Skip to main content

Advertisement

Log in

Flexible change and cooperation between mitochondrial electron transport and cytosolic glycolysis as the basis for chilling tolerance in tomato plants

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

To find if cytosolic glycolysis dynamical metabolism plays a role in mediating respiration homeostasis and its relationship with mitochondrial electron transport chain (miETC) flexibility, we selected two tomato genotypes that differ in chilling tolerance and compared the responses of miETC, cytosolic glycolysis and respiratory homeostasis at 7 °C. Our results showed that the transcripts of both classical and bypass component genes for miETC and glycolysis were comparable for both genotypes when grown at 25 °C. However, there was a rapid global increase in the expression of most respiratory genes in response to chilling at 7 °C for both genotypes. When normally grown plant was set as the control for each genotype, the transcripts of most COX family members, ATP synthase, AOX1b, and UCP are highly up-regulated in chilling-tolerant Zhefen No. 208 plants in contrast to the sensitive Zhefen No. 212 plants. Both genotypes mobilized the energy-saving sucrose synthase pathway for sucrose degradation by cytosolic glycolysis, but this mechanism is evidently more effective in tolerant Zhefen No. 208 plants. Furthermore, only Zhefen No. 208 plants were able to partially switch from low-energy efficiency pathways to ATP conserving pathways to carry out fructose-6-phosphate conversion and pyruvate production. This metabolic flexibility in miETC and cytosolic glycolysis were coupled to higher ATP synthesis and lower ROS accumulation, which may be essential for sustaining the higher leaf respiration and homeostasis of chilling-tolerant plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AOX:

Alternative oxidase

ATP-PFK:

ATP-dependent phosphofructokinase

CN:

Cyanide

COX:

Cytochrome c oxidase

DAB:

3,3′-diaminobenzidine

Fru-1,6-P2 :

Fructose 1,6-bisphosphate

Fru-6-P:

Fructose-6-phosphate

MDA:

Malonaldehyde

miETC:

Mitochondrial electron transport chain

NBT:

Nitroblue tetrazolium

NDH:

NAD(P)H dehydrogenases

PEP:

Phosphoenolpyruvate

PPi-PFK:

PPi-dependent phosphofructokinase

PPDK:

Pyruvate, orthophosphate dikinase

PK:

Pyruvate kinase

PPi:

Pyrophosphate

ROS:

Reactive oxygen species

SHAM:

Salicylhydroxamic acid

SuSy:

Sucrose synthase

UCP:

Uncoupling protein

UQ:

Ubiquinone

References

  • Armstrong AF, Logan DC, Tobin AK, O’Toole P, Atkin OK (2006) Heterogeneity of plant mitochondrial responses underpinning respiratory acclimation to the cold in Arabidopsis thaliana leaves. Plant Cell Environ 29:940–949

    Article  PubMed  Google Scholar 

  • Armstrong AF, Badger MR, Day DA, Barthet MM, Smith PMC, Millar AH, Whelan J, Atkin OK (2008) Dynamic changes in the mitochondrial electron transport chain underpinning cold acclimation of leaf respiration. Plant Cell Environ 31:1156–1169

    Article  PubMed  CAS  Google Scholar 

  • Atkin OK, Edwards EJ, Loveys BR (2000) Response of root respiration to changes in temperature and its relevance to global warming. New Phytol 147:141–154

    Article  CAS  Google Scholar 

  • Atkin OK, Scheurwater I, Pons TL (2006) High thermal acclimation potential of both photosynthesis and respiration in two lowland Plantago species in contrast to an alpine congeneric. Global Change Biol 12:500–515

    Article  Google Scholar 

  • Borsani J, Budde CO, Porrini L, Lauxmann MA, Lombardo VA, Murray R, Andreo CS, Drincovich MF, Lara MV (2009) Carbon metabolism of peach fruit after harvest: changes in enzymes involved in organic acid and sugar level modifications. J Exp Bot 60:1823–1837

    Article  PubMed  CAS  Google Scholar 

  • Brandalise M, Maia IG, Borecky J, Vercesi AE, Arruda P (2003) Overexpression of plant uncoupling mitochondrial protein in transgenic tobacco increases tolerance to oxidative stress. J Bioenerg Biomembr 35:203–209

    Article  PubMed  CAS  Google Scholar 

  • Clifton R, Lister R, Parker KL, Sappl PG, Elhafez D, Millar AH, Day DA, Whelan J (2005) Stress-induced co-expression of alternative respiratory chain components in Arabidopsis thaliana. Plant Mol Biol 58:193–212

    Article  PubMed  CAS  Google Scholar 

  • Dordas C, Hasinoff BB, Igamberdiev AU, Manac’h N, Rivoal J, Hill RD (2003) Expression of a stress-induced hemoglobin affects NO levels produced by alfalfa root cultures under hypoxic stress. Plant J 35:763–770

    Article  PubMed  CAS  Google Scholar 

  • Dunn MA, White AJ, Vural S, Hughes MA (1998) Identification of promoter elements in a low-temperature-responsive gene (blt4.9) from barley (Hordeum vulgare L.). Plant Mol Biol 38:551–564

    Article  PubMed  CAS  Google Scholar 

  • Edwards J, ap Rees T, Wilson PM, Morrell S (1984) Measurement of the inorganic pyrophosphate in tissues of Pisum sativum L. Planta 162:188–191

    Article  CAS  Google Scholar 

  • Elstner EF, Oswald W (1994) Mechanisms of oxygen activation during plant stress. In: Crawford RMM, Hendry GAF, Goodman BA (eds) Oxygen and environmental stress in plants, vol 102B. Royal Society of Edinburgh, Edinburgh, pp 131–154

  • Escobar MA, Geisler DA, Rasmusson AG (2006) Reorganization of the alternative pathways of the Arabidopsis respiratory chain by nitrogen supply: opposing effects of ammonium and nitrate. Plant J 45:775–788

    Article  PubMed  CAS  Google Scholar 

  • Fernie AR, Carrari F, Sweetlove LJ (2004) Respiratory metabolism: glycolysis, the TCA cycle and mitochondrial electron transport. Curr Opin Plant Biol 7:254–261

    Article  PubMed  CAS  Google Scholar 

  • Finnegan PM, Soole KL, Umbach AL (2004) Alternative mitochondrial electron transport proteins in higher plants. In: Day DA, Millar AH, Whelan J (eds) Plant mitochondria: from gene to function. Advances in photosynthesis and respiration, vol 17. Kluwer, Dordrecht, pp 163–230

  • Florez-Sarasa I, Flexas J, Rasmusson AG, Umbach AL, Siedow JN, Ribas-Carbo M (2011) In vivo cytochrome and alternative pathway respiration in leaves of Arabidopsis thaliana plants with altered alternative oxidase under different light conditions. Plant Cell Environ 34:1373–1383

    Article  PubMed  CAS  Google Scholar 

  • Fu LJ, Shi K, Gu M, Zhou YH, Dong DK, Liang WS, Song FM, Yu JQ (2010) Systemic induction and role of mitochondrial alternative oxidase and nitric oxide in a compatible tomato-tobacco mosaic virus interaction. Mol Plant Microbe Interact 23:39–48

    Article  PubMed  Google Scholar 

  • Guglielminetti L, Perata P, Alpi A (1995) Effect of anoxia on carbohydrate metabolism in rice seedlings. Plant Physiol 108:735–741

    PubMed  CAS  Google Scholar 

  • Hodges DM, DeLong JM, Forney CF, Prange RK (1999) Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207:604–611

    Article  CAS  Google Scholar 

  • Holtzapffel RC, Castelli J, Finnegan PM, Millar AH, Whelan J, Day DA (2003) A tomato alternative oxidase protein with altered regulatory properties. BBA-Bioenerg 1606:153–162

    Article  CAS  Google Scholar 

  • Huang SB, Colmer TD, Millar AH (2008) Does anoxia tolerance involve altering the energy currency towards PPi? Trends Plant Sci 13:221–227

    Article  PubMed  CAS  Google Scholar 

  • Jabs T, Dietrich RA, Dangl JL (1996) Initiation of runaway cell death in an Arabidopsis mutant by extracellular superoxide. Science 273:1853–1856

    Article  PubMed  CAS  Google Scholar 

  • Kerscher SJ (2000) Diversity and origin of alternative NADH: ubiquinone oxidoreductases. BBA-Bioenerg 1459:274–283

    Article  CAS  Google Scholar 

  • Knowles NR, Knowles LO (1989) Correlations between electrolyte leakage and degree of saturation of polar lipids from aged potato (Solanum tuberosum L.) tuber tissue. Ann Bot 63:331–338

    Google Scholar 

  • Kowaltowski AJ, Costa AD, Vercesi AE (1998) Activation of the potato plant uncoupling mitochondrial protein inhibits reactive oxygen species generation by the respiratory chain. FEBS Lett 425:213–216

    Article  PubMed  CAS  Google Scholar 

  • Kurimoto K, Day DA, Lambers H, Noguchi K (2004a) Effect of respiratory homeostasis on plant growth in cultivars of wheat and rice. Plant Cell Environ 27:853–862

    Article  Google Scholar 

  • Kurimoto K, Millar AH, Lambers H, Day DA, Noguchi K (2004b) Maintenance of growth rate at low temperature in rice and wheat cultivars with a high degree of respiratory homeostasis is associated with a high efficiency of respiratory ATP production. Plant Cell Physiol 45:1015–1022

    Article  PubMed  CAS  Google Scholar 

  • Liao YWK, Shi K, Fu LJ, Zhang S, Li X, Jiang YP, Zhou YH, Xia XJ, Liang WS, Yu JQ (2012) The reduction of reactive oxygen species formation by mitochondrial alternative respiration in tomato basal defense against TMV infection. Planta 235:225–238

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the \( 2^{{ - \Updelta \Updelta C_{T} }} \) method. Methods 25:402–408

  • Maia IG, Benedetti CE, Leite A, Turcinelli SR, Vercesi AE, Arruda P (1998) AtPUMP: an Arabidopsis gene encoding a plant uncoupling mitochondrial protein. FEBS Lett 429:403–406

    Article  PubMed  CAS  Google Scholar 

  • Matos AR, Hourton-Cabassa C, Cicek D, Reze N, Arrabaca JD, Zachowski A, Moreau F (2007) Alternative oxidase involvement in cold stress response of Arabidopsis thaliana fad2 and FAD3+ cell suspensions altered in membrane lipid composition. Plant Cell Physiol 48:856–865

    Article  PubMed  CAS  Google Scholar 

  • Maxwell DP, Wang Y, McIntosh L (1999) The alternative oxidase lowers mitochondrial reactive oxygen production in plant cells. Proc Natl Acad Sci USA 96:8271–8276

    Article  PubMed  CAS  Google Scholar 

  • Mertens E (1991) Pyrophosphate-dependent phosphofructokinase, an anaerobic glycolytic enzyme? FEBS Lett 285:1–5

    Article  PubMed  CAS  Google Scholar 

  • Millar AH, Whelan J, Soole KL, Day DA (2011) Organization and regulation of mitochondrial respiration in plants. Annu Rev Plant Biol 62:79–104

    Article  PubMed  CAS  Google Scholar 

  • Millenaar FF, Gonzalez-Meler MA, Siedow JN, Wagner AM, Lambers H (2002) Role of sugars and organic acids in regulating the concentration and activity of the alternative oxidase in Poa annua roots. J Exp Bot 53:1081–1088

    Article  PubMed  CAS  Google Scholar 

  • Mutuku JM, Nose A (2012) Changes in the contents of metabolites and enzyme activities in rice plants responding to Rhizoctonia solani Kuhn infection: activation of glycolysis and connection to phenylpropanoid pathway. Plant Cell Physiol 53:1017–1032

    Article  PubMed  CAS  Google Scholar 

  • Nogueira FTS, Sassaki FT, Maia IG (2011) Arabidopsis thaliana uncoupling proteins (AtUCPs): insights into gene expression during development and stress response and epigenetic regulation. J Bioenerg Biomembr 43:71–79

    Article  PubMed  CAS  Google Scholar 

  • Okuda T, Matsuda Y, Yamanaka A, Sagisaka S (1991) Abrupt increase in the level of hydrogen peroxide in leaves of winter wheat is caused by cold treatment. Plant Physiol 97:1265–1267

    Article  PubMed  CAS  Google Scholar 

  • Plaxton WC (1996) The organization and regulation of plant glycolysis. Annu Rev Plant Physiol Plant Mol Biol 47:185–214

    Article  PubMed  CAS  Google Scholar 

  • Plaxton WC, Podesta FE (2006) The functional organization and control of plant respiration. Crit Rev Plant Sci 25:159–198

    Article  CAS  Google Scholar 

  • Purvis AC, Shewfelt RL (1993) Does the alternative pathway ameliorate chilling injury in sensitive plant-tissues. Physiol Plant 88:712–718

    Article  CAS  Google Scholar 

  • Rasmusson AG, Escobar MA (2007) Light and diurnal regulation of plant respiratory gene expression. Physiol Plant 129:57–67

    Article  CAS  Google Scholar 

  • Rasmusson AG, Soole KL, Elthon TE (2004) Alternative NAD(P)H dehydrogenases of plant mitochondria. Annu Rev Plant Biol 55:23–39

    Article  PubMed  CAS  Google Scholar 

  • Sweetlove LJ, Lytovchenko A, Morgan M, Nunes-Nesi A, Taylor NL, Baxter CJ, Eickmeier I, Fernie AR (2006) Mitochondrial uncoupling protein is required for efficient photosynthesis. Proc Natl Acad Sci USA 103:19587–19592

    Article  PubMed  CAS  Google Scholar 

  • Thordal-Christensen H, Zhang ZG, Wei YD, Collinge DB (1997) Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. Plant J 11:1187–1194

    Article  CAS  Google Scholar 

  • Vercesi AE, Borecky J, Godoy Maia ID, Arruda P, Cuccovia IM, Chaimovich H (2006) Plant uncoupling mitochondrial proteins. Annu Rev Plant Biol 57:383–404

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Rajakulendran N, Amirsadeghi S, Vanlerberghe GC (2011) Impact of mitochondrial alternative oxidase expression on the response of Nicotiana tabacum to cold temperature. Physiol Plant 142:339–351

    Article  PubMed  CAS  Google Scholar 

  • Watanabe CK, Hachiya T, Terashima I, Noguchi K (2008) The lack of alternative oxidase at low temperature leads to a disruption of the balance in carbon and nitrogen metabolism, and to an up-regulation of antioxidant defence systems in Arabidopsis thaliana leaves. Plant, Cell Environ 31:1190–1202

    Article  CAS  Google Scholar 

  • Willekens H, Chamnongpol S, Davey M, Schraudner M, Langebartels C, Van Montagu M, Inze D, Van Camp W (1997) Catalase is a sink for H2O2 and is indispensable for stress defence in C3 plants. EMBO J 16:4806–4816

    Article  PubMed  CAS  Google Scholar 

  • Xia XJ, Wang YJ, Zhou YH, Tao Y, Mao WH, Shi K, Asami T, Chen Z, Yu JQ (2009) Reactive oxygen species are involved in brassinosteroid-induced stress tolerance in cucumber. Plant Physiol 150:801–814

    Article  PubMed  CAS  Google Scholar 

  • Yamori W, Noguchi K, Hikosaka K, Terashima I (2009) Cold-tolerant crop species have greater temperature homeostasis of leaf respiration and photosynthesis than cold-sensitive species. Plant Cell Physiol 50:203–215

    Article  PubMed  CAS  Google Scholar 

  • Zeng Y, Wu Y, Avigne WT, Koch KE (1998) Differential regulation of sugar-sensitive sucrose syntheses by hypoxia and anoxia indicate complementary transcriptional and post-transcriptional responses. Plant Physiol 116:1573–1583

    Article  PubMed  CAS  Google Scholar 

  • Zhang XX, Liu SK, Takano T (2008) Overexpression of a mitochondrial ATP synthase small subunit gene (AtMtATP6) confers tolerance to several abiotic stresses in Saccharomyces cerevisiae and Arabidopsis thaliana. Biotechnol Lett 30:1289–1294

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Prof. Gong-Yin Ye and Hong-Wei Yao of Zhejiang University for competent help in ATP content analysis. We thank Dr. Miaoying Tian of Cornell University for her critical reading of the manuscript. This work was supported by the National Basic Research Program of China (2009CB119000), the National Natural Science Foundation of China (31071832), the National Key Technology R&D Program of China (2011BAD12B04) and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Shi.

Additional information

A contribution to the Special Issue on Evolution and Biogenesis of Chloroplasts and Mitochondria.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Table S1: Primers used for real time RT-PCR assays (DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, K., Fu, LJ., Zhang, S. et al. Flexible change and cooperation between mitochondrial electron transport and cytosolic glycolysis as the basis for chilling tolerance in tomato plants. Planta 237, 589–601 (2013). https://doi.org/10.1007/s00425-012-1799-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-012-1799-3

Keywords

Navigation