Skip to main content
Log in

Tissue specific expression of potent insecticidal, Allium sativum leaf agglutinin (ASAL) in important pulse crop, chickpea (Cicer arietinum L.) to resist the phloem feeding Aphis craccivora

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

The phloem sap-sucking hemipteran insect, Aphis craccivora, commonly known as cowpea aphid, cause major yield loss of important food legume crop chickpea. Among different plant lectins Allium sativum leaf agglutinin (ASAL), a mannose binding lectin was found to be potent antifeedant for sap sucking insect A. craccivora. Present study describes expression of ASAL in chickpea through Agrobacterium-mediated transformation of “single cotyledon with half embryo” explant. ASAL was expressed under the control of CaMV35S promoter for constitutive expression and phloem specific rolC promoter for specifically targeting the toxin at feeding site, using pCAMBIA2301 vector containing plant selection marker nptII. Southern blot analysis demonstrated the integration and copy number of chimeric ASAL gene in chickpea and its inheritance in T1 and T2 progeny plants. Expression of ASAL in T0 and T1 plants was confirmed through northern and western blot analysis. The segregation pattern of ASAL transgene was observed in T1 progenies, which followed the 3:1 Mendelian ratio. Enzyme linked immunosorbant assay (ELISA) determined the level of ASAL expression in different transgenic lines in the range of 0.08–0.38% of total soluble protein. The phloem tissue specific expression of ASAL gene driven by rolC promoter has been monitored by immunolocalization analysis of mature stem sections. Survival and fecundity of A. craccivora decreased to 11–26% and 22–42%, respectively when in planta bioassay conducted on T1 plants compared to untransformed control plant which showed 85% survival. Thus, through unique approach of phloem specific expression of novel insecticidal lectin (ASAL), aphid resistance has been successfully achieved in chickpea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Babaoglu M, Davey MR, Power JB (2000) Genetic engineering of grain legumes: key transformation events. AgBiotechNet 2:1–12

    Google Scholar 

  • Bandyopadhyay S, Roy A, Das S (2001) Binding of garlic (Allium sativum) leaf lectin to the gut receptors of homopteran pests is correlated to its insecticidal activity. Plant Sci 161:1025–1033. doi:10.1016/S0168-9452(01)00507-6

    Article  CAS  Google Scholar 

  • Banerjee S, Hess D, Majumder P, Roy D, Das S (2004) The interactions of Allium sativum leaf agglutinin with a chaperonin group of unique receptor protein isolated from a bacterial endosymbiont of the mustard aphid. J Biol Chem 279:23782–23789. doi:10.1074/jbc.M401405200

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of proteins using the principle of protein–dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

    Article  PubMed  CAS  Google Scholar 

  • Chakraborti D, Sarkar A, Gupta S, Das S (2006a) Small and large scale genomic DNA isolation protocol for chickpea (Cicer arietinum L.), suitable for molecular marker and transgenic analyses. Afr J Biotechnol 5:585–589

    CAS  Google Scholar 

  • Chakraborti D, Sarkar A, Das S (2006b) Efficient and rapid in vitro plant regeneration system for Indian cultivars of chickpea (Cicer arietinum L.). Plant Cell Tissue Organ Cult 86:117–123. doi:10.1007/s11240-005-9072-0

    Article  Google Scholar 

  • Chakraborti D, Sarkar A, Mondal HA, Schuermann D, Hohn B, Sarmah BK, Das S (2008) Cre/lox system to develop selectable marker free transgenic tobacco plants conferring resistance against sap sucking homopteran insect. Plant Cell Rep 27:1623–1633. doi:10.1007/s00299-008-0585-y

    Article  PubMed  CAS  Google Scholar 

  • Chi H (1997) Computer program for the Probit Analysis. National Chung Hsing University, Taichung, Taiwan

    Google Scholar 

  • Christou P, McCabe DE (1992) Prediction of germ-line transformation events in chimeric R0 transgenic soybean plantlets using tissue-specific expression patterns. Plant J 2:283–290. doi:10.1111/j.1365-313X.1992.00283.x

    Article  CAS  Google Scholar 

  • Dutta I, Saha P, Majumder P, Sarkar A, Chakraborti D, Banerjee S, Das S (2005a) The efficacy of a novel insecticidal protein, Allium sativum leaf lectin (ASAL), against homopteran insects monitored in transgenic tobacco. Plant Biotechnol J 3:601–611. doi:10.1111/j.1467-7652.2005.00151.x

    Article  PubMed  CAS  Google Scholar 

  • Dutta I, Majumder I, Saha P, Ray K, Das S (2005b) Constitutive and phloem specific expression of Allium sativum leaf agglutinin (ASAL) to engineer aphid (Lipaphis erysimi) resistance in transgenic Indian mustard (Brassica juncea). Plant Sci 169:996–1007. doi:10.1016/j.plantsci.2005.05.016

    Article  CAS  Google Scholar 

  • Fitches E, Wiles D, Douglas AE, Hinchliffe G, Audsley N, Gatehouse JA (2008) The insecticidal activity of recombinant garlic lectins towards aphids. Insect Biochem Mol Biol 38:905–915. doi:10.1016/j.ibmb.2008.07.002

    Article  PubMed  CAS  Google Scholar 

  • Fontana GS, Santini L, Caretto S, Frugis G, Mariotti D (1993) Genetic transformation in the grain legume Cicer arietinum L. (chickpea). Plant Cell Rep 12:194–198. doi:10.1007/BF00237052

    Article  CAS  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158. doi:10.1016/0014-4827(68)90403-5

    Article  PubMed  CAS  Google Scholar 

  • Hilder VA, Powell KS, Gatehouse AMR, Gatehouse J, Gatehouse LN, Shi Y, Hamilton W, Merryweather A, Newell CA, Timans JC (1995) Expression of snowdrop lectin in transgenic tobacco plants results in added protection against aphids. Transgenic Res 4:18–25. doi:10.1007/BF01976497

    Article  CAS  Google Scholar 

  • Indurker S, Misra HS, Eapen S (2007) Genetic transformation of chickpea (Cicer arietinum L.) with insecticidal crystal protein gene using particle gun bombardment. Plant Cell Rep 26:755–763. doi:10.1007/s00299-006-0283-6

    Article  PubMed  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusion: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    PubMed  CAS  Google Scholar 

  • Kar S, Johnson TM, Nayak P, Sen SK (1996) Efficient transgenic plant regeneration through Agrobacterium-mediated transformation of Chickpea (Cicer arietinum L.). Plant Cell Rep 16:32–37. doi:10.1007/BF01275444

    Article  CAS  Google Scholar 

  • Kar S, Basu D, Das S, Ramkrishnan NA, Mukherjee P, Nayak P, Sen SK (1997) Expression of cry1A(c) gene of Bacillus thuringiensis in transgenic chickpea plants inhibits development of pod-borer (Heliothis armigera) larvae. Transgenic Res 6:177–185. doi:10.1023/A:1018433922766

    Article  CAS  Google Scholar 

  • Krishnamurthy KV, Suhasini K, Sagare AP, Meixner M, de Kathen A, Pickardt T, Schieder O (2000) Agrobacterium mediated transformation of chickpea (Cicer arietinum L.) embryo axes. Plant Cell Rep 19:235–240. doi:10.1007/s002990050005

    Article  CAS  Google Scholar 

  • Loc NT, Tinjuangjun P, Gatehouse AMR, Christou P, Gatehouse JA (2002) Linear transgene constructs lacking vector backbone sequences generate transgenic rice plants which accumulate higher levels of proteins conferring insect resistance. Mol Breed 9:231–244. doi:10.1023/A:1020333210563

    Article  CAS  Google Scholar 

  • Majumder P, Banerjee S, Das S (2004) Identification of receptors responsible for binding of the mannose specific lectin to the gut epithelial membrane of the target insects. Glycoconj J 20:525–530. doi:10.1023/B:GLYC.0000043288.72051.7c

    Article  PubMed  CAS  Google Scholar 

  • Majumder P, Mondal HA, Das S (2005) Insecticidal Activity of Arum maculatum tuber lectin and its binding to the glycosylated insect gut receptors. J Agric Food Chem 53:6727–6729. doi:10.1021/jf051155z

    Article  CAS  Google Scholar 

  • Matsuki R, Onodera H, Yamauchi T, Uchimiya H (1989) Tissue-specific expression of the rolC promoter of the Ri plasmid in transgenic rice plants. Mol Gen Genet 220:12–16. doi:10.1007/BF00260849

    Article  CAS  Google Scholar 

  • Matzke AJM, Matzke AM (1998) Position effect and epigenetic silencing of plant transgenes. Curr Opin Plant Biol 1:142–148. doi:10.1016/S1369-5266(98)80016-2

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised method for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497. doi:10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  • Polowick PL, Baliski DS, Mahon JD (2004) Agrobacterium tumefaciens-mediated transformation of chickpea (Cicer arietinum L.): gene integration, expression and inheritance. Plant Cell Rep 23:485–491. doi:10.1007/s00299-004-0857-0

    Article  PubMed  CAS  Google Scholar 

  • Powell KS (2001) Antifeedant effects of plant lectins towards nymphal stages of the planthoppers Tarophagous proserpina and Nilaparvata lugens. Entomol Exp Appl 99:71–77. doi:10.1023/A:1018948228640

    Article  CAS  Google Scholar 

  • Powell KS, Gatehouse AMR, Hilder VA, Gatehouse AJ (1995) Antifeedant effects of plant lectins and an enzyme on the adult stage of the rice brown planthopper, Nilaparvata lugens. Entomol Exp Appl 75:51–69. doi:10.1007/BF02382779

    Article  CAS  Google Scholar 

  • Ramesh S, Nagadhara D, Reddy VD, Rao KV (2004) Production of transgenic indica rice resistant to yellow stem borer and sap-sucking insects, using super-binary vectors of Agrobacterium tumefaciens. Plant Sci 166:1077–1085. doi:10.1016/j.plantsci.2003.12.028

    Article  CAS  Google Scholar 

  • Rao KV, Rathore KS, Hodges TK, Fu X, Stoger E, Sudhakar S, Williams P, Christou P, Bharathi M, Bown DP, Powell KS, Spence J, Gatehouse A, Gatehouse JA (1998) Expression of snowdrop lectin (GNA) in transgenic plants confers resistance to Rice Brown plant Hopper. Plant J 15:469–477. doi:10.1046/j.1365-313X.1998.00226.x

    Article  PubMed  CAS  Google Scholar 

  • Reddy SV, Kumar PL (2004) Transmission and properties of a new leutovirus associated with chickpea stunt disease in India. Curr Sci 86:1157–1161

    Google Scholar 

  • Roy A, Banerjee S, Majumder P, Das S (2002) Efficiency of mannose-binding plant lectins in controlling a homopteran insect, the red cotton bug. J Agric Food Chem 50:6775–6779. doi:10.1021/jf025660x

    Article  PubMed  CAS  Google Scholar 

  • Roy A, Chakraborti D, Das S (2008) Effectiveness of garlic lectin on red spider mite of tea. J Plant Interact 3:157–162. doi:10.1080/17429140701754195

    Article  CAS  Google Scholar 

  • Sadeghi A, Broeders S, De Greve H, Hernalsteens J-P, Peumans WJ, Van Damme EJM, Smagghe G (2007) Expression of garlic leaf lectin under the control of the phloem-specific promoter Asus1 from Arabidopsis thaliana protects tobacco plants against the tobacco aphid (Myzus nicotianae). Pest Manag Sci 63:1215–1223. doi:10.1002/ps.1455

    Article  PubMed  CAS  Google Scholar 

  • Sadeghi A, Smagghe G, Broeders S, Hernalsteens J-P, De Greve H, Peumans WJ, Van Damme EJM (2008) Ectopically expressed leaf and bulb lectins from garlic (Allium sativum L.) protect transgenic tobacco plants against cotton leafworm (Spodoptera littoralis). Transgenic Res 17:9–18. doi:10.1007/s11248-007-9069-z

    Article  PubMed  CAS  Google Scholar 

  • Saha P, Majumder P, Dutta I, Ray T, Roy SC, Das S (2006) Transgenic rice expressing Allium sativum leaf lectin with enhanced resistance against sap-sucking insect pests. Planta 223:1329–1343. doi:10.1007/s00425-005-0182-z

    Article  PubMed  CAS  Google Scholar 

  • Saha P, Chakraborti D, Sarkar A, Dutta I, Basu D, Das S (2007) Characterization of vascular specific RSs1 and rolC promoters for their utilization in engineering plants to develop resistance against hemipteran insect pests. Planta 226:429–442. doi:10.1007/s00425-007-0493-3

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Sanyal I, Singh AK, Kaushik M, Amla DV (2005) Agrobacterium-mediated transformation of chickpea (Cicer arietinum L.) with Bacillus thuringiensis cry1Ac gene for resistance against pod borer insect Helicoverpa armigera. Plant Sci 168:1135–1146. doi:10.1016/j.plantsci.2004.12.015

    Article  CAS  Google Scholar 

  • Sarmah BK, Moore A, Tate W, Molvig L, Morton RL, Rees DP, Chiaiese P, Chrispeels MJ, Tabe LM, Higgins TJV (2004) Transgenic chickpea seeds expressing high levels of a bean α-amylase inhibitor. Mol Breed 14:73–82. doi:10.1023/B:MOLB.0000037996.01494.12

    Article  CAS  Google Scholar 

  • Sauvion N, Rahbé Y, Peumans WJ, Van Damme EJM, Gatehouse JA, Gatehouse AMR (1996) Effects of GNA and other mannose binding lectins on development and fecundity of the peach-potato aphid Myzus persicae. Entomol Exp Appl 79:285–293. doi:10.1007/BF00186287

    Article  CAS  Google Scholar 

  • Schmulling T, Schell J, Spena A (1989) Promoters of the rolA, B, and C genes of Agrobacterium rhizogenes are differentially regulated in transgenic plants. Plant Cell 1:665–670

    Article  PubMed  CAS  Google Scholar 

  • Schuler TM, Poppy GM, Kerry BR, Denholm I (1998) Insect resistant transgenic plants. Trends Biotechnol 16:168–174. doi:10.1016/S0167-7799(97)01171-2

    Article  CAS  Google Scholar 

  • Senthil G, Williamson B, Dinkins RD, Ramsay G (2004) An efficient transformation system for chickpea (Cicer arietinum L.). Plant Cell Rep 23:297–303. doi:10.1007/s00299-004-0854-3

    Article  PubMed  CAS  Google Scholar 

  • Sharma HC, Sharma KK, Crouch JH (2004) Genetic transformation of crops for insect resistance: potential and limitations. Crit Rev Plant Sci 23:47–72. doi:10.1080/07352680490273400

    Article  CAS  Google Scholar 

  • Somers DA, Samac DA, Olhoft PM (2003) Recent advances in legume transformation. Plant Physiol 131:892–899. doi:10.1104/pp.102.017681

    Article  PubMed  CAS  Google Scholar 

  • Sonia, Singh RP, Sharma KK, Jaiwal PK (2003) In vitro regeneration and genetic transformation of chickpea. In: Jaiwal PK, Singh RP (eds) Applied genetics of leguminosae biotechnology. Kluwer Academic Publishers, Great Britain, pp 69–87

  • Sugaya S, Hayakawa K, Handa K, Uchimiya H (1989) Cell-specific expression of the rolC gene of the TL-DNA of Ri plasmid in transgenic tobacco plants. Plant Cell Physiol 30:649–653

    CAS  Google Scholar 

  • Travella S, Ross SM, Harden J, Everett C, Snape JW, Harwood WA (2004) A comparison of transgenic barley lines produced by particle bombardment and Agrobacterium-mediated techniques. Plant Cell Rep 23:780–789. doi:10.1007/s00299-004-0892-x

    Article  PubMed  CAS  Google Scholar 

  • Van Rheneen HA, Pundir RPS, Miranda JH (1993) How to accelerate the genetic improvement of a recalcitrant crop species such as chickpea. Curr Sci 654:414–417

    Google Scholar 

  • Watanabe T, Kitagawa H (2000) Photosynthesis and translocation of assimilates in rice plants following phloem feeding by the plant hopper Nilaparvata lugens (Homoptera: Delphacidae). J Econ Entomol 93:1192–1198

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Bose institute for providing infrastructure and other facilities to undergo the study. The authors are thankful to Swiss Agency for Development and Cooperation, Government of Switzerland and the Department of Biotechnology, Government of India under the Indo-Swiss Collaboration in Biotechnology for financial contributions. The help of Dr. K. K. Sharma, ICRISAT, Dr. B. K. Sarmah, AAU, Prof. Thomas Hohn and Prof. Barbara Hohn, Basel, Switzerland are sincerely acknowledged. Technical help from Mr. Arup Dey is being acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sampa Das.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 30 kb)

11248_2009_9242_MOESM2_ESM.jpeg

Artificial diet bioassay of (a) ASAL, (b) DEA, (c) CEA and (d) ATL against A. craccivora. Graphs showing mean survival per replicates, and each bar represents mean ± SE (JPEG 651 kb)

11248_2009_9242_MOESM3_ESM.jpeg

Schematic representation of the T-DNA region of binary vector constructs (a) pCAMBIA35SASAL and (b) pCAMBIArolCASAL showing the restriction sites. ASAL, gusA and neomycin phosphotransferase (nptII) coding genes are shown within T-DNA. LB, left border of T-DNA; RB, right border of T-DNA; CaMV35S Pr., cauliflower mosaic virus 35S promoter; rolC Pr., Agrobacterium rhizogenes rolC gene promoter; CaMV35SpolyA, cauliflower mosaic virus 35S terminator; nos polyA, nopaline synthase polyA terminator (JPEG 448 kb)

11248_2009_9242_MOESM4_ESM.jpeg

PCR analyses for segregation of ASAL gene in randomly chosen T1 progenies. (a) Lane 1, GenerulerTM (MBI Fermentus) marker; lane 2, pCAMBIA35S ASAL plasmid as positive control; lane 3, untransformed DNA as negative control; lanes 4–17, DNA samples of fourteen randomly selected T1 progenies of 35SASAL line cp212. Lanes 8, 10 and 13 did not show any amplification. (b) Lane 1, GenerulerTM (MBI Fermentus) marker; lane 2, pCAMBIArolCASAL plasmid as positive control; lane 3, untransformed DNA as negative control; lanes 4–18, DNA samples of fifteen randomly selected T1 progenies of rolCASAL line cp101. Lanes 10, 14, 17 and 18 did not show any amplification (JPEG 1769 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chakraborti, D., Sarkar, A., Mondal, H.A. et al. Tissue specific expression of potent insecticidal, Allium sativum leaf agglutinin (ASAL) in important pulse crop, chickpea (Cicer arietinum L.) to resist the phloem feeding Aphis craccivora . Transgenic Res 18, 529–544 (2009). https://doi.org/10.1007/s11248-009-9242-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-009-9242-7

Keywords

Navigation