Skip to main content
Log in

A Visual Colorimetric Probe for Naked-Eye Detection of Pamidronate Disodium in Human Plasma Based on Aggregation of Citrate-Capped Gold Nanoparticles

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Herein, a sensitive, simple, and rapid colorimetric assay for the detection of pamidronate disodium was developed based on the aggregation of citrate-capped gold nanoparticles (AuNPs). This was exploited from the affinity of electron-rich atoms toward the surface of AuNPs, resulting in the aggregation of AuNPs through intermolecular hydrogen bonding interactions. As a result of aggregation under optimum conditions ([NaCl] = 25 mM, [AuNPs] = 3.3 nM and pH 7.0), the color of AuNPs was changed from red to blue and the plasmon band of AuNPs around 520 was decreased along with the formation of a new peak at a longer wavelength in the approximate range of 600 to 700 nm. The intensity ratios of absorbance at 650 nm to the original wavelength of 520 nm display a linear relation to the pamidronate disodium concentrations in the range of 50–225 μM. The detection limit (3σ) of this method was 43 μM. The proposed approach was successfully used for the determination of analyte in human plasma sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 2
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Sparidans RW, Hartigh JD, Beijnen JH, Vermeij P (1997) Determination of pamidronate in urine by ion-pair liquid chromatography after derivatization with 1-naphthylisothiocyanate. J Chromatogr B 696:137–144

    Article  CAS  Google Scholar 

  2. Berenson JR, Lichtenstein A, Porter L, Dimopoulos MA, Bodoni R, George S, Lipton A, Keller A, Ballester O, Kovacs MJ, Blacklock HA, Bell R, Simeone J, Reitsma DJ, Heffernan M, Seaman J, Knight RD (1996) Efficacy of pamidronate in reducing skeletal events in patients with advanced multiple myeloma. N Engl J Med 334:488–493

    Article  CAS  Google Scholar 

  3. Pappagallo M, Breuer B, Lin HM, Moberly JB, Tai J, Noto C, Sanchez A, Manfredi PL (2014) A pilot trial of intravenous pamidronate for chronic low back pain. PAIN 155:108–117

    Article  CAS  Google Scholar 

  4. Vasireddy S, Talwalkar A, Miller H, Mehan R, Swinson RD (2003) Patterns of pain in Paget’s disease of bone and their outcomes on treatment with pamidronate. Clin Rheumatol 22:376–380

    Article  Google Scholar 

  5. Ban E, Park JK, Kim HT, Kim CK (2011) Determination of alendronate in low volumes of plasma by column switching high-performance liquid chromatography method and its application to pharmacokinetic studies in human plasma. Arch Pharm Res 34:2079–2086

    Article  CAS  Google Scholar 

  6. Giger EV, Castagner B, Leroux JC (2013) Biomedical applications of bisphosphonates. J Control Release 167:175–188

    Article  CAS  Google Scholar 

  7. Flesch G, Hauffe SA (1989) Determination of the bisphosphonate pamidronate disodium in urine by pre-column derivatization with fluorescamine, high-performance liquid chromatography and fluorescence detection. J Chromatogr 489:446–451

    Article  CAS  Google Scholar 

  8. Flesch G, Tominaga N, Degen P (1991) Improved determination of the bisphosphonate pamidronate disodium in plasma and urine by pre-column derivatization with fluorescamine, high-performance liquid chromatography and fluorescence detection. J Chromatogr 568:261–266

    Article  CAS  Google Scholar 

  9. King LE, Vieth R (1996) Extraction and measurement of pamidronate from bone samples using automated pre-column derivatization, high-performance liquid chromatography and fluorescence detection J. Chromatogr B 678:325–330

    Article  CAS  Google Scholar 

  10. Sakiyama N, Kataoka H, Makita M (1995) Selective and sensitive determination of pamidronate in human plasma and urine by gas chromatography with flame photometric detection. Biomed Chrom 9:243–245

    Article  CAS  Google Scholar 

  11. Sparidans RW, Hartigh JD, Ramp-Koopmanschap WM, Langebroek RH, Ermeij PV (1997) The determination of pamidronate in pharmaceutical preparations by ion-pair liquid chromatography after derivatization with phenylisothiocyanate. J Pharm Biomed Anal 16:491–497

    Article  CAS  Google Scholar 

  12. Zeller M, Kessler R, Manz HJ, Székely G (1991) Determination of disodium 3-amino-1-hydroxypropylidene-1,1-bisphosphonate pentahydrate. J Chromatogr A 545:421–425

    Article  CAS  Google Scholar 

  13. Chen Y, Lee I, Sung Y, Wu S (2013) Triazole functionalized gold nanoparticles for colorimetric Cr3+ sensing. Sens Actuators B 188:354–359

    Article  CAS  Google Scholar 

  14. Guo M, Law WC, Liu X, Cai H, Liu LT, Swihart M, Zhang XN, Prasad P (2014) Plasmonic semiconductor nanocrystals as chemical sensors: Pb2+ quantitation via aggregation-induced plasmon resonance shift. Plasmonics 9:893–898

    Article  CAS  Google Scholar 

  15. Mehta VN, Solanki J, Kailasa SK (2014) Selective visual detection of Pb(II) ion via gold nanoparticles coated with a dithiocarbamate-modified 4′-aminobenzo-18-crown-6. Microchim Acta 181:1905–1915

    Article  CAS  Google Scholar 

  16. Li W, Nie Z, He K, Xu X, Li Y, Huang Y, Yao S (2011) Simple, rapid and label-free colorimetric assay for Zn2+ based on unmodified gold nanoparticles and specific Zn2+ binding peptide. Chem Commun 47:4412–4414

    Article  CAS  Google Scholar 

  17. Wang S, Chen Z, Chen L, Liu R, Chen L (2013) Label-free colorimetric sensing of copper(II) ions based on accelerating decomposition of H2O2 using gold nanorods as an indicator. Analyst 138:2080–2084

    Article  CAS  Google Scholar 

  18. Xu H, Liu B, Chen Y (2012) A colorimetric method for the determination of lead (II) ions using gold nanoparticles and a guanine-rich oligonucleotide. Microchim Acta 177:89–94

    Article  CAS  Google Scholar 

  19. Daniel WL, Han MS, Lee JS, Mirkin CA (2009) Colorimetric nitrite and nitrate detection with gold nanoparticle probes and kinetic end points. J Am Chem Soc 131:6362–6363

    Article  CAS  Google Scholar 

  20. Huang H, Li Q, Wang J, Yu XF, Li ZH, Chu PK (2014) Sensitive and robust colorimetric sensing of sulfide anion by plasmonic nanosensors based on quick crystal growth. Plasmonics 9:11–16

    Article  CAS  Google Scholar 

  21. Chen L, Lua W, Wang X, Chen L (2013) A highly selective and sensitive colorimetric sensor for iodide detection based on anti-aggregation of gold nanoparticles. Sens Actuators B 182:482–488

    Article  CAS  Google Scholar 

  22. Hormozi-Nezhad MR, Alimohammadi M, Tashkhourian J, Razavian SM (2008) Optical detection of phenolic compounds based on the surface plasmon resonance band of Au nanoparticles. Spectrochim Acta A 71:199–203

    Article  Google Scholar 

  23. Zakaria HM, Shah A, Konieczny M, Hoffmann JA, Jasper Nijdam A, Reeves ME (2013) Small molecule- and amino acid-induced aggregation of gold nanoparticles. Langmuir 29:7661–7673

    Article  CAS  Google Scholar 

  24. Sharon E, Golub E, Niazov-Elkan A, Balogh D, Willner I (2014) Analysis of telomerase by the telomeric hemin/g-quadruplex controlled aggregation of au nanoparticles in the presence of cysteine. Anal Chem 86:3153–3158

    Article  CAS  Google Scholar 

  25. Qi Y, Li L, Li L (2009) Label-free detection of specific DNA sequence-telomere using unmodified gold nanoparticles as colorimetric probes. Spectrochim Acta A 74:127–131

    Article  Google Scholar 

  26. Wang JC, Wang YS, Rang WQ, Xue JH, Zhou B, Liu L, Qian QM, Wang YS, Yin JC (2014) Colorimetric determination of 8-hydroxy–2′-deoxyguanosine using label-free aptamer and unmodified gold nanoparticles. Microchim Acta 181:903–910

    Article  CAS  Google Scholar 

  27. Li H, Nelson E, Pentland A, Van Buskirk J, Rothberg L (2007) Assays based on differential adsorption of single-stranded and double-stranded DNA on unfunctionalized gold nanoparticles in a colloidal suspension. Plasmonics 2:165–171

    Article  CAS  Google Scholar 

  28. Zhang Y, Li B, Chen X (2010) Simple and sensitive detection of dopamine in the presence of high concentration of ascorbic acid using gold nanoparticles as colorimetric probes. Microchim Acta 168:107–113

    Article  CAS  Google Scholar 

  29. Chen Z, Lei Y, Gao W, Liu J (2013) Detection of vascular endothelial growth factor based on gold nanoparticles and immunoreaction using resonance light scattering. Plasmonics 8:605–611

    Article  CAS  Google Scholar 

  30. Hormozi-Nezhad MR, Seyedhosseini BE, Robatjazi H (2012) Spectrophotometric determination of glutathione and cysteine based on aggregation of colloidal gold nanoparticles. Scientia Iranica 19:958–963

    Article  CAS  Google Scholar 

  31. Zhou Y, Yang Z, Xu M (2012) Colorimetric detection of lysine using gold nanoparticles aggregation. Anal Methods 4:2711–2714

    Article  CAS  Google Scholar 

  32. Hormozi-Nezhad MR, Tashkhourian J, Khodaveisic J, Khoshi MR (2010) Simultaneous colorimetric determination of dopamine and ascorbic acid based on the surface plasmon resonance band of colloidal silver nanoparticles using artificial neural networks. Anal Methods 2:1263–1269

    Article  Google Scholar 

  33. Liu X, Atwater M, Wang J, Huo Q (2007) Extinction coefficient of gold nanoparticles with different sizes and different capping ligands. Colloids Surf B 58:3–7

    Article  CAS  Google Scholar 

  34. Radhakumary C, Sreenivasan K (2011) Naked eye detection of glucose in urine using glucose oxidase immobilized gold nanoparticles. Anal Chem 83:2829–2833

    Article  CAS  Google Scholar 

  35. Zheng LQ, Yu XD, Xu JJ, Chen HY (2014) Colorimetric detection of quaternary ammonium surfactants using citrate-stabilized gold nanoparticles (Au NPs). Anal Methods 6:2031–2033

    Article  CAS  Google Scholar 

  36. Shen Q, Nie Z, Guo M, Zhong CJ, Lin B, Li W, Yaoa S (2009) Simple and rapid colorimetric sensing of enzymatic cleavage and oxidative damage of single-stranded DNA with unmodified gold nanoparticles as indicator. Chem Commun 45:929–931

    Article  Google Scholar 

  37. Kimling J, Maier M, Okenve B, Kotaidis V, Ballot HA, Plech A (2006) Turkevich method for gold nanoparticle synthesis revisited. J Phys Chem B 110:15700–15707

    Article  CAS  Google Scholar 

  38. Zhao W, Chiuman W, Lam JF, MacManus SA, Chen W, Cui Y, Pelton R, Brook MA, Li Y (2008) DNA aptamer folding on gold nanoparticles: from colloid chemistry to biosensors. J Am Chem Soc 130:3610–3618

    Article  CAS  Google Scholar 

  39. Pakiari AH, Jamshidi Z (2007) Interaction of amino acids with gold and silver clusters. J Phys Chem A 111:4391–4396

    Article  CAS  Google Scholar 

  40. Su KH, Wei QH, Zhang X (2003) Interparticle coupling effects on plasmon resonances of nanogold particles. Nano Lett 3:1087–1090

    Article  CAS  Google Scholar 

  41. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  42. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  43. Spartan, version 06 V102 (2006) Wavefunction Inc, Irvine, CA

  44. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J Chem Phys Chem 82:299–310

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to express their gratitude to Sharif University of Technology Research Council for the support of this work. Also, the authors would like to acknowledge Dr. Aliakbar Tehrani, who is doing a postdoc in Dr. Jamshidi’s group at the Chemistry and Chemical Engineering Research Center of Iran (CCERCI), for the computational studies. They are also thankful to the Abureyhan pharmaceutical company for providing the pamidronate disodium drug.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Reza Hormozi-Nezhad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hormozi-Nezhad, M.R., Abbasi-Moayed, S. A Visual Colorimetric Probe for Naked-Eye Detection of Pamidronate Disodium in Human Plasma Based on Aggregation of Citrate-Capped Gold Nanoparticles. Plasmonics 10, 971–978 (2015). https://doi.org/10.1007/s11468-015-9888-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-9888-3

Keywords

Navigation