Skip to main content
Log in

Indigenous Plant Species with the Potential for the Phytoremediation of Arsenic and Metals Contaminated Soil

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Here we present results of a survey conducted to identify and characterize spontaneously growing arsenic-tolerant plant species of the area around the old arsenic/gold mine in ZlotyStok (Poland), with respect of their potential use in phytoremediation. Plants and soil from their rhizosphere were sampled and analyzed for concentrations of As and accompanying Mn, Fe, Mg, Ca, Al, Cu, Zn, Ba, Pb, Ni, Cs, V, Cr, Sr, Rb, Bi, Mo and U. The soil contained primarily very high As, Pb and Al concentrations (up to 7,451, 1,058 and 31,272 mg/kg respectively). The ability of identified species to modify the amount of bioavailable arsenic in their rhizosphere was determined by single extractions of soil samples with the use of water, phosphate buffer, EDTA, and acetic acid. Although As-hyperaccumulators were not found, Calamagrostis arundinaca was identified as a new species which successfully carried out the natural phytoextraction of arsenic. This plant was able to increase substantially the arsenic availability in the soil, and likely due to efficient uptake decreased the total As concentration within the root zone by around 40% relative to the reference soil. Thus, it has high potential for phytoremediation. The lowest amount of available arsenic was found in the rhizosphere of Stachys sylvatica, the species with the lowest As shoot concentration (compared with other plant species). It was proposed as a good candidate for phytostabilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agely, A. A., Sylvia, D., & Ma, L. Q. (2005). Mycorrhizae increase arsenic uptake by the hyperaccumulator Chinese Brake Fern (Pteris vittata L.). Journal of Environmental Quality, 34, 2181–2186.

    Article  CAS  Google Scholar 

  • Anawar, H. M., Garcia-Sanchez, A., & Santa Regina, I. (2008). Evaluation of various chemical extraction methods to estimate plant-available arsenic in mine soils. Chemosphere, 70, 1459–1467.

    Article  CAS  Google Scholar 

  • Antosiewicz, D. M. (1995). The relationships between constitutional and inducible Pb-tolerance and tolerance to mineral deficits in Biscutella laevigata and Silene inflata. Environmental and Experimental Botany, 35, 55–69.

    Article  CAS  Google Scholar 

  • Antosiewicz, D. M. (2004). Study of calcium-dependent lead-tolerance on plants differing in their level of Ca-deficiency tolerance. Environmental Pollution, 134, 23–34.

    Article  CAS  Google Scholar 

  • Baker, A. J. M. (1981). Accumulators and excluders—strategies in the response of plants to heavy metals. Journal of Plant Nutrition, 3, 643–654.

    Article  CAS  Google Scholar 

  • Chlebicki, A., Godzik, B., Lorenc, M. M., & Skłodowska, A. (2005). Fungi and arsenic-tolerant bacteria in the hypogean environment of an ancient gold mine in lower Silesia, SW Poland. Polish Botanical Studies, 19, 95.

    Google Scholar 

  • Clemens, S., Palmgren, M. G., & Krämer, U. (2002). A long way ahead: understanding and engineering plant metal accumulation. Trends in Plant Science, 7, 309–315.

    Article  CAS  Google Scholar 

  • Del Rio, M., Font, R., Almela, C., Vélez, D., Montoro, R., & De Haro Bailón, A. (2002). Heavy metals and arsenic uptake by wild vegetation in the Guadiamar river area after the toxic spill of the Aznalcóllar mine. Journal of Biotechnology, 98, 125–137.

    Article  Google Scholar 

  • Doyle, M. O., & Otte, M. L. (1997). Organism-induced accumulation of iron, zinc and arsenic in wetland soil. Environmental Pollution, 96, 1–11.

    Article  CAS  Google Scholar 

  • Ernst, W. H. O. (1998). Bioavailability of heavy metals and decontamination of soils by plants. Applied Geochemistry, 209, 133–142.

    Google Scholar 

  • Fayiga, A. O., Ma, L. Q., & Zhou, Q. (2007). Effects of plant arsenic uptake and heavy metals on arsenic distribution in an arsenic-contaminated soil. Environmental Pollution, 147, 737–742.

    Article  CAS  Google Scholar 

  • Feller, K. A. (2000). Phytoremediation of soils and waters contaminated with arsenicals from former chemical warfare installations. In D. L. Wise, D. J. Trantolo, E. J. Cichon, & U. Stottmeister (Eds.), Bioremediation of Contaminated Soils (pp. 771–786). New York: Marcel Dekker.

    Google Scholar 

  • Fitz, W. J., & Wenzel, W. W. (2002). Arsenic transformations in the soil–rhizosphere–plant system: fundamentals and potential application to phytoremediation. Journal of Biotechnology, 99, 259–278.

    Article  CAS  Google Scholar 

  • Fitz, W. J., Wenzel, W. W., Zhang, H., Nurmi, J., Stipek, K., Fischerova, Z., et al. (2003). Rhizosphere characteristics of the arsenic hyperaccumulator Pteris vittata L. and monitoring of phytoremoval efficiency. Environmental Science and Technology, 37, 5008–5014.

    Article  CAS  Google Scholar 

  • Francesconi, K., Visoottiviseth, P., Sridokchan, W., & Goessier, W. (2002). Arsenic species in an arsenic hyperaccumulationg fern, Pityrogramma calomelanos: a potential phytoremediator of arsenic-contaminated soils. Science of the Total Environment, 284, 27–35.

    Article  CAS  Google Scholar 

  • Gleyzes, C., Tellier, S., Sabrier, R., & Astruc, M. (2001). Arsenic characterization in industrial soils by chemical extractions. Environmental Technology, 22, 27–38.

    Article  CAS  Google Scholar 

  • Góralski, A. (1976). Metody opisu i wnioskowania statystycznego w psychologii. Warszawa: PWN.

    Google Scholar 

  • Kabata-Pendias, A. (2004). Soil–plant transfer of trace elements—an environmental issue. Geoderma, 122, 143–149.

    Article  CAS  Google Scholar 

  • Kabata-Pendias, A., & Pendias, H. (1992). Trace Elements in soils and plants. Boca Raton, FL, USA: CRC.

    Google Scholar 

  • Keon, N. E., Swartz, C. H., Brabander, D. J., Harvey, C., & Hemond, H. F. (2001). Validation of an arsenic sequential extraction method for evaluating mobility in sediments. Environmental Science and Technology, 35, 2778–2784.

    Article  CAS  Google Scholar 

  • Kuiters, A. T., & Mulder, W. (1993). Water-soluble organic matter in forest soils. Plant and Soil, 152, 215–235.

    Article  CAS  Google Scholar 

  • Lee, C. K., & Low, K. S. (1990). EDTA extractable arsenic in relation to available forms in soil. Pertanika, 13, 261–265.

    CAS  Google Scholar 

  • Lyubun, Y. V., Fritzsche, A., Chernyshova, M. P., Dudel, E. G., & Fedorov, E. E. (2006). Arsenic transformation by Azospirillum brasilense SP245 in association with wheat (Triticum aestivum L.) roots. Plant and Soil, 286, 219–227.

    Article  CAS  Google Scholar 

  • Ma, L. Q., Kommar, K. M. M., Tu, C., Zhang, W., Cai, Y., & Kennelley, E. (2001). A fern that hyperaccumulates arsenic. Nature, 409, 579.

    Article  CAS  Google Scholar 

  • Mains, D., Craw, D., Rufaut, C., & Smith, C. (2006). Phytostabilization of gold mine tailings from New Zealand. Part 2: Experimental evaluation of arsenic mobilization during revegetation. International Journal of Phytoremediation, 8, 163–183.

    Article  CAS  Google Scholar 

  • Markert, B. (1994). Plants as biomonitors—potential advantages and problems. In D. C. Adriano, Z. S. Chen, & S. S. Yang (Eds.), Biogeochemistry of trace elements (pp. 601–613). Northwood, NY, USA.

  • Marshner, K., & Römheld, V. (1994). Strategies of plants for acquisition of iron. Plant and Soil, 165, 261–274.

    Article  Google Scholar 

  • Marszałek, H., & Wąsik, M. (2000). Influence of arsenic-bearing gold deposits on water quality in Zloty Stok mining area (SW Poland). Environmental Gology, 39, 888–892.

    Article  Google Scholar 

  • McGrath, S. P., & Zhao, F.-J. (2003). Phytoextraction of metals and metalloids from contaminated soils. Current Opinion in Biotechnology, 14, 277–282.

    Article  CAS  Google Scholar 

  • Meagher, R. B., & Heaton, A. C. P. (2005). Strategies for the engineered phytoremediation of toxic element pollution: mercury and arsenic. Journal of Industrial Microbiology and Biotechnology, 32, 502–513.

    Article  CAS  Google Scholar 

  • Mench, M., Bussière, S., Boisson, J., Castaing, E., Vangronsveld, J., Ruttens, A., et al. (2003). Progress in remediation and revegetation of the barren Jales gold mine spoil after in situ treatments. Plant and Soil, 249, 187–202.

    Article  CAS  Google Scholar 

  • Michalak, E., & Wierzbicka, M. (1998). Differences in lead tolerance between Allium cepa plants developing from seeds and bulbs. Plant and Soil, 199, 251–260.

    Article  CAS  Google Scholar 

  • Peer, W. A., Baxter, I. R., Richards, E. L., Freeman, J. L., & Murphy, A. S. (2006). Phytoremediation and hyperaccumulator plants. Topics in Current Genetics, 14, 299–340.

    Article  CAS  Google Scholar 

  • Porter, E. K., & Peterson, P. J. (1975). Arsenic accumulation by plants on mine waste (United Kingdom). Science of the Total Environment, 4, 365–371.

    Article  CAS  Google Scholar 

  • Porter, E. K., & Peterson, P. J. (1977). Arsenic tolerance in grasses growing on mine waste. Environmental Pollution, 14, 255–265.

    Article  CAS  Google Scholar 

  • Przylibski, T. A. (2001). Radon and its daughter products behavious in the air of an underground tourist route in the former arsenic and gold mine in Złoty Stok (Sudety Mountains, SW Poland). Journal of Environmental Radioactivity, 57, 87–103.

    Article  CAS  Google Scholar 

  • Sheppard, S. C. (1992). Summary of phytotoxic levels of soil arsenic. Water Air and Soil Pollution, 64, 539–550.

    Article  CAS  Google Scholar 

  • Silva Gonzaga, M. I., Santos, J. A. G., & Ma, L. Q. (2006). Arsenic chemistry in the rhizosphere of Pteris vittata L. and Nephrolepis exaltata L. Environmental Pollution, 143, 254–260.

    Article  CAS  Google Scholar 

  • Simón, M., Oritz, I., Garćia, I., Fernăndez, E., Fernăndez, J., Dorronsoro, C., et al. (1999). Pollution of soils by the toxic spill of a pyrite mine (Aznalcollar, Spain). Science of the Total Environment, 242, 105–115.

    Article  Google Scholar 

  • Tinker, P. B., & Nye, P. H. (2000). Solute movement in the rhizosphere. New York: Oxford University Press.

    Google Scholar 

  • Tripathi, R. D., Srivastava, S., Mishra, S., Singh, N., Tuli, R., Gupta, D. K., et al. (2007). Arsenic hazards: strategies for tolerance and remediation by plants. Trends in Biotechnology, 25, 158–165.

    Article  CAS  Google Scholar 

  • Ultra, V. U., Tanaka, S., Sakurai, K., & Iwasaki, K. (2007). Arbuscular mycorrhizal fungus (Glomus aggregatum) influences biotransformation of arsenic in the rhizosphere of sunflower (Helianthus annuus L.). Soil Science and Plant Nutrition, 53, 499–508.

    Article  CAS  Google Scholar 

  • Van Herreweghe, S., Swennen, R., Vandecasteele, C., & Cappnyus, V. (2003). Soild phase speciation of arsenic by sequential extraction in standard reference materials and industrially contaminated soil samples. Environmental Pollution, 122, 323–342.

    Article  Google Scholar 

  • Verkleij, J. A. C., & Schat, H. (1990). Mechanisms of metal tolerance in higher plants. In A. J. Shaw (Ed.), Heavy metal tolerance in plants (pp. 179–194). Boca Raton, FL, USA: CRC.

    Google Scholar 

  • Visoottiviseth, P., Francesconi, K., & Sridolchan, W. (2002). The potential of Thai indigenous plant species for the phytoremediation of arsenic contaminated land. Environmental Pollution, 118, 453–461.

    Article  CAS  Google Scholar 

  • Zhao, F. J., Dunham, S. J., & McGrath, S. P. (2002). Arsenic hyperaccumulation by different fern species. New Phytologist, 156, 27–31.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The paper was supported by MNiSW grant no. K118/T09/2005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. M. Antosiewicz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antosiewicz, D.M., Escudĕ-Duran, C., Wierzbowska, E. et al. Indigenous Plant Species with the Potential for the Phytoremediation of Arsenic and Metals Contaminated Soil. Water Air Soil Pollut 193, 197–210 (2008). https://doi.org/10.1007/s11270-008-9683-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-008-9683-2

Keywords

Navigation