) Cross-site soil microbial communities under tillage regimes: fungistasis and microbial biomarkers. Appl Environ Microbiol 78:8191–8201

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sláviková E, Vadkertiová R (2003a) The diversity of yeasts in the agricultural soil. J Basic Microbiol 43:430–436

    Article  PubMed  Google Scholar 

  • Sláviková E, Vadkertiová R (2003b) Effects of pesticides on yeasts isolated from agricultural soil. Z Naturforsch C 58:855–859

    Article  PubMed  Google Scholar 

  • Spehn EM, Joshi J, Schmid B, Alphei J, Körner C (2000) Plant diversity and soil heterotrophic activity in experimental grassland ecosystems. Plant Soil 224:217–230

    Article  CAS  Google Scholar 

  • Spencer JFT, Gorin PAJ (1971) Yeasts isolated from soils of citrus orchards and citrus waste disposal areas in California and Florida: flavonoid utilization. Can J Microbiol 17:871–877

    Article  CAS  PubMed  Google Scholar 

  • Starmer WT, Lachance MA (2011) Yeast ecology. In: Kurtzman CP, Fell J, Boekhout T (eds) The yeasts, a taxonomic study, 5th edn. Elsevier, Amsterdam, pp 65–83

    Chapter  Google Scholar 

  • Tuszyński T, Satora P (2003) Microbiological characteristics of the Węgierka Zwykła plum orchard in submontane region. Pol J Food Nutr Sci 12:43–48

    Google Scholar 

  • Vadkertiová R, Molnárová J, Vránová D, Sláviková E (2012) Yeasts and yeast-like organisms associated with fruits and blossoms of different fruit trees. Can J Microbiol 58:1344–1352

    Article  PubMed  CAS  Google Scholar 

  • van der Walt JP, Tscheuschner IT (1957) Hanseniaspora vineae sp. nov. Trans Br Mycol Soc 40:211–212

    Article  Google Scholar 

  • Vinovarova ME, Babjeva IP (1987) Yeast fungi in steppe community. Moscow Univ Soil Sci Bull (former Vestnik Moskovskogo Universiteta. Seriia 17, Pochvovedenie) 2:43–47 (in Russian)

    Google Scholar 

  • Vishniac HS (1995) Simulated in situ competitive ability and survival of a representative soil yeast, Cryptococcus albidus. Microb Ecol 30:309–320

    Google Scholar 

  • Vreulink JM, Esterhuyse A, Jacobs K, Botha A (2007) Soil properties that impact yeast and actinomycete numbers in sandy low nutrient soils. Can J Microbiol 53:1369–1374

    Article  CAS  PubMed  Google Scholar 

  • Vustin MM, Babjeva IP (1981) Natural habitats of yeasts Williopsis Zender and Zygowilliopsis Kudriavzev. Microbiology 50:1088–1091 (in Russian)

    Google Scholar 

  • Wang QM, Yurkov AM, Göker M, Lumbsch HT, Leavitt SD, Groenewald M, Theelen B, Liu XZ, Boekhout T, Bai FY (2015) Phylogenetic classification of yeasts and related taxa within Pucciniomycotina. Stud Mycol 81:149–189

    Article  PubMed  Google Scholar 

  • Wawrik B, Kerkhof L, Kukor J, Zylstra G (2005) Effect of different carbon sources on community composition of bacterial enrichments from soil. Appl Environ Microbiol 71:6776–6783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Welbaum GE, Sturz AV, Dong Z, Nowak J (2004) Managing soil microorganisms to improve productivity of agro-ecosystems. Crit Rev Plant Sci 23:175–193

    Article  CAS  Google Scholar 

  • Winding A, Hund-Rinke K, Rutgers M (2005) The use of microorganisms in ecological soil classification and assessment concepts. Ecotoxicol Environ Saf 62:230–248

    Article  CAS  PubMed  Google Scholar 

  • Wuczkowski M, Prillinger H (2004) Molecular identification of yeasts from soils of the alluvial forest national park along the river Danube downstream of Vienna, Austria (“Nationalpark Donauauen”). Microbiol Res 159:263–275

    Article  CAS  PubMed  Google Scholar 

  • Wyland LJ, Jackson LE, Chaney WE, Klonsky K, Koike ST, Kimple B (1996) Winter cover crops in a vegetable cropping system: impacts on nitrate leaching, soil water, crop yield, pests and management costs. Agric Ecosyst Environ 59:1–17

    Article  Google Scholar 

  • Xiao C, Chi R, Pan X, Liu F, He J (2013) Rock phosphate solubilization by four yeast strains. Ann Microbiol 63:173–178

    Article  CAS  Google Scholar 

  • Yurkov A, Schäfer AM, Begerow D (2009a) Barnettozyma vustinii. Fungal Planet 38. Persoonia 23:188–189

    Google Scholar 

  • Yurkov A, Schäfer AM, Begerow D (2009b) Clavispora reshetovae. Fungal Planet 35. Persoonia 23:182–183

    Google Scholar 

  • Yurkov AM, Kemler M, Begerow D (2012a) Assessment of yeast diversity in soils under different management regimes. Fungal Ecol 5:24–35

    Article  Google Scholar 

  • Yurkov AM, Schäfer AM, Begerow D (2012b) Leucosporidium drummii sp. nov., a member of the Microbotryomycetes isolated from soil. Int J Syst Evol Microbiol 62:728–734

    Article  CAS  PubMed  Google Scholar 

  • Zak DR, Holmes WE, White DC, Peacock AD, Tilman D (2003) Plant diversity, soil microbial communities, and ecosystem function: are there any links? Ecology 84:2042–2050

    Article  Google Scholar 

  • Zarraonaindia I, Owens SM, Weisenhorn P, West K, Hampton-Marcell J, Lax S, Bokulich NA, Mills DA, Martin G, Taghavi S, van der Lelie D, Gilbert JA (2015) The soil microbiome influences grapevine-associated microbiota. mBio 6:e02527–e02514

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang B, He H, Ding X, Zhang X, Zhang X, Yang X, Filley TR (2012) Soil microbial community dynamics over a maize (Zea mays L.) growing season under conventional- and no-tillage practices in a rainfed agroecosystem. Soil Tillage Res 124:153–160

    Article  Google Scholar 

Download references

Acknowledgements

We would like to dedicate this chapter to the memory of Anna Kocková-Kratochvílová, the founder of the Culture Collection of Yeasts, a well-known researcher and an enthusiastic hunter of yeasts inhabiting different natural substrates. We would also like to remember Elena Sláviková, who carried on Anna Kocková-Kratochvílová’s research and was the author of various studies on the diversity of yeasts, including the yeasts associated with agricultural soil. We would also like to express our thanks to P. Buzzini and A. Yurkov for their comments on and corrections of this chapter and Michael Hawkins for the language correction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renáta Vadkertiová .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Vadkertiová, R., Dudášová, H., Balaščáková, M. (2017). Yeasts in Agricultural and Managed Soils. In: Buzzini, P., Lachance, MA., Yurkov, A. (eds) Yeasts in Natural Ecosystems: Diversity. Springer, Cham. https://doi.org/10.1007/978-3-319-62683-3_4

Download citation

Publish with us

Policies and ethics