Skip to main content
Log in

The involvement of peroxidases in soybean seedlings’ defense against infestation of cowpea aphid

  • Original Paper
  • Published:
Arthropod-Plant Interactions Aims and scope Submit manuscript

Abstract

Changes in the level of hydrogen peroxide (H2O2) and activity of peroxidases towards phenolic substrates (EC 1.11.1.7) such as pyrogallol (PPX), syringaldazine (SPX) and guaiacol (GPX), and cytosolic ascorbate peroxidase (cAPX, EC 1.11.1.11) in response to infestation of cowpea aphid (Aphis craccivora Koch) were analyzed in soybean (Glycine max (L.) Merr. cv. “Nam Dan”) at the V3 stage (first two trifoliate leaves fully developed, third trifoliate leaf unrolled) for 96 h post-infestation (hpi). Influence of A. craccivora at a varied population size (10, 20 and 30 individuals per each soybean plant) caused a burst of H2O2 generation in the aphid-infested leaves at 12 hpi. Paralleling the H2O2 accumulation, peroxidase activity in all the infested plants remarkably increased and was significantly higher than that observed in controls (uninfested plants). The cascade of enzymes induced was continuously overlapped by the early enhancement of SPX within 6–24 hpi, an expression of cAPX (12–48 hpi) followed by an accumulation of GPX (24–72 hpi) and PPX (24–96 hpi). The differential induction of SPX, GPX, PPX and cAPX resulted in a rapid reduction of H2O2 content in aphid-infested leaves, and the activity of peroxidase was closely correlated with the intensity of A. craccivora infestation around the defined points of time at which the activity of each enzyme reached the maximum level. The increase in activity of peroxidases matched their function as controlling accumulation of H2O2 and detoxifying this reactive oxygen product when soybean plants were challenged with cowpea aphid. Furthermore, peroxidases could directly deter cowpea aphid feeding through other functions such as the anti-nutritive and/or toxicological defenses and/or limiting the penetration of aphid stylets into plant tissues via participating to strengthen and reinforce the cell wall barrier. These results indicated that peroxidases may be some elements of the defense system that increased the resistance of G. max cv. “Nam Dan” to infestation of A. craccivora.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

cAPX:

Cytosolic ascorbate peroxidase

FW:

Fresh weight

GPX:

Guaiacol peroxidase

H2O2 :

Hydrogen peroxide

hpi:

Hours post infestation

nkat:

Nanokatal

PPX:

Pyrogallol peroxidase

SPX:

Syringaldazine peroxidase

References

  • Agrawal GK, Jwa NS, Iwahashi H, Rakwal R (2003) Importance of ascorbate peroxidases OsAPX1 and OsAPX2 in the rice pathogen response pathways and growth and reproduction revealed by their transcriptional profiling. Gene 322:93–103

    Article  CAS  PubMed  Google Scholar 

  • Ahmad P, Sarwat M, Sharma S (2008) Reactive oxygen species, antioxidants and signalling in plants. J Plant Biol 51:167–173

    Article  CAS  Google Scholar 

  • Allison SD, Schultz JC (2004) Differential activity of peroxidase isozymes in response to wounding, gypsy moth and plant hormones in northern red oak (Quercus rubra L.). J Chem Ecol 30:1363–1379

    Article  CAS  PubMed  Google Scholar 

  • Almagro L, Gmez-Ros LV, Belchi-Navarro S, Bru R, Barcelo-Ros A, Pedreno MA (2009) Class III peroxidases in plant defense reactions. J Exp Bot 60:377–390

    Article  CAS  PubMed  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Argandona VH, Chaman M, Cardemil L, Munoz O, Zuniga GE, Corcuera LJ (2001) Ethylene production and peroxidase activity in aphid-infested barley. J Chem Ecol 27:53–68

    Article  CAS  PubMed  Google Scholar 

  • Becana M, Aparicio-Tejo P, Irigoyen JJ, Sanchez-Diaz M (1986) Some enzymes of hydrogen peroxide metabolism in leaves and root nodules of Medicago sativa. Plant Physiol 82:1169–1171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bóka K, Orbán N, Kristóf Z (2007) Dynamics and localization of H2O2 production in elicited plant cells. Protoplasma 230:89–97

    Article  PubMed  Google Scholar 

  • Bonifacio A, Martins MO, Ribeiro CW, Fontenele AV, Carvalho FE, Margis-Pinheiro M, Silveira JA (2011) Role of peroxidases in the compensation of cytosolic ascorbate peroxidase knockdown in rice plants under abiotic stress. Plant, Cell Environ 34:1705–1722

    Article  CAS  Google Scholar 

  • Boyko EV, Smith CM, Thara VK, Bruno JM, Deng Y, Starkey SR, Klaahsen DL (2006) The molecular basis of plant gene expression during aphid invasion: wheat Pto- and Pti-like sequences are involved in interactions between wheat and Russian wheat aphid (Homoptera: Aphididae). J Econ Entomol 99:1430–1445

    Article  CAS  PubMed  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Caverzan A, Passaia G, Rosa SB, Ribeiro CW, Lazzarotto F, Margis-Pinheiro M (2012) Plant responses to stresses: role of ascorbate peroxidase in the antioxidant protection. Genet Mol Biol 35:1011–1019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaman ME, Corcuera LJ, Zuniga GE, Cardemil L, Argandona VH (2001) Induction of soluble and cell wall peroxidases by aphid infestation in barley. J Agric Food Chem 49:2249–2253

    Article  CAS  PubMed  Google Scholar 

  • Desikan R, Hancock J, Neil S (2005) Reactive oxygen species as signalling molecules. In: Smirnoff N (ed) Antioxidants and reactive oxygen species in plants. Blackwell, Oxford, pp 169–196

    Google Scholar 

  • Divol F, Vilaine F, Thibivilliers S, Amselem J, Palauqui JC, Kusiak C, Dinant S (2005) Systemic response to aphid infestation by Myzus persicae in the phloem of Apium graveolens. Plant Mol Biol 57:517–540

    Article  CAS  PubMed  Google Scholar 

  • Duffey SS, Stout MJ (1996) Anutritive and toxic compounds of plant defense against insects. Arch Insect Biochem Physiol 32:3–37

    Article  CAS  Google Scholar 

  • Felton GW, Donato RJ, Vecchio D, Duffey SS (1989) Activation of plant foliar oxidases by insect feeding reduces nutritive quality of foliage for noctuid herbivores. J Chem Ecol 15:2667–2694

    Article  CAS  PubMed  Google Scholar 

  • Felton GW, Summers CB, Mueller AJ (1994) Oxidative responses in soybean foliage to herbivory by bean leaf beetle and three-cornered alfalfa leafhopper. J Chem Ecol 20:639–650

    Article  CAS  PubMed  Google Scholar 

  • Fincher GB, Stone BA (1986) Cells walls and their components in cereal grain technology. Adv Cereal Sci Technol 8:207–295

    CAS  Google Scholar 

  • Franzen LD, Gutsche AR, Heng-Moss TM, Higley LG, Sarath G, Burd JD (2007) Physiological and biochemical responses of resistant and susceptible wheat to injury by Russian wheat aphid. J Econ Entomol 100:1692–1703

    Article  CAS  PubMed  Google Scholar 

  • Fryer MJ, Ball L, Oxborough K, Karpinski S, Mullineaux PM, Baker NR (2003) Control of ascorbate peroxidase 2 expression by hydrogen peroxide and leaf water status during excess light stress reveals a functional organisation of Arabidopsis leaves. Plant J 33:691–705

    Article  CAS  PubMed  Google Scholar 

  • Gulsen O, Eickhoff T, Heng-Moss TM, Shearman R, Baxendale F, Sarath G, Lee D (2010) Characterization of peroxidase changes in resistant and susceptible warm-season turfgrasses challenged by Blissus occiduus. Arthropod Plant Interact 4:45–55

    Article  Google Scholar 

  • Gutsche A, Heng-Moss TM, Sarath G, Twigg P, Xia Y, Lu G, Mornhinweg D (2009) Gene expression profiling of tolerant barley in response to Diuraphis noxia (Hemiptera: Aphididae) feeding. J Entomol Res 99:163–173

    Article  CAS  Google Scholar 

  • Heng-Moss TM, Sarath G, Baxendale F, Novak D, Bose S, Xinhi N, Quisenberry S (2004) Characterization of oxidative enzyme changes in buffalograss challenged by Blissus occiduus. J Econ Entomol 97:1086–1095

    Article  CAS  PubMed  Google Scholar 

  • Heng-Moss TM, Macedo T, Franzen L, Baxendale F, Higley L, Sarath G (2006) Physiological responses of resistant and susceptible buffalograsses to Blissus occiduus (Hempitera: Blissidae) feeding. J Econ Entomol 99:222–228

    Article  CAS  PubMed  Google Scholar 

  • Hildebrand DF, Rodriguez JG, Brown GC, Luu KT, Volden CS (1986) Peroxidative responses of leaves in two soybean genotypes injured by twospotted spider mites (Acari: Tetranychidae). J Econ Entomol 79:1459–1465

    Article  Google Scholar 

  • Hiraga S, Sasaki K, Ito H, Ohashi Y, Matsui H (2001) A large family of class III peroxidases. Plant Cell Physiol 42:462–468

    Article  CAS  PubMed  Google Scholar 

  • Imberty A, Goldberg R, Catessoen AM (1985) Isolation and characterization of Populus isoperoxidases involved in the last step of lignin formation. Planta 164:221–226

    Article  CAS  PubMed  Google Scholar 

  • Koksal E (2011) Peroxidase from leaves of spinach (Spinacia oleracea): partial purification and some biochemical properties. Int J Pharmacol 7:135–139

    Article  CAS  Google Scholar 

  • Kuśnierczyk A, Winge P, Jørstad TM, Troczyńska J, Rossiter JT, Bones AM (2008) Towards global understanding of plant defence against aphids-timing and dynamics of early Arabidopsis defence responses to cabbage aphid (Brevicoryne brassicae) attack. Plant Cell Environt 31:1097–1115

    Article  Google Scholar 

  • Lee GJ, Wu X, Shannon JG, Sleper DA, Nguyen HT (2007) Soybean. In: Kole C (ed) Genome mapping and molecular breeding in plants, vol 2., OilseedsSpringer, Berlin, pp 1–53

    Google Scholar 

  • Maehly AC, Chance B (1954) The assay of catalase and peroxidase. In: Glick D (ed) Methods of biochemical analysis. Interscience, New York, pp 357–425

    Chapter  Google Scholar 

  • Maffei ME, Mithöfer A, Boland W (2007) Insects feeding on plants: rapid signals and responses preceding the induction of phytochemical release. Phytochemistry 68:2946–2959

    Article  CAS  PubMed  Google Scholar 

  • Mai VC, Bednarsi W, Borowiak-Sobkowiak B, Wilkaniec B, Samardakiewicz S, Morkunas I (2013) Oxidative stress in pea seedling leaves in response to Acyrthosiphon pisum infestation. Phytochemistry 93:49–62

    Article  CAS  PubMed  Google Scholar 

  • Marchi-Werle L, Heng-Moss TM, Hunt TE, Baldin ELL, Baird LM (2014) Characterization of peroxidase changes in tolerant and susceptible soybeans challenged by soybean aphid (Hemiptera: Aphididae). J Econ Entomol 107(5):1985–1991

    Article  CAS  PubMed  Google Scholar 

  • Menezes-Benavente L, Teixeira FK, Kamei CLA, Margis-Pinheiro M (2004) Salt stress induces altered expression of genes encoding antioxidant enzymes in seedlings of a Brazilian indica rice (Oryza sativa L.). Plant Sci 166:323–331

    Article  CAS  Google Scholar 

  • Moloi MJ, van der Westhuizen AJ (2006) The reactive oxygen species are involved in resistance responses of wheat to the Russian wheat aphid. J Plant Physiol 163:1118–1125

    Article  CAS  PubMed  Google Scholar 

  • Moran PJ, Cheng Y, Cassell JL, Thompson GA (2002) Gene expression profiling of Arabidopsis thaliana in compatible plant-aphid interactions. Arch Insect Biochem Physiol 51:182–203

    Article  CAS  PubMed  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Ni X, Quisenberry SS, Heng-Moss TM, Markwell J, Sarath G, Klucas R, Baxendale F (2001) Oxidative responses of resistant and susceptible cereal leaves to symptomatic and nonsymptomatic cereal aphid (Hemiptera: Aphididae) feeding. J Econ Entomol 94:743–751

    Article  CAS  PubMed  Google Scholar 

  • Passardi F, Cosio C, Penel C, Dunand C (2005) Peroxidases have more functions than a Swiss army knife. Plant Cell Rep 24:255–265

    Article  CAS  PubMed  Google Scholar 

  • Pierson LM, Heng-Moss TM, Hunt TE, Reese J (2011) Physiological responses of resistant and susceptible reproductive stage soybean to soybean aphid (Aphis glycines Matsumura) feeding. Arthropod Plant Interact 5:49–58

    Article  Google Scholar 

  • Pirone TP, Blanc S (1996) Helper-dependent vector transmission of plant viruses. Annu Rev Phytopathol 34:227–247

    Article  CAS  PubMed  Google Scholar 

  • Prochaska TJ (2011) Characterization of the tolerance response in the soybean KS4202 to Aphis glycines Matsumura. MSc. thesis, University of Nebraska, Lincoln, NE

  • Prochaska TJ, Pierson LM, Baldin ELL, Hunt TE, Heng-Moss TM, Reese JC (2013) Evaluation of late vegetative and reproductive stage soybeans for resistance to soybean aphid (Hemiptera: Aphididae). J Econ Entomol 106(2):1036–1044

    Article  CAS  PubMed  Google Scholar 

  • Radville L, Chaves A, Preisser EL (2011) Variation in plant defense against invasive herbivores: evidence for a hypersensitive response in Eastern Hemlocks (Tsuga canadensis). J Chem Ecol 37:592–597

    Article  CAS  PubMed  Google Scholar 

  • Schenk PM, Kazan K, Wilson I, Anderson JP, Richmond T, Somerville SC, Manners JM (2000) Coordinated plant defense responses in Arabidopsis revealed by cDNA microarray analysis. PNAS USA 97:11655–11660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sorensen JT (2003) Aphid. In: Resh VH, Cardé RT (eds) Encyclopedia of insects. Academic Press, pp 32–37

  • Stout MJ, Fidantsef AL, Duffey SS, Bostock RM (1999) Signal interactions in pathogen and insect attack: systemic plant-mediated interactions between pathogens and herbivores of the tomato, Lycopersicon esculentum. Physiol Mol Plant Pathol 54:115–130

    Article  CAS  Google Scholar 

  • Takeda T, Yoshimura K, Yoshii M, Kanahoshi H, Miyasaka H, Shigeoka S (2000) Molecular characterization and physiological role of ascorbate peroxidase from halotolerant Chlamydomonas sp. W80 strain. Arch Biochem Biophys 376:82–90

    Article  CAS  PubMed  Google Scholar 

  • Thompson GA, Goggin FL (2006) Transcriptomics and functional genomics of plant defense induction by phloem-feeding insects. J Exp Bot 57:755–766

    Article  CAS  PubMed  Google Scholar 

  • Tjallingii WF, Hogen Esch T (1993) Fine-structure of aphid stylet routes in plant-tissues in correlation with EPG signals. Physiol Entomol 18:317–328

    Article  Google Scholar 

  • Tuteja N, Mahajan S (2007) Calcium signaling network in plants. An overview. Plant Signal Behav 2(2):79–85

    Article  PubMed  PubMed Central  Google Scholar 

  • Velikova V, Yardanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Sci 151:59–66

    Article  CAS  Google Scholar 

  • Wang J, Zhang H, Allen RD (1999) Overexpression of an Arabidopsis peroxisomal ascorbate peroxidase gene in tobacco increases protection against oxidative stress. Plant Cell Physiol 40(7):725–732

    Article  CAS  PubMed  Google Scholar 

  • Zhu-Salzman K, Salmon RA, Ahn J-E, Koiwa H (2004) Transcriptional regulation of sorghum defense determinants against a phloem-feeding aphid. Plant Physiol 134:420–431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant no. 106-NN.03-2014.22.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Van Chung Mai.

Additional information

Handling Editor: Joe Louis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mai, V.C., Tran, N.T. & Nguyen, D.S. The involvement of peroxidases in soybean seedlings’ defense against infestation of cowpea aphid. Arthropod-Plant Interactions 10, 283–292 (2016). https://doi.org/10.1007/s11829-016-9424-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11829-016-9424-1

Keywords

Navigation