Skip to main content
Log in

Systems biology of plant metabolic interactions

  • Review
  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Metabolism is the key cellular process of plant physiology. Understanding metabolism and its dynamical behavior under different conditions may help plant biotechnologists to design new cultivars with desired goals. Computational systems biochemistry and incorporation of different omics data unravelled active metabolism and its variations in plants. In this review, we mainly focus on the basics of flux balance analysis (FBA), elementary flux mode analysis (EFMA), and some advanced computational tools. We describe some important results that were obtained using these tools. Limitations and challenges are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Affourtit C, Krab K, Leach GR, et al. 2001 New insights into the regulation of plant succinate dehydrogenase: on the role of the protonmotive force. J. Biol. Chem. 276 32567–32574

    Article  CAS  PubMed  Google Scholar 

  • Åkesson M, Förster J and Nielsen J 2004 Integration of gene expression data into genome-scale metabolic models. Metab. Eng. 6 285–293

    Article  PubMed  Google Scholar 

  • Alejandre M, Segovia J, Zafra M, et al. 1979 Characteristics of citrate synthase from Agave americana L. leaves. Z. Pflanzenphysiol. 94 85–93

    Article  CAS  Google Scholar 

  • Araujo WL, Nunes-Nesi A, Nikoloski Z, et al. 2012 Metabolic control and regulation of the tricarboxylic acid cycle in photosynthetic and heterotrophic plant tissues. Plant Cell Environ. 35 1–21

  • Armstrong AF, Badger MR, Day DA, et al. 2008 Dynamic changes in the mitochondrial electron transport chain underpinning cold acclimation of leaf respiration. Plant Cell Environ. 31 1156–1169

    Article  CAS  PubMed  Google Scholar 

  • Arnon DI 1971 The light reactions of photosynthesis. Proc. Natl. Acad. Sci. USA 68 2883–2892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barbareschi D, Longo GP, Servettaz O, et al. 1974 Citrate synthetase in mitochondria and glyoxysomes of maize scutellum. Plant Physiol. 53 802–807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartoli CG, Gomez F, Gergoff G, et al. 2005 Up-regulation of the mitochondrial alternative oxidase pathway enhances photosynthetic electron transport under drought conditions. J. Exp. Bot. 56 1269–1276

    Article  CAS  PubMed  Google Scholar 

  • Becker SA and Palsson BO 2008 Context-specific metabolic networks are consistent with experiments. PLoS Comput. Biol. 4 e1000082

    Article  PubMed  PubMed Central  Google Scholar 

  • Behal RH and Oliver DJ 1997 Biochemical and molecular characterization of fumarase from plants: purification and characterization of the enzyme-cloning, sequencing, and expression of the gene. Arch. Biochem. Biophys. 348 65–74

    Article  CAS  PubMed  Google Scholar 

  • Bocobza SE, Malitsky S, Araújo WL, et al. 2013 Orchestration of thiamin biosynthesis and central metabolism by combined action of the thiamin pyrophosphate riboswitch and the circadian clock in Arabidopsis. Plant Cell 25 288–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bogart E and Myers CR 2016 Multiscale metabolic modeling of C4 plants: connecting nonlinear genome-scale models to leaf-scale metabolism in developing maize leaves. PLoS One 11 e0151722

    Article  PubMed  PubMed Central  Google Scholar 

  • Bourguignon J, Neuburger M and Douce R 1988 Resolution and characterization of the glycinecleavage reaction in pea leaf mitochondria. Properties of the forward reaction catalysed by glycine decarboxylase and serine hydroxymethyltransferase. Biochem. J. 255 169–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burgard AP, Nikolaev EV, Schilling CH, et al. 2004 Flux coupling analysis of genome scale metabolic network reconstructions. Genome Res. 14 301–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bunik VI and Fernie AR 2009 Metabolic control exerted by the 2-oxoglutarate dehydrogenase reaction: a cross-kingdom comparison of the crossroad between energy production and nitrogen assimilation. Biochem. J. 422 405–421

    Article  CAS  PubMed  Google Scholar 

  • Campbell C, Atkinson L, Zaragoza-Castells J, et al. 2007 Acclimation of photosynthesis and respiration is asynchronous in response to changes in temperature regardless of plant functional group. New Phytol. 176 375–389

    Article  CAS  PubMed  Google Scholar 

  • Chandrasekaran S and Price ND 2010 Probabilistic integrative modeling of genome-scale metabolic and regulatory networks in Escherichia coli and mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 107 17845–17850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chatterjee A, Huma B, Shaw R, et al. 2017 Reconstruction of Oryza sativa indica genome scale metabolic model and its responses to varying RuBisCO activity, light intensity, and enzymatic cost conditions. Front. Plant Sci. 8 2060

    Article  PubMed  PubMed Central  Google Scholar 

  • Chavali AK, Whittemore JD, Eddy JA, et al. 2008 Systems analysis of metabolism in the pathogenic trypanosomatid Leishmania major. Mol. Syst. Biol. 4 177

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheung CM, Poolman MG, Fell DA, et al. 2014 A diel flux balance model captures interactions between light and dark metabolism during day-night cycles in c3 and crassulacean acid metabolism leaves. Plant Physiol. 165 917–929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheung CM, Ratcliffe RG and Sweetlove LJ 2015 A method of accounting for enzyme costs in flux balance analysis reveals alternative pathways and metabolite stores in an illuminated Arabidopsis leaf. Plant Physiol. 169 1671–1682

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheung CM, Williams TC, Poolman MG, et al. 2013 A method for accounting for maintenance costs in flux balance analysis improves the prediction of plant cell metabolic phenotypes under stress conditions. Plant J. 75 1050–1061

    Article  CAS  PubMed  Google Scholar 

  • Colijn C, Brandes A, Zucker J, et al. 2009 Interpreting expression data with metabolic flux models: predicting Mycobacterium tuberculosis mycolic acid production. PLoS Comput. Biol. 5 e1000489

    Article  PubMed  PubMed Central  Google Scholar 

  • Cooper CE and Brown GC 2008 The inhibition of mitochondrial cytochrome oxidase by the gases carbon monoxide, nitric oxide, hydrogen cyanide and hydrogen sulfide: chemical mechanism and physiological significance. J. Bioenerg. Biomembr. 40 533–539

    Article  CAS  PubMed  Google Scholar 

  • Covert MW, Knight EM, Reed JL, et al. 2004 Integrating highthroughput and computational data elucidates bacterial networks. Nature 429 92–96

    Article  CAS  PubMed  Google Scholar 

  • Covert MW and Palsson BØ 2002 Transcriptional regulation in constraints-based metabolic models of Escherichia coli *210. J. Biol. Chem. 277 28058–28064

    Article  CAS  PubMed  Google Scholar 

  • Covert MW and Palsson BØ 2003 Constraints-based models: regulation of gene expression reduces the steady-state solution space. J. Theor. Biol. 221 309–325

    Article  CAS  PubMed  Google Scholar 

  • Covert MW, Xiao N, Chen TJ, et al. 2008 Integrating metabolic, transcriptional regulatory and signal transduction models in Escherichia coli. Bioinformatics 24 2044–2050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Covert MW, Schilling CH and Palsson BØ 2001 Regulation of gene expression in flux balance models of metabolism. J. Theor. Biol. 213 73–88

    Article  CAS  PubMed  Google Scholar 

  • Cox G and Davies D 1969 The effects of pH and citrate on the activity of nicotinamide–adenine dinucleotide-specific isocitrate dehydrogenase from pea mitochondria. Biochem. J. 113 813–820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • da Fonseca-Pereira P, Souza PV, Hou LY, et al. 2020 Thioredoxin h2 contributes to the redox regulation of mitochondrial photorespiratory metabolism. Plant Cell Environ. 43 188–208

    Article  PubMed  Google Scholar 

  • Daloso DM, Müller K, Obata T, et al. 2015 Thioredoxin, a master regulator of the tricarboxylic acid cycle in plant mitochondria. Proc. Natl. Acad. Sci. USA 112 E1392–E1400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De RK, Das M and Mukhopadhyay S 2008 Incorporation of enzyme concentrations into fba and identification of optimal metabolic pathways. BMC Syst. Biol. 2 1–16

    Article  Google Scholar 

  • de Oliveira Dal’Molin CG, Quek LE, Palfreyman RW, et al. 2010 AraGEM, a genome-scale reconstruction of the primary metabolic network in Arabidopsis. Plant Physiol. 152 579–589

  • de Oliveira Dal’Molin CG, Quek LE, Palfreyman RW, et al. 2010 C4GEM, a genome-scale metabolic model to study c4 plant metabolism. Plant Physiol. 154, 1871–1885

  • Deb A and Kundu S 2015 Deciphering cis-regulatory element mediated combinatorial regulation in rice under blast infected condition. PLoS One 10 e0137295

    Article  PubMed  PubMed Central  Google Scholar 

  • Ederli L, Morettini R, Borgogni A, et al. 2006 Interaction between nitric oxide and ethylene in the induction of alternative oxidase in ozone-treated tobacco plants. Plant Physiol. 142 595–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eprintsev AT, Fedorin DN, Nikitina MV, et al. 2015 Expression and properties of the mitochondrial and cytosolic forms of aconitase in maize scutellum. J. Plant Physiol. 181 14–19

    Article  CAS  PubMed  Google Scholar 

  • Eprintsev AT, Fedorin DN, Sazonova OV, et al. 2018 Expression and properties of the mitochondrial and cytosolic forms of fumarase in sunflower cotyledons. Plant Physiol. Biochem. 129 305–309

    Article  CAS  PubMed  Google Scholar 

  • Fiorani F, Umbach AL and Siedow JN 2005 The alternative oxidase of plant mitochondria is involved in the acclimation of shoot growth at low temperature. A study of Arabidopsis AOX1a transgenic plants. Plant Physiol. 139 1795–1805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flügel F, Timm S, Arrivault S, et al. 2017 The photorespiratory metabolite 2-phosphoglycolate regulates photosynthesis and starch accumulation in Arabidopsis. Plant Cell 29 2537–2551

    Article  PubMed  PubMed Central  Google Scholar 

  • Gupta KJ, Shah JK, Brotman Y, et al. 2012 Inhibition of aconitase by nitric oxide leads to induction of the alternative oxidase and to a shift of metabolism towards biosynthesis of amino acids. J. Exp. Bot. 63 1773–1784

    Article  CAS  PubMed  Google Scholar 

  • Hanning I, Baumgarten K, Schott K, et al. 1999 Oxaloacetate transport into plant mitochondria. Plant Physiol. 119 1025–1032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herrgård MJ, Lee BS, Portnoy V, et al. 2006 Integrated analysis of regulatory and metabolic networks reveals novel regulatory mechanisms in Saccharomyces cerevisiae. Genome Res. 16 627–635

    Article  PubMed  PubMed Central  Google Scholar 

  • Hodges M, Flesch V, Gálvez S, et al. 2003 Higher plant NADP+-dependent isocitrate dehydrogenases, ammonium assimilation and NADPH production. Plant Physiol. Biochem. 41 577–585

    Article  CAS  Google Scholar 

  • Hoppe A, Hoffmann S and Holzhütter HG 2007 Including metabolite concentrations into flux balance analysis: thermodynamic realizability as a constraint on flux distributions in metabolic networks. BMC Syst. Biol. 1 1–12

    Article  Google Scholar 

  • Huang W, Hu H and Zhang SB 2015 Photorespiration plays an important role in the regulation of photosynthetic electron flow under fluctuating light in tobacco plants grown under full sunlight. Front. Plant Sci. 6 621

    Article  PubMed  PubMed Central  Google Scholar 

  • Huma B, Kundu S, Poolman MG, et al. 2018 Stoichiometric analysis of the energetics and metabolic impact of photorespiration in c3 plants. Plant J. 96 1228–1241

    Article  CAS  PubMed  Google Scholar 

  • Igamberdiev AU and Gardeström P 2003 Regulation of NAD-and NADP-dependent isocitrate dehydrogenases by reduction levels of pyridine nucleotides in mitochondria and cytosol of pea leaves. Biochim. Biophys. Acta 1606 117–125

    Article  CAS  PubMed  Google Scholar 

  • Jacoby RP, Li L, Huang S, et al. 2012 Mitochondrial composition, function, and stress response in plants. J. Integr. Plant Biol. 54 887–906

    Article  CAS  PubMed  Google Scholar 

  • Jensen PA and Papin JA 2011 Functional integration of a metabolic network model and expression data without arbitrary thresholding. Bioinformatics 27 541–547

    Article  CAS  PubMed  Google Scholar 

  • Jerby L, Shlomi T and Ruppin E 2010 Computational reconstruction of tissue-specific metabolic models: application to human liver metabolism. Mol. Syst. Biol. 6 401

    Article  PubMed  PubMed Central  Google Scholar 

  • Kurata H, Zhao Q, Okuda R, et al. 2007 Integration of enzyme activities into metabolic flux distributions by elementary mode analysis. BMC Syst. Biol. 1 1–14

    Article  Google Scholar 

  • Lakshmanan M, Lim SH, Mohanty B, et al. 2015 Unraveling the light-specific metabolic and regulatory signatures of rice through combined in silico modeling and multiomics analysis. Plant Physiol. 169 3002–3020

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lancien M, Gadal P and Hodges M 1998 Molecular characterization of higher plant NAD-dependent isocitrate dehydrogenase: evidence for a heteromeric structure by the complementation of yeast mutants. Plant J. 16 325–333

    Article  CAS  PubMed  Google Scholar 

  • Le XH, Lee CP, Monachello D, et al. 2022 Metabolic evidence for distinct pyruvate pools inside plant mitochondria. Nat. Plants 8 694–705

    Article  CAS  PubMed  Google Scholar 

  • Leegood RC, Lea PJ, Adcock MD, et al. 1995 The regulation and control of photorespiration. J. Exp. Bot. 1397–1414

  • Lee JM, Gianchandani EP, Eddy JA, et al. 2008 Dynamic analysis of integrated signaling, metabolic, and regulatory networks. PLoS Comput. Biol. 4 e1000086

    Article  PubMed  Google Scholar 

  • Lewis NE, Hixson KK, Conrad TM, et al. 2010 Omic data from evolved E. coli are consistent with computed optimal growth from genome-scale models. Mol. Syst. Biol. 6 390

  • Long CP, Gonzalez JE, Feist AM, et al. 2017 Fast growth phenotype of E. coli k-12 from adaptive laboratory evolution does not require intracellular flux rewiring. Metab. Eng. 44 100–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lotz K, Hartmann A, Grafahrend-Belau E, et al. 2014 Elementary flux modes, flux balance analysis, and their application to plant metabolism. Methods Mol. Biol. 1083 231–252

    Article  CAS  PubMed  Google Scholar 

  • Machado D and Herrgård M 2014 Systematic evaluation of methods for integration of transcriptomic data into constraint-based models of metabolism. PLoS Comput. Biol. 10 e1003580

    Article  PubMed  PubMed Central  Google Scholar 

  • Mahadevan R and Schilling CH 2003 The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. Metab. Eng. 5 264–276

    Article  CAS  PubMed  Google Scholar 

  • Maiti R, Shaw R, Cheung CM, et al. 2023 Metabolic modelling revealed metabolic interactions between four segments of Setaria viridis leaves. J. Biosci. 48 26

    Article  PubMed  Google Scholar 

  • McIntosh CA and Oliver DJ 1992 NAD+-linked isocitrate dehydrogenase: isolation, purification, and characterization of the protein from pea mitochondria. Plant Physiol. 100 69–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Millar AH, Whelan J, Soole KL, et al. 2011 Organization and regulation of mitochondrial respiration in plants. Annu. Rev. Plant Biol. 62 79–104

    Article  CAS  PubMed  Google Scholar 

  • Mintz-Oron S, Meir S, Malitsky S, et al. 2012 Reconstruction of Arabidopsis metabolic network models accounting for subcellular compartmentalization and tissue specificity. Proc. Natl. Acad. Sci. USA 109 339–344

    Article  CAS  PubMed  Google Scholar 

  • Moore AL and Siedow JN 1991 The regulation and nature of the cyanide-resistant alternative oxidase of plant mitochondria. Biochim. Biophys. Acta 1059 121–140

    Article  CAS  PubMed  Google Scholar 

  • Moore AL, Umbach AL and Siedow JN 1995 Structure-function relationships of the alternative oxidase of plant mitochondria: a model of the active site. J. Bioenerg. Biomembr. 27 367–377

    Article  CAS  PubMed  Google Scholar 

  • Moreira TB, Shaw R, Luo X, et al. 2019 A genome-scale metabolic model of soybean (Glycine max) highlights metabolic fluxes in seedlings. Plant Physiol. 180 1912–1929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morgan MJ, Lehmann M, Schwarzlander M, et al. 2008 Decrease in manganese superoxide dismutase leads to reduced root growth and affects tricarboxylic acid cycle flux and mitochondrial redox homeostasis. Plant Physiol. 147 101–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neuburger M, Bourguignon J and Douce R 1986 Isolation of a large complex from the matrix of pea leaf mitochondria involved in the rapid transformation of glycine into serine. FEBS Lett. 207 18–22

    Article  CAS  Google Scholar 

  • Nishio K and Mizushima T 2020 Structural and biochemical characterization of mitochondrial citrate synthase 4 from Arabidopsis thaliana. Acta Crystallogr. F Struct. Biol. Commun. 76 109–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nunes-Nesi A, Araújo WL, Obata T, et al. 2013 Regulation of the mitochondrial tricarboxylic acid cycle. Curr. Opin. Plant Biol. 16 335–343

    Article  CAS  PubMed  Google Scholar 

  • Ogren WL 1984 Photorespiration: pathways, regulation, and modification. Ann. Rev. Plant Physiol. 35 415–442

    Article  CAS  Google Scholar 

  • Oikawa K, Hayashi M, Hayashi Y, et al. 2019 Re-evaluation of physical interaction between plant peroxisomes and other organelles using live-cell imaging techniques. J. Integr. Plant Biol. 61 836–852

    Article  PubMed  Google Scholar 

  • Orth JD, Thiele I and Palsson BØ 2010 What is flux balance analysis? Nat. Biotechnol. 28 245–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palmer J and Wedding R 1966 Purification and properties of succinyl-CoA synthetase from jerusalem artichoke mitochondria. Biochim. Biophys. Acta. 113 167–174

    Article  CAS  PubMed  Google Scholar 

  • Pastore D, Trono D, Laus MN, et al. 2001 Alternative oxidase in durum wheat mitochondria. activation by pyruvate, hydroxypyruvate and glyoxylate and physiological role. Plant Cell Physiol. 42 1373–1382

    Article  CAS  PubMed  Google Scholar 

  • Pfau T, Christian N, Masakapalli SK, et al. 2018 The intertwined metabolism during symbiotic nitrogen fixation elucidated by metabolic modelling. Sci. Rep. 8 12504

    Article  PubMed  PubMed Central  Google Scholar 

  • Poolman MG, Kundu S, Shaw R, et al. 2013 Responses to light intensity in a genome-scale model of rice metabolism. Plant Physiol. 162 1060–1072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poolman MG, Miguet L, Sweetlove LJ, et al. 2009 A genome-scale metabolic model of Arabidopsis and some of its properties. Plant Physiol. 151 1570–1581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Popova TN and de Carvalho MAAP 1998 Citrate and isocitrate in plant metabolism. Biochim. Biophys. Acta 1364 307–325

    Article  CAS  PubMed  Google Scholar 

  • Reinholdt O, Bauwe H, Hagemann M, et al. 2019 Redox-regulation of mitochondrial metabolism through thioredoxin o1 facilitates light induction of photosynthesis. Plant Signal. Behav. 14 1674607

    Article  PubMed  PubMed Central  Google Scholar 

  • Rohwer JM 2012 Kinetic modelling of plant metabolic pathways. J. Exp. Bot. 63 2275–2292

    Article  CAS  PubMed  Google Scholar 

  • Rhoads DM and Subbaiah CC 2007 Mitochondrial retrograde regulation in plants. Mitochondrion 7 177–194

    Article  CAS  PubMed  Google Scholar 

  • Ribas-Carbo M, Aroca R, Gonzalez-Meler MA, et al. 2000 The electron partitioning between the cytochrome and alternative respiratory pathways during chilling recovery in two cultivars of maize differing in chilling sensitivity. Plant Physiol. 122 199–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rohwer JM and Botha FC 2001 Analysis of sucrose accumulation in the sugar cane culm on the basis of in vitro kinetic data. Biochem. J. 358 437–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rustin P, Moreau F and Lance C 1980 Malate oxidation in plant mitochondria via malic enzyme and the cyanide-insensitive electron transport pathway. Plant Physiol. 66 457–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saha B, Borovskii G and Panda SK 2016 Alternative oxidase and plant stress tolerance. Plant Signal. Behav. 11 e1256530

    Article  PubMed  PubMed Central  Google Scholar 

  • Saha R, Suthers PF and Maranas CD 2011 Zea mays iRS1563: a comprehensive genome-scale metabolic reconstruction of maize metabolism. PLoS One 6 e21784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuster S and Fell D 2007 Modeling and simulating metabolic networks; in Bioinformatics – From genomes to therapies (Ed.) T Lengauer (Weinheim: Wiley-VCH) pp 755–805

  • Seelert H and Dencher NA 2011 ATP synthase superassemblies in animals and plants: two or more are better. Biochim. Biophys. Acta 1807 1185–1197

    Article  CAS  PubMed  Google Scholar 

  • Schilling CH, Edwards JS, Letscher D, et al. 2000 Combining pathway analysis with flux balance analysis for the comprehensive study of metabolic systems. Biotechnol. Bioeng. 71 286–306

    Article  CAS  PubMed  Google Scholar 

  • Schmidtmann E, König AC, Orwat A, et al. 2014 Redox regulation of Arabidopsis mitochondrial citrate synthase. Mol Plant. 7 156–169

    Article  CAS  PubMed  Google Scholar 

  • Schuster S, Dandekar T and Fell DA 1999 Detection of elementary flux modes in biochemical networks: a promising tool for pathway analysis and metabolic engineering. Trends Biotechnol. 17 53–60

    Article  CAS  PubMed  Google Scholar 

  • Searle SY, Thomas S, Griffin KL, et al. 2011 Leaf respiration and alternative oxidase in field-grown alpine grasses respond to natural changes in temperature and light. New Phytol. 189 1027–1039

    Article  CAS  PubMed  Google Scholar 

  • Sharkey TD 2023 The discovery of rubisco. J. Exp. Bot. 74 510–519

    Article  CAS  PubMed  Google Scholar 

  • Shaw R and Cheung CM 2019 A mass and charge balanced metabolic model of setaria viridis revealed mechanisms of proton balancing in c4 plants. BMC Bioinform. 20 1–11

    Article  CAS  Google Scholar 

  • Shaw R and Kundu S 2013 Random weighting through linear programming into intracellular transporters of rice metabolic network; in Pattern recognition and machine intelligence (Eds.) P Maji, A Ghosh, MN Murty, et al. (Berlin: Springer) pp. 662–728

  • Shaw R and Kundu S 2015 Metabolic plasticity and inter-compartmental interactions in rice metabolism: an analysis from reaction deletion study. PLoS One 10 e0133899

    Article  PubMed  PubMed Central  Google Scholar 

  • Shlomi T, Cabili MN, Herrgård MJ, et al. 2008 Network-based prediction of human tissue-specific metabolism. Nat. Biotechnol. 26 1003–1010

    Article  CAS  PubMed  Google Scholar 

  • Shlomi T, Eisenberg Y, Sharan R, et al. 2007 A genome-scale computational study of the interplay between transcriptional regulation and metabolism. Mol. Syst. Biol. 3 101

    Article  PubMed  PubMed Central  Google Scholar 

  • Shi K, Fu LJ, Zhang S, et al. 2013 Flexible change and cooperation between mitochondrial electron transport and cytosolic glycolysis as the basis for chilling tolerance in tomato plants. Planta 237 589–601

    Article  CAS  PubMed  Google Scholar 

  • Siedow JN and Day DA 2000 Respiration and photorespiration; in Biochemistry and molecular biology of plants 1st edition (Eds.) BB Buchanan, W Gruissem and RL Jones (Rockville, MD: American Soceity of Plant Physiologists) pp 676–728

  • Simonin V and Galina A 2013 Nitric oxide inhibits succinate dehydrogenase-driven oxygen consumption in potato tuber mitochondria in an oxygen tension-independent manner. Biochem. J. 449 263–273

    Article  CAS  PubMed  Google Scholar 

  • Sipari N, Lihavainen J, Shapiguzov A, et al. 2020 Primary metabolite responses to oxidative stress in early-senescing and paraquat resistant Arabidopsis thaliana rcd1 (radical-induced cell death 1). Front. Plant Sci. 11 194

    Article  PubMed  PubMed Central  Google Scholar 

  • Sluse F and Jarmuszkiewicz W 1998 Alternative oxidase in the branched mitochondrial respiratory network: an overview on structure, function, regulation, and role. Braz. J. Med. Biol. Res. 31 733–747

    Article  CAS  PubMed  Google Scholar 

  • Stevens FJ, Dong Li A, Salman Lateef S, et al. 1997 Identification of potential interdomain disulfides in three higher plant mitochondrial citrate synthases: paradoxical differences in redox-sensitivity as compared with the animal enzyme. Photosynth. Res. 54 185–197

    Article  CAS  Google Scholar 

  • Strumilo S 2005 Short-term regulation of the α-ketoglutarate dehydrogenase complex by energylinked and some other effectors. Biochemistry 70 726–729

    CAS  PubMed  Google Scholar 

  • Studart-Guimarães C, Gibon Y, Frankel N, et al. 2005 Identification and characterisation of the α and β subunits of succinyl CoA ligase of tomato. Plant Mol. Biol. 59 781–791

    Article  PubMed  Google Scholar 

  • Sweetlove LJ, Beard KF, Nunes-Nesi A, et al. 2010 Not just a circle: flux modes in the plant TCA cycle. Trends Plant Sci. 15 462–470

    Article  CAS  PubMed  Google Scholar 

  • Tan XJ and Cheung CM 2020 A multiphase flux balance model reveals flexibility of central carbon metabolism in guard cells of c3 plants. Plant J. 104 1648–1656

    Article  CAS  PubMed  Google Scholar 

  • Timm S, Florian A, Arrivault S, et al. 2012 Glycine decarboxylase controls photosynthesis and plant growth. FEBS Lett. 586 3692–3697

    Article  CAS  PubMed  Google Scholar 

  • Timm S and Hagemann M 2020 Photorespiration—how is it regulated and how does it regulate overall plant metabolism? J. Exp. Bot. 71 3955–3965

    Article  CAS  PubMed  Google Scholar 

  • Tovar-Méndez A, Miernyk JA and Randall DD 2003 Regulation of pyruvate dehydrogenase complex activity in plant cells. Eur. J. Biochem. 270 1043–1049

    Article  PubMed  Google Scholar 

  • Tretter L and Adam-Vizi V 2000 Inhibition of krebs cycle enzymes by hydrogen peroxide: a key role of α-ketoglutarate dehydrogenase in limiting nadh production under oxidative stress. J. Neurosci. 20 8972–8979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Umbach AL and Siedow JN 1993 Covalent and noncovalent dimers of the cyanide-resistant alternative oxidase protein in higher plant mitochondria and their relationship to enzyme activity. Plant Physiol. 103 845–854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Unger EA and Vasconcelos AC 1989 Purification and characterization of mitochondrial citrate synthase. Plant Physiol. 89 719–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varma A and Palsson BO 1994 Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli w3110. Appl. Environ. Microbiol. 60 3724–3731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Berlo RJ, de Ridder D, Daran JM, et al. 2009 Predicting metabolic fluxes using gene expression differences as constraints. IEEE/ACM Trans. Comput. Biol. Bioinform. 8 206–216

    Article  Google Scholar 

  • Vanlerberghe GC and McIntosh L 1997 Alternative oxidase: from gene to function. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48 703–734

    Article  CAS  PubMed  Google Scholar 

  • Vanlerberghe GC 2013 Alternative oxidase: a mitochondrial respiratory pathway to maintain metabolic and signaling homeostasis during abiotic and biotic stress in plants. Int. J. Mol. Sci. 14 6805–6847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verniquet F, Gaillard J, Neuburger M, et al. 1991 Rapid inactivation of plant aconitase by hydrogen peroxide. Biochem. J. 276 643–648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Huang J, Liang X, et al. 2012 Involvement of hydrogen peroxide, calcium, and ethylene in the induction of the alternative pathway in chilling-stressed Arabidopsis callus. Planta 235 53–67

    Article  CAS  PubMed  Google Scholar 

  • Wedding RT and Black MK 1971 Nucleotide activation of cauliflower α-ketoglutarate dehydrogenase. J. Biol. Chem. 246 1638–1643

    Article  CAS  PubMed  Google Scholar 

  • Wedding RT, Black MK and Pap D 1976 Malate dehydrogenase and NAD malic enzyme in the oxidation of malate by sweet potato mitochondria. Plant Physiol. 58 740–743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan H, Cheung CM, Poolman MG, et al. 2016 A genome-scale metabolic network reconstruction of tomato (Solanum lycopersicum L.) and its application to photorespiratory metabolism. Plant J. 85 289–304

    Article  CAS  PubMed  Google Scholar 

  • Zoglowek C, Kromer S and Heldt HW 1988 Oxaloacetate and malate transport by plant mitochondria. Plant Physiol. 87 109–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudip Kundu.

Additional information

Corresponding editor: Agepati Raghavendra

This article is part of the Topical Collection: Plant Mitochondria: Properties and Interactions with Other Organelles.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, D., Kundu, S. Systems biology of plant metabolic interactions. J Biosci 49, 56 (2024). https://doi.org/10.1007/s12038-023-00416-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12038-023-00416-5

Keywords

Navigation