Skip to main content
Log in

Plasmonic Semiconductor Nanocrystals as Chemical Sensors: Pb2+ Quantitation via Aggregation-Induced Plasmon Resonance Shift

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We demonstrate, for the first time, the use of plasmonic semiconductor nanocrystals for the analysis of heavy metal ions in water. This highly sensitive localized surface plasmon resonance (LSPR)-based platform is built on glutathione (GSH) capped Cu2−xS nanocrystals, which exhibit LSPR at near infrared (NIR) wavelengths. Aggregation of GSH-capped Cu2−x S occurs specifically in the presence of lead ions, Pb2+, producing a shift in the LSPR absorbance peak. Under optimal assay conditions, the detection limit was as low as 0.25 μM (52.5 ppb) of Pb2+. This provides a new plasmonic semiconductor nanocrystal-based assay for the detection of environmentally hazardous materials. The assay employs non-toxic and earth-abundant elements and could potentially be produced at much lower cost than similar gold nanoparticle-based assays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4

References

  1. Prasad P.N. (2012) Introduction to nanomedicine and nanobioengineering. Wiley

  2. Zeng SW, Yong KT, Roy I, Dinh XQ, Yu X, Luan F (2011) Plasmonics 6:491–506

    Article  CAS  Google Scholar 

  3. Cottat M, Thioune N, Gabudean AM, Lidgi-Guigui N, Focsan M, Astilean S, de la Chapelle ML (2013) Plasmonics 8:699–704

    Article  CAS  Google Scholar 

  4. Zhao W, Chiuman W, Brook MA, Li Y (2007) Chembiochem 8:727–731

    Article  CAS  Google Scholar 

  5. Lin YH, Chen CE, Wang CY, Pu F, Ren JS, Qu XG (2011) Chem Commun 47:1181–1183

    Article  CAS  Google Scholar 

  6. Huang H, Li Q, Wang J, Li Z, Yu X.-F, Chu P (2013) Plasmonics, 1–6.

  7. Becker J, Trugler A, Jakab A, Hohenester U, Sonnichsen C (2010) Plasmonics 5:161–167

    Article  CAS  Google Scholar 

  8. Mahmoud MA, El-Sayed MA (2013) J Phys Chem Lett 4:1541–1545

    Article  CAS  Google Scholar 

  9. Vigderman L, Khanal BP, Zubarev ER (2012) Adv Mater 24:4811–4841

    Article  CAS  Google Scholar 

  10. Yu C, Irudayaraj J (2006) Anal Chem 79:572–579

    Article  Google Scholar 

  11. Zhao Y, Pan H, Lou Y, Qiu X, Zhu J, Burda C (2009) J Am Chem Soc 131:4253–4261

    Article  CAS  Google Scholar 

  12. Peng TC, Lin WC, Chen CW, Tsai DP, Chiang HP (2011) Plasmonics 6:29–34

    Article  CAS  Google Scholar 

  13. Tamada K, Nakamura F, Ito M, Li XH, Baba A (2007) Plasmonics 2:185–191

    Article  CAS  Google Scholar 

  14. Law WC, Yong KT, Baev A, Hu R, Prasad PN (2009) Opt Express 17:19041–19046

    Article  CAS  Google Scholar 

  15. Law WC, Yong KT, Baev A, Prasad PN (2011) ACS Nano 5:4858–4864

    Article  CAS  Google Scholar 

  16. Wang J, Munir A, Zhu Z, Zhou HS (2010) Anal Chem 82:6782–6789

    Article  CAS  Google Scholar 

  17. Scotognella F, Della Valle G, Kandada ARS, Dorfs D, Zavelani-Rossi M, Conforti M, Miszta K, Comin A, Korobcheyskaya K, Lanzani G, Manna L, Tassone F (2011) Nano Lett 11:4711–4717

    Article  CAS  Google Scholar 

  18. Liu X, Wang X, Zhou B, Law WC, Cartwright AN, Swihart MT (2013) Adv Funct Mater 23:1256–1264

    Article  Google Scholar 

  19. Xie Y, Riedinger A, Prato M, Casu A, Genovese A, Guardia P, Sottini S, Sangregorio C, Miszta K, Ghosh S, Pellegrino T, Manna L (2013) J Am Chem Soc 135:17630–17637

    Article  CAS  Google Scholar 

  20. Comin A, Manna L (2014) Chem Soc Rev

  21. Saldanha PL, Brescia R, Prato M, Li H, Povia M, Manna L, Lesnyak V (2004) Chem Mater

  22. Goel S, Chen F, Cai W Small 2013, n/a-n/a

  23. Liu X, Lee C, Law WC, Zhu D, Liu M, Jeon M, Kim J, Prasad PN, Kim C, Swihart MT (2013) Nano Lett 13:4333–4339

    Article  CAS  Google Scholar 

  24. Xie Y, Carbone L, Nobile C, Grillo V, D’Agostino S, Della Sala F, Giannini C, Altamura D, Oelsner C, Kryschi C, Cozzoli PD (2013) ACS Nano 7:7352–7369

    Article  CAS  Google Scholar 

  25. Liu X, Wang XL, Swihart MT (2013) Chem Mater 25:4402–4408

    Article  CAS  Google Scholar 

  26. Kriegel I, Jiang CY, Rodriguez-Fernandez J, Schaller RD, Talapin DV, da Como E, Feldmann J (2012) J Am Chem Soc 134:1583–1590

    Article  CAS  Google Scholar 

  27. Luther JM, Jain PK, Ewers T, Alivisatos AP (2011) Nat Mater 10:361–366

    Article  CAS  Google Scholar 

  28. Dorfs D, Hartling T, Miszta K, Bigall NC, Kim MR, Genovese A, Falqui A, Povia M, Manna L (2011) J Am Chem Soc 133:11175–11180

    Article  CAS  Google Scholar 

  29. Liu X, Law WC, Jeon M, Wang X, Liu M, Kim C, Prasad PN, Swihart MT (2013) Adv Healthc Mater 2:952–957

    Article  CAS  Google Scholar 

  30. Hessel CM, Pattani VP, Rasch M, Panthani MG, Koo B, Tunnell JW, Korgel BA (2011) Nano Lett 11:2560–2566

    Article  CAS  Google Scholar 

  31. Jin T, Yoshioka Y, Fujii F, Komai Y, Seki J, Seiyama A (2008) Chem Commun 30(44):5764–5766

    Article  Google Scholar 

  32. Zheng YG, Yang ZC, Li YQ, Ying JY (2008) Adv Mater, 20: 3410 − +

  33. Booß-Bavnbek B, Klösgen B, Larsen J, Pociot F, Renström EE (2011) BetaSys: systems biology of regulated exocytosis in pancreatic ß-cells, Springer

  34. Durgadas CV, Lakshmi VN, Sharma CP, Sreenivasan K (2011) Sensors and Actuators B-Chem 156:791–797

    Article  CAS  Google Scholar 

  35. Mohamed Ali E, Zheng Y, Yu H-h, Ying JY (2007) Anal Chem 79:9452–9458

    Article  Google Scholar 

  36. Li JL, Chen LX, Lou TT, Wang YQ (2011) Acs Appl Mater Interfaces 3:3936–3941

    Article  CAS  Google Scholar 

  37. Lin YW, Huang CC, Chang HT (2011) Analyst 136:863–871

    Article  CAS  Google Scholar 

  38. Wang ZD, Lee JH, Lu Y (2008) Adv Mater 20: 3263 − +

  39. Chen Y-Y, Chang H-T, Shiang Y-C, Hung Y-L, Chiang C-K, Huang C-C (2009) Anal Chem 81:9433–9439

    Article  CAS  Google Scholar 

  40. Luther JM, Zheng HM, Sadtler B, Alivisatos AP (2009) J Am Chem Soc 131:16851–16857

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the startup fund of the International Joint Research Center for Nanophotonics and Biophotonics and by Hong Kong Polytechnic University (Project Grant G-UB37).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mark T. Swihart, Xihe Zhang or Paras N. Prasad.

Additional information

Moran Guo, Wing-Cheung Law, and Xin Liu contributed equally to this work.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 150 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, M., Law, WC., Liu, X. et al. Plasmonic Semiconductor Nanocrystals as Chemical Sensors: Pb2+ Quantitation via Aggregation-Induced Plasmon Resonance Shift. Plasmonics 9, 893–898 (2014). https://doi.org/10.1007/s11468-014-9694-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-014-9694-3

Keywords

Navigation