Skip to main content
Log in

Highly efficient plant regeneration via somatic embryogenesis from cell suspension cultures of Boesenbergia rotunda

  • Developmental Biology/Morphogenesis
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

Boesenbergia rotunda is a perennial ginger species rich in flavonoids, flavones, and cyclohexenyl chalcone derivatives. Several of these secondary metabolites have shown promising antiviral and anticancer activities, and thus, it is important to optimize methods for robust production of clonal materials. In this study, cell suspensions were established and their growth capacities were evaluated in liquid media supplemented with varying growth regulator compositions. The highest settled cell volume of 6.1 ± 0.3 ml with a specific growth rate of 0.0892 ± 0.0035 was achieved by maintaining cells in Murashige and Skoog liquid media supplemented with 1.0 mg L−1 of 2,4-dichlorophenoxyacetic acid and 0.5 mg L−1 6-benzyladenine, representing a 12-fold increase in cell volume during the culture period. A somatic embryogenesis rate of 1,433.33 ± 387.84 somatic embryos per milliliter of settled cells was achieved with an inoculation cell density of 50 μl settled cell volume and on growth regulator-free agar plates. Around half (53.5 ± 7.9%) of the somatic embryos germinated into complete plantlets on media supplemented with 3 mg L−1 6-benzyladenine and 1 mg L−1 α-naphthaleneacetic acid. The plantlets were successfully transferred to soil and grown in the greenhouse. Phytochemical profiling via high-performance liquid chromatography analysis revealed that regenerated plantlets retained the capacity to produce and accumulate bioactive compounds. Hence, this protocol will be helpful for metabolic engineering and functional studies of genes and enzymes involved in the biosynthetic pathway of valuable compounds in B. rotunda.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.

Similar content being viewed by others

References

  • Abohatem M.; Zouine J.; El Hadrami I. Low concentrations of BAP and high rate of subcultures improve the establishment and multiplication of somatic embryos in date palm suspension cultures by limiting oxidative browning associated with high levels of total phenols and peroxidase activities. Sci Hort 130: 344–348; 2011.

    Article  CAS  Google Scholar 

  • Bremner P. D.; Meyer J. J. M. Pinocembrin chalcone: antibacterial compound from Helichrysum trilineatum. Planta Med 64: 777; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Chapman A.; Blervacq A.–. S.; Vasseur J.; Hilbert J.–. L. Arabinogalactan proteins in Cichorium somatic embryogenesis: effect of β-glucosyl Yariv reagent and epitope localisation during embryo development. Planta 211: 305–314; 2000.

    Article  PubMed  CAS  Google Scholar 

  • de Jong A. J.; Schmidt E. D. L.; de Vries S. C. Early events in higher plant embryogenesis. Plant Mol Biol 22: 367–377; 1993.

    Article  PubMed  Google Scholar 

  • Domergue F. G. R.; Ferrière N.; Côte F. X. Morphohistological study of the different constituents of a banana (Musa AAA, cv. Grande naine) embryogenic cell suspension. Plant Cell Rep 19: 748–754; 2000.

    Article  CAS  Google Scholar 

  • Ferri M.; Righett L.; Tassoni A. Increasing sucrose concentrations promote phenylpropanoid biosynthesis in grapevine cell cultures. J Plant Physiol 168: 189–195; 2011.

    Article  PubMed  CAS  Google Scholar 

  • Ghosh A.; Ganapathi T. R.; Nath P.; Bapat V. A. Establishment of embryogenic cell suspension cultures and Agrobacterium-mediated transformation in an important Cavendish banana cv. Robusta (AAA). Plant Cell Tiss Org Cult 97: 131–139; 2009.

    Article  Google Scholar 

  • Guo Y.; Zhang Z. Establishment and plant regeneration of somatic embryogenic cell suspension cultures of the Zingiber officinale Rosc. Sci Hort 107: 90–96; 2005.

    Article  CAS  Google Scholar 

  • Hwang J.-K.; Chung J.-Y.; Baek N.-I.; Park J.-H. Isopanduratin A from Kaempferia pandurata as an active antibacterial agent against cariogenic Streptococcus mutans. Int J Antimicrob Agents 23: 377–381; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Jalil M.; Khalid N.; Othman R. Y. Plant regeneration from embryogenic suspension cultures of Musa acuminata cv. Mas (AA). Plant Cell Tiss Org Cult 75: 209–214; 2003.

    Article  CAS  Google Scholar 

  • Karwasara V.; Dixit V. Culture medium optimization for improved puerarin production by cell suspension cultures of Pueraria tuberosa (Roxb. ex Willd.) DC. In Vitro Cell Dev Biol-Plant 48: 189–199; 2012.

    Article  Google Scholar 

  • Kobayashi T.; Katsumi H.; Tsutomu S.; Hiroshi K. Physiological properties of inhibitory conditioning factor(s), inhibitory to somatic embryogenesis, in high-density cell cultures of carrot. Plant Sci 144: 69–75; 1999.

    Article  CAS  Google Scholar 

  • Kumar G. K.; Thomas T. D. High frequency somatic embryogenesis and synthetic seed production in Clitoria ternatea Linn. Plant Cell Tiss Org Cult 110: 141–151; 2012.

    Article  Google Scholar 

  • Lee W. L.; Chan L. K. Establishment of Orthosiphon stamineus cell suspension culture for cell growth. Plant Cell Tiss Org Cult 78: 101–106; 2004.

    Article  Google Scholar 

  • Morikawa T.; Funakoshi K.; Ninomiya K.; Yasuda D.; Miyagawa K.; Matsuda H.; Yoshikawa M. Structures of new prenylchalcones and prenylflavonones with TNF-α and aminopeptidase N inhibitory activities from Boesenbergia rotunda. Chem Pharm Bull 56: 956–962; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Murashige T.; Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15: 473–497; 1962.

    Article  CAS  Google Scholar 

  • Nuño-Ayala A.; Rodríguez-Garay B.; Gutiérrez-Mora A. Somatic embryogenesis in Jarilla heterophylla (Caricaceae). Plant Cell Tiss Org Cult 109: 33–39; 2012.

    Article  Google Scholar 

  • Osuga K.; Kamada H.; Komamine. Frequency improvement of somatic embryogenesis at high embryo density by partial replacement of medium in carrot suspension cultures. J Ferment Bioeng 84: 275–278; 1997.

    Article  CAS  Google Scholar 

  • Pattaratanawadee E.; Rachtanapun C.; Wanchaitanawong P.; Mahakarnchanakul W. Antimicrobial activity of spice extracts against pathogenic and spoilage microorganisms. Kasetsart J Nat Sci 40: 159–165; 2006.

    Google Scholar 

  • Rocha D. I.; Vieira L. M.; Ossamu Tanaka F. A.; da Silva L. C.; Otoni W. C. Somatic embryogenesis of a wild passion fruit species Passiflora cincinnata Masters: histocytological and histochemical evidences. Protoplasma 249: 747–758; 2012.

    Article  PubMed  Google Scholar 

  • Samaj J.; Baluska F.; Pretova A.; Volkmann D. Auxin deprivation induces a developmental switch in maize somatic embryogenesis involving redistribution of microtubules and actin filaments from endoplasmic to cortical cytoskeletal arrays. Plant Cell Rep 21: 940–945; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Simões-Gurgel C.; Cordeiro L.; de Castro T.; Callado C.; Albarello N.; Mansur E. Establishment of anthocyanin-producing cell suspension cultures of Cleome rosea Vahl ex DC. (Capparaceae). Plant Cell Tiss Org Cult 106: 537–545; 2011.

    Article  Google Scholar 

  • Tan S. K.; Pippen R.; Yusof R.; Ibrahim H.; Khalid N.; Rahman N. A. Inhibitory activity of cyclohexenyl chalcone derivatives and flavonoids of fingerroot, Boesenbergia rotunda (L.), towards dengue-2 virus NS3 protease. Bioorg Med Chem Lett 16: 3337–3340; 2006.

    Article  Google Scholar 

  • Tan S. K.; Pippen R.; Yusof R.; Ibrahim H.; Rahman N.; Khalid N. Simple one-medium formulation regeneration of fingerroot ginger; Boesenbergia rotunda (L.) Mansf. Kulturpfl. via somatic embryogenesis. In Vitro Cell Dev Biol-Plant 41: 757–761; 2005.

    Article  CAS  Google Scholar 

  • Tewtrakul S.; Subhadhirasakul S.; Puripattanavong J.; Panphadung T. HIV-1 protease inhibitory substances from the rhizomes of Boesenbergia pandurata Holtt. Songklanakarin. J Sci Technol 25: 503–508; 2003.

    CAS  Google Scholar 

  • Trakoontivakorn G.; Nakahara K.; Shinmoto H.; Takenaka M.; Kameyama M. O.; Ono H.; Yoshida M.; Nagata T.; Tsushida T. Structural analysis of novel antimutagenic compound, 4-hydroxypanduratin A, and the mutagenic activity of flavonoids in a Thai spice, fingerroot (Boesenbergia pandurata Schult.) against mutagenic heterocyclic amines. J Agric Food Chem 49: 3046–3050; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Tuchinda P.; Reutrakul V.; Claeson P.; Pongprayoon U.; Sematong T.; Taylor W. C. Anti-inflammatory cyclohexenyl chalcone derivatives in Boesenbergia pandurata. Phytochemistry 59: 169–173; 2002.

    Article  PubMed  CAS  Google Scholar 

  • van Hengel A. J.; Tadesse Z.; Immerzeel P.; Schols H.; Van Kammen A.; De Vries S. C. N-acetylglucosamine and glucosamine containing arabinogalactan proteins control somatic embryogenesis. Plant Physiol 125: 1880–1890; 2001.

    Article  PubMed  Google Scholar 

  • Vengadesan G.; Pijut P. Somatic embryogenesis and plant regeneration of northern red oak (Quercus rubra L.). Plant Cell Tiss Org Cult 97: 141–149; 2009.

    Article  Google Scholar 

  • von Arnold S.; Sabala I.; Bozhkov P.; Dyachok J.; Filonova L. Developmental pathways of somatic embryogenesis. Plant Cell Tiss Org Cult 69: 233–249; 2002.

    Article  Google Scholar 

  • Wang J.; Wang J.; Liu K.; Xiao X.; Gong W.; Lu Y.; Liu M.; Xu D. An efficient plant regeneration system with in vitro flavonoid accumulation for Hylotelephium tatarinowii (Maxim.) H. Ohba. In Vitro Cell Dev Biol-Plant 46: 445–450; 2010.

    Article  CAS  Google Scholar 

  • Yusuf N. A.; Annuar M. S. M.; Khalid N. Efficient propagation of an important medicinal plant Boesenbergia rotunda by shoot derived callus. J Med Plant Res 5: 2629–2636; 2011a.

    CAS  Google Scholar 

  • Yusuf N. A.; Annuar M. S. M.; Khalid N. Rapid micropropagation of Boesenbergia rotunda (L.) Mansf Kulturpfl. (a valuable medicinal plant) from shoot bud explants. Afr J Biotechnol 10: 1194–1199; 2011b.

    CAS  Google Scholar 

Download references

Acknowledgements

This project was supported by a grant from the Malaysian Genome Institute, Ministry of Science and Technology, Malaysia (MOSTI-MGI 09-05-16-MGI-GMB005), and a postgraduate research fund (PPP479/2010B) from University of Malaya. The authors greatly appreciate University Malaya for support and facilities provided, Dr. Melina Ong Abdullah from Malaysian Palm Oil Board for assisting in histology sectioning, the Malaysian Ministry of Science and Technology for a National Science Fund (NSF) doctoral scholarship for the first author, and reviewers who helped improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norzulaani Khalid.

Additional information

Editor: Wagner Otoni

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wong, S.M., Salim, N., Harikrishna, J.A. et al. Highly efficient plant regeneration via somatic embryogenesis from cell suspension cultures of Boesenbergia rotunda . In Vitro Cell.Dev.Biol.-Plant 49, 665–673 (2013). https://doi.org/10.1007/s11627-013-9570-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-013-9570-4

Keywords

Navigation