Skip to main content
Log in

Simple and sensitive detection of dopamine in the presence of high concentration of ascorbic acid using gold nanoparticles as colorimetric probes

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A highly sensitive and selective method is presented for colorimetric determination of dopamine using gold nanoparticles (AuNPs). Dopamine induces the aggregation of AuNPs, this resulting in a color change from red to blue or purple. Aggregation is accelerated by the presence of Cu(II), especially at low concentrations of dopamine. The concentration of dopamine can be quantified visually or using a UV-vis spectrometer. The detection limit is as low as 30 nM. The assay is simple, inexpensive, and highly sensitive. Ascorbic acid in even 100-fold molar excess does not interfere. The mechanism of the aggregation of the AuNPs is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Arreguin S, Nelson P, Padway S, Shirazi M, Pierpont C (2009) Dopamine complexes of iron in the etiology and pathogenesis of Parkinson’s disease. J Inorg Biochem 103:87–93

    Article  CAS  Google Scholar 

  2. Clarke SJ, Hollmann CA, Aldaye FA, Nadeau JL (2008) Effect of ligand density on the spectral, physical, and biological characteristics of CdSe/ZnS quantum dots. Bioconjugate Chem 19:562–568

    Article  CAS  Google Scholar 

  3. Wu HP, Cheng TL, Tseng WL (2007) Nanoparticles for selective detection of dopamine, levodopa, adrenaline, and catechol based on fluorescence quenching. Langmuir 23:7880–7885

    Article  CAS  Google Scholar 

  4. Toma’s P-R, Carmen ML, Toma’s V, Encarna R (2007) Flow injection fluorimetric determination of L-dopa and dopamine based on a photochemical inhibition process. Microchim Acta 158:299–305

    Article  Google Scholar 

  5. Hu YY, Wu X, Su YY, Hou XD, Zhang JY (2009) Capillary zone electrophoresis hyphenatedwith laser-induced fluorescence detection for sensitive determination of noradrenaline and dopamine with 5-(4, 6-dichloro-s-triazin-2-ylamino) fluorescein as fluorescent label. Microchim Acta 166:289–294

    Article  CAS  Google Scholar 

  6. Voegel PD, Zhou WH, Baldwin RP (1997) Integrated capillary electrophoresis/electrochemical detection with metal film electrodes directly deposited onto the capillary tip. Anal Chem 69:951–957

    Article  CAS  Google Scholar 

  7. Uutela P, Karhu L, Piepponen P, Kaenmaki M, Ketola RA, Kostiainen R (2009) Discovery of dopamine glucuronide in rat and mouse brain microdialysis samples using liquid chromatography tandem mass spectrometry. Anal Chem 81:427–434

    Article  CAS  Google Scholar 

  8. Hermans A, Keithley RB, Kita JM, Sombers LA, Wightman RM (2008) Dopamine detection with fast-scan cyclic voltammetry used with analog background subtraction. Anal Chem 80:4040–4048

    Article  CAS  Google Scholar 

  9. Mullane APO, Zhang J, Toth AB, Bond AM (2008) Higher harmonic large-amplitude fourier transformed alternating current voltammetry: analytical attributes derived from studies of the oxidation of ferrocenemethanol and uric acid at a glassy carbon electrode. Anal Chem 80:4614–4626

    Article  Google Scholar 

  10. Ali SR, Ma YF, Parajuli RR, Balogun Y, Lai WYC, He HX (2007) A nonoxidative sensor based on a self-doped polyaniline/carbon nanotube composite for sensitive and selective detection of the neurotransmitter dopamine. Anal Chem 79:2583–2587

    Article  CAS  Google Scholar 

  11. Sun YX, Fei JJ, Hou J, Zhang Q, Liu YL, Hu BN (2009) Simultaneous determination of dopamine and serotonin using a carbon nanotubes-ionic liquid gel modified glassy carbon electrode. Microchim Acta 165:373–379

    Article  CAS  Google Scholar 

  12. Wang GF, Sun JG, Zhang W, Jiao SF, Fang B (2009) Simultaneous determination of dopamine, uric acid and ascorbic acid with LaFeO3 nanoparticles modified electrode. Microchim Acta 164:357–362

    Article  CAS  Google Scholar 

  13. Zhang L (2008) Covalent modification of glassy carbon electrode with cysteine for the determination of dopamine in the presence of ascorbic acid. Microchim Acta 161:191–200

    Article  CAS  Google Scholar 

  14. Baron R, Zayats M, Willner I (2005) Dopamine-, L-DOPA-, adrenaline-, and noradrenaline-induced growth of Au nanoparticles: assays for the detection of neurotransmitters and of tyrosinase activity. Anal Chem 77:1566–1571

    Article  CAS  Google Scholar 

  15. Zhao W, Brook MA, Li Y (2008) Design of gold nanoparticle-based colorimetric biosensing assays. ChemBioChem 9:2363–2371

    Article  CAS  Google Scholar 

  16. Zhao WA, Ali MM, Aguirre SD, Brook MA, Li YF (2008) Paper-based bioassays using gold nanoparticle colorimetric probes. Anal Chem 80:8431–8437

    Article  CAS  Google Scholar 

  17. Ghosh SK, Pal T (2007) Coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. Chem Rev 107:4797–4862

    Article  CAS  Google Scholar 

  18. Stehr J, Hrelescu C, Sperling RA, Raschke G, Wunderlich M, Nichtl A, Heindl D, Kulrzinger K, Parak WJ, Klar TA, Feldmann J (2008) Gold nanostoves for microsecond DNA melting analysis. Nano Lett 8:619–623

    Article  CAS  Google Scholar 

  19. Hurst SJ, Han MS, Jean ALKRL, Mirkin CA (2007) Screening the sequence selectivity of DNA-binding molecules using a gold nanoparticle-based colorimetric approach. Anal Chem 79:7201–7205

    Article  CAS  Google Scholar 

  20. Li Y, Qi HL, Yang J, Zhang CX (2009) Detection of DNA immobilized on bare gold electrodes and gold nanoparticle-modified electrodes via electrogenerated chemiluminescence using a ruthenium complex as a tag. Microchim Acta 164:69–76

    Article  CAS  Google Scholar 

  21. Takeda Y, Mafune F, Kondo T (2009) Selective degradation of proteins by laser irradiation onto gold nanoparticles in solution. J Phys Chem C 113:5027–5030

    Article  CAS  Google Scholar 

  22. Zhang DM, Neumann O, Wang H, Yuwono VM, Barhoumi A, Perham M, Hartgerink JD, Stafshede PW, Halas NJ (2009) Gold nanoparticles can induce the formation of protein-based aggregates at physiological pH. Nano Lett 9:666–671

    Article  CAS  Google Scholar 

  23. Laaksonen P, Kivioja J, Paananen A, Kainlauri M, Kontturi K, Ahopelto J, Linder MB (2009) Selective nanopatterning using citrate-stabilized Au nanoparticles and cystein-modified amphiphilic protein. Langmuir 25:5185–5192

    Article  CAS  Google Scholar 

  24. Lim IS, Mott D, Ip W, Njoki PN, Pan Y, Zhou S, Zhong CJ (2008) Interparticle interactions in glutathione mediated assembly of gold nanoparticles. Langmuir 24:8857–8863

    Article  CAS  Google Scholar 

  25. Liu YX, Yuan R, Chai YQ, Hong CL, Liu KG, Guan S (2010) Ultrasensitive amperometric immunosensor for the determination of carcinoembryonic antigen based on a porous chitosan and gold nanoparticles functionalized interface. Microchim Acta in press (doi:10.1007/s00604–009–0243–2)

  26. Li L, Li B, Qi Y, Jin Y (2009) Label-free aptamer-based colorimetric detection of mercury ions in aqueous media using unmodified gold nanoparticles as colorimetric probe. Anal Bioanal Chem 93:2051–2057

    Article  Google Scholar 

  27. Si S, Kotal A, Mandal TK (2007) One-dimensional assembly of peptide-functionalized gold nanoparticles: an approach toward mercury ion sensing. J Phys Chem C 111:1248–1255

    Article  CAS  Google Scholar 

  28. Kelley AM (2007) A molecular spectroscopic description of optical spectra of J-aggregated dyes on gold nanoparticles. Nano Lett 7:3235–3240

    Article  CAS  Google Scholar 

  29. Liu SP, Chen YH, Liu ZF, Hu XL, Wang F (2006) A highly sensitive resonance rayleigh scattering method for the determination of vitamin B1 with gold nanoparticles probe. Microchim Acta 154:87–93

    Article  CAS  Google Scholar 

  30. Zhong ZY, Patskovskyy S, Bouvrette P, Luong JHT, Gedanken A (2004) The surface chemistry of Au colloids and their interactions with functional amino acids. J Phys Chem B 108:4046–4052

    Article  CAS  Google Scholar 

  31. Li L, Li B (2009) Sensitive and selective detection of cysteine using gold nanoparticles as colorimetric probes. Analyst 134:1361–1365

    Article  CAS  Google Scholar 

  32. Wei H, Li B, Li J, Wang EK, Dong SJ (2007) Simple and sensitive aptamer-based colorimetric sensing of protein using unmodified gold nanoparticle probes. Chem Commun 3735–3737

  33. Grabar KC, Freeman RG, Hommer MB, Natan M (1995) Preparation and characterization of Au colloid monolayers. Anal Chem 67:735–743

    Article  CAS  Google Scholar 

  34. Daniel M-C, Astruc D (2004) Gold Nanoparticles: sssembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346

    Article  CAS  Google Scholar 

  35. Kiss T, Gergely A (1979) Complexes of 3, 4-dihydroxyphenyl derivatives, III. Equilibrium study of parentand some mixed ligand complexes of dopamine, alanine and pyrocatechol with nickel (II), copper (II) and zinc (II) ions. Inorg Chim Acta 36:31–36

    Article  CAS  Google Scholar 

  36. Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA (1997) Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277:1078–1081

    Article  CAS  Google Scholar 

  37. Charkoudian LK, Franz KJ (2006) Fe (III)-coordination properties of neuromelanin components: 5, 6-dihydroxyindole and 5, 6-dihydroxyindole-2-carboxylic Acid. Inorg Chem 45:3657–3664

    Article  CAS  Google Scholar 

  38. Lamarque L, Navarro P, Miranda C, Aran VJ, Ochoa C, Escartı F, Latorre EGEJ, Luis SV, Miravet JF (2001) Dopamine interaction in the absence and in the presence of Cu2+ ions with macrocyclic and macrobicyclic polyamines containing pyrazole units. crystal structures of [Cu2(L1)(H2O)2](ClO4)4 and [Cu2(H-1L3)](ClO4)3·2H2O. J Am Chem Soc 123:10560–10570

    Article  CAS  Google Scholar 

  39. Kuznar BG, Simeon V, Weber OA (1974) Complexes of adrenaline and related compounds with Ni2+, Cu2+, Zn2+, Cd2+ and Pb2+. J Inorg Metal Chem 36:2151–2154

    Google Scholar 

  40. Burlamacchi L, Lai A, Monduzzi M, Saba G (1983) NMR, EPR, and INDO studies on the complexes of dopamine with Cu2+, Mn2+, and Fe3+ in aqueous solution. J Magn Reson 53:39–50

    Google Scholar 

  41. Luczak T (2009) Electroanalysis of norepinephrine at bare gold electrode pure and modified with gold nanoparticles and S-functionalized self-assembled layers in aqueous solution. Electroanalysis 21:1539–1549

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Project of Chinese Ministry of Education (No. 109150).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baoxin Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supporting information

(DOC 1079 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Li, B. & Chen, X. Simple and sensitive detection of dopamine in the presence of high concentration of ascorbic acid using gold nanoparticles as colorimetric probes. Microchim Acta 168, 107–113 (2010). https://doi.org/10.1007/s00604-009-0269-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-009-0269-5

Keywords

Navigation