Skip to main content
Log in

Variation in Plant Defense against Invasive Herbivores: Evidence for a Hypersensitive Response in Eastern Hemlocks (Tsuga canadensis)

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Herbivores can trigger a wide array of morphological and chemical changes in their host plants. Feeding by some insects induces a defensive hypersensitive response, a defense mechanism consisting of elevated H2O2 levels and tissue death at the site of herbivore feeding. The invasive hemlock woolly adelgid Adelges tsugae (‘HWA’) and elongate hemlock scale Fiorinia externa (‘EHS’) feed on eastern hemlocks; although both are sessile sap feeders, HWA causes more damage than EHS. The rapid rate of tree death following HWA infestation has led to the suggestion that feeding induces a hypersensitive response in hemlock trees. We assessed the potential for an herbivore-induced hypersensitive response in eastern hemlocks by measuring H2O2 levels in foliage from HWA-infested, EHS-infested, and uninfested trees. Needles with settled HWA or EHS had higher H2O2 levels than control needles, suggesting a localized hypersensitive plant response. Needles with no direct contact to settled HWA also had high H2O2 levels, suggesting that HWA infestation may induce a systemic defense response in eastern hemlocks. There was no similar systemic defensive response in the EHS treatment. Our results showed that two herbivores in the same feeding guild had dramatically different outcomes on the health of their shared host.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alborn, H. T., Röse, U. S. R., and Mcauslane, H. J. 1996. Systemic induction of feeding deterrents in cotton plants by feeding of Spodoptera SPP Larvae. J. Chem. Ecol. 22:919–932.

    Article  CAS  Google Scholar 

  • Alvarez, M. A. E., Pennell, R. I., Meijer, P.-J., Ishikawa, A., Dixon, R. A., and Lamb, C. 1998. Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity. Cell 92:773–784.

    Article  PubMed  CAS  Google Scholar 

  • Bezemer, T. M., Wagenaar, R., Van Dam, N. M., and Wäckers, F. L. 2003. Interactions between above- and belowground insect herbivores as mediated by the plant defense system. Oikos 101:555–562.

    Article  Google Scholar 

  • Bi, J., and Felton, G. 1995. Foliar oxidative stress and insect herbivory: Primary compounds, secondary metabolites, and reactive oxygen species as components of induced resistance. J. Chem. Ecol. 21:1511–1530.

    Article  CAS  Google Scholar 

  • Bonello, P., Gordon, T. R., Herms, D. A., Wood, D. L., and Erbilgin, N. 2006. Nature and ecological implications of pathogen-induced systemic resistance in conifers: A novel hypothesis. Physiolog. Molec. Plant Pathol. 68:95–104.

    Article  CAS  Google Scholar 

  • Butin, E., Preisser, E., and Elkinton, J. 2007. Factors affecting settlement rate of the hemlock woolly adelgid, Adelges tsugae, on eastern hemlock, Tsuga canadensis. Agri. Forest Entomol. 9:215–219.

    Article  Google Scholar 

  • Denno, R., Mcclure, M., and Ott, J. 1995. Interspecific interactions in phytophagous insects: competition reexamined and resurrected. Annu. Rev. Entomol. 40:297–331.

    Article  CAS  Google Scholar 

  • Fernandes, G. 1990. Hypersensitivity: a neglected plant resistance mechanism against insect herbivores. Environmen. Entomol 19:1173–1182.

    Google Scholar 

  • Fernandes, G., and Negreiros, D. 2001. The occurrence and effectiveness of hypersensitive reaction against galling herbivores across host taxa. Ecolog. Entomol. 26:46–55.

    Article  Google Scholar 

  • Gómez, S., Ferrieri, R. A., Schueller, M., and Orians, C. M. 2010. Methyl jasmonate elicits rapid changes in carbon and nitrogen dynamics in tomato. New Phytol. 188:835–844.

    Article  PubMed  Google Scholar 

  • Heath, M. C. 2000. Hypersensitive response-related death. Plant Molec. Biol. 44:321–334.

    Article  CAS  Google Scholar 

  • Karban, R. 1989. Community organization of Erigeron glaucus folivores: effects of competition, predation, and host plant. Ecology 70:1028–1039.

    Article  Google Scholar 

  • Karban, R. 1990. Herbivore outbreaks on only young trees: testing hypotheses about aging and induced resistance. Oikos 59:27–32.

    Article  Google Scholar 

  • Karban, R. and Agrawal, A. A. 2002. Herbivore offense. Annu. Rev.Ecol. System. 33:641–664.

    Article  Google Scholar 

  • Karban, R., and Baldwin, I. T. 1997. Induced Responses to Herbivory. University of Chicago Press, Chicago IL, 319 p.

    Google Scholar 

  • Katagiri, F., Thilmony, R. L., and He, S. Y. 2002. The Arabidopsis thaliana-Pseudomonas syringae interaction, in C. R. S. a. E. M. Meyerowitz (ed.). The Arabidopsis Book. American Society of Plant Biologists, Rockville, MD.

    Google Scholar 

  • Liu, X., Williams, C. E., Nemacheck, J. A., Wang, H., Subramanyam, S., Zheng, C., and Chen, M.-S. 2010. Reactive oxygen species are involved in plant defense against a gall midge. Plant Physiol. 152:985–999.

    Article  PubMed  CAS  Google Scholar 

  • Mcclure, M. 1977. Dispersal of the scale Fiorinia externa (Homoptera: Diaspididae) and effects of edaphic factors on its establishment on hemlock. Environmen. Entomol. 6:539–544.

    Google Scholar 

  • Mcclure, M. 1980. Competition between exotic species: scale insects on hemlock. Ecology 61:1391–1401.

    Article  Google Scholar 

  • Mcclure, M. 1991. Density-dependent feedback and population cycles in Adelges tsugae (Homoptera: Adelgidae) on Tsuga canadensis. Environmen. Entomol. 20:258–264.

    Google Scholar 

  • Miles, P. 1999. Aphid saliva. Biological Rev. 74:41–85.

    Article  Google Scholar 

  • Miller-pierce, M., Orwig, D., and Preisser, E. 2010. Effects of hemlock woolly adelgid and elongate hemlock scale on eastern hemlock growth and foliar chemistry. Environmen. Entomol. 39:513–519.

    Article  Google Scholar 

  • Mooney, H., and Cleland, E. 2001. The evolutionary impact of invasive species. Proc. Natl. Acad. Sci. USA 98:5446–5451.

    Article  PubMed  CAS  Google Scholar 

  • Moore, J. P., Nigel, P. D., Whittaker, J. B., and Taylor, J. E. 2003. Exogenous jasmonic acid mimics herbivore-induced systemic increase in cell wall bound peroxidase activity and Reduction in Leaf Expansion. Funct. Ecol. 17:549–554.

    Article  Google Scholar 

  • Ollerstam, O., and Larsson, S. 2003. Salicylic acid mediates resistance in the willow Salix viminalis against the gall midge Dasineura marginemtorquens. J. Chem. Ecol. 29:163–174.

    Article  PubMed  CAS  Google Scholar 

  • Orozco-cardenas, M., and Ryan, C. A. 1999. Hydrogen peroxide is generated systemically in plant leaves by wounding and systemin via the octadecanoid pathway. Proc. Natl. Acad. Sci. USA 96:6553–6557.

    Article  PubMed  CAS  Google Scholar 

  • Orwig, D. A., Foster, D. R., and Mausel, D. L. 2002. Landscape patterns of hemlock decline in New England due to the introduced hemlock woolly adelgid. J. Biogeog. 29:1475–1487.

    Article  Google Scholar 

  • Preisser, E., and Elkinton, J. 2008. Exploitative competition between invasive herbivores benefits a native host plant. Ecology 89:2671–2677.

    Article  PubMed  Google Scholar 

  • Sakai, A., Allendorf, F., Holt, J., Lodge, D., Molofsky, J., With, K., Baughman, S., Cabin, R., Cohen, J., and Ellstrand, N., et al. 2001. The population biology of invasive species. Annu. Rev.Ecol. System. 32:305–332.

    Article  Google Scholar 

  • Thordal-christensen, H., Zhang, Z., Wei, Y., and Collinge, D. B. 1997. Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley—powdery mildew interaction. The Plant J. 11:1187–1194.

    Article  CAS  Google Scholar 

  • Trumble, J. T., Kolodny-hirsch, D. M., and Ting, I. P. 1993. Plant compensation for arthropod herbivory. Annu. Rev. Entomol. 38:93–119.

    Article  Google Scholar 

  • Young, R., Shields, K., and Berlyn, G. 1995. Hemlock woolly adelgid (Homoptera: Adelgidae): stylet bundle insertion and feeding sites. Annals Entomol. Soc. Am. 88:827–835.

    Google Scholar 

Download references

Acknowledgements

R. Casagrande, S. Gomez, C. Orians, D. Orwig, and two reviewers made helpful comments on previous versions of this manuscript. We thank A. Roberts for suggestions on the development of DAB staining modifications and J. Backer, J. Conover, D. Cox, R. Gaudio, M. Miller-Pierce, and D. Sheerin for assistance with fieldwork. Funding for this work came from an AES Hatch grant and NSF DEB#0715504 to EP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evan L. Preisser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Radville, L., Chaves, A. & Preisser, E.L. Variation in Plant Defense against Invasive Herbivores: Evidence for a Hypersensitive Response in Eastern Hemlocks (Tsuga canadensis). J Chem Ecol 37, 592–597 (2011). https://doi.org/10.1007/s10886-011-9962-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-011-9962-z

Key Words

Navigation