Skip to main content
Log in

Ectopically expressed leaf and bulb lectins from garlic (Allium sativum L.) protect transgenic tobacco plants against cotton leafworm (Spodoptera littoralis)

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

The insecticidal activity of the leaf (ASAL) and bulb (ASAII) agglutinins from Allium sativum L. (garlic) against the cotton leafworm, Spodoptera littoralis Boisd. (Lepidoptera: Noctuidae) was studied using transgenic tobacco plants expressing the lectins under the control of the constitutive CaMV35S promoter. PCR analysis confirmed that the garlic lectin genes were integrated into the plant genome. Western blots and semi-quantitative agglutination assays revealed lectin expression at various levels in the transgenic lines. Biochemical analyses indicated that the recombinant ASAL and ASAII are indistinguishable from the native garlic lectins. Insect bioassays using detached leaves from transgenic tobacco plants demonstrated that the ectopically expressed ASAL and ASAII significantly (P < 0.05) reduced the weight gain of 4th instar larvae of S. littoralis. Further on, the lectins retarded the development of the larvae and their metamorphosis, and were detrimental to the pupal stage resulting in weight reduction and lethal abnormalities. Total mortality was scored with ASAL compared to 60% mortality with ASAII. These findings suggest that garlic lectins are suitable candidate insect resistance proteins for the control of S. littoralis through a transgenic approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ASAII:

Allium sativum bulb agglutinin II

ASAL:

Allium sativum leaf agglutinin

CaMV 35S:

cauliflower mosaic virus 35S promoter

ConA:

concanavalin A

GNA:

Galanthus nivalis agglutinin

KDa:

kilodalton

LECASA:

cDNA encoding Allium sativum agglutinin

MS:

mass spectrometry

References

  • Bandyopadhyay S, Roy A, Das S (2001) Binding of garlic (Allium sativum) leaf lectin to the gut receptors of homopteran pests is correlated to its insecticidal activity. Plant Sci 161:1025–1033

    Article  CAS  Google Scholar 

  • Carlini CR, Grossi-de-Sá MF (2002) Plant toxic proteins with insecticidal properties. A review on their potentialities as bioinsecticides. Toxin 40:1515–1539

    CAS  Google Scholar 

  • Davidowitz G, D’Amico LJ, Nijhout F (2003) Critical weight in development of insect body size. Evol Dev 5:188–197

    Article  PubMed  Google Scholar 

  • Down RE, Gatehouse AMR, Hamilton WD, Gatehouse JA (1996) Snowdrop lectin inhibits development and decrease fecundity of the glasshouse potato aphid (Aulacorthum solani) when administered in vitro and via transgenic plants both in laboratory and glasshouse trials. J Insect Physiol 42:1035–1045

    Article  CAS  Google Scholar 

  • Du J, Foissac X, Carss A, Gatehouse AMR, Gatehouse JA (2000) Ferritin acts as the most abundant binding protein for snowdrop lectin in the midgut of rice brown planthoppers (Nilaparvata lugens). Insect Biochem Mol Biol 30:297–305

    Article  PubMed  CAS  Google Scholar 

  • Dutta I, Majumder P, Saha P, Sakar A, Ray K, Das S (2005a) Constitutive and phloem specific expression of Allium sativum leaf agglutinin (ASAL) to engineer aphid (Lipaphis erysimi) resistance in transgenic Indian mustard (Brassica juncea). Plant Sci 169:996–1007

    Article  CAS  Google Scholar 

  • Dutta I, Saha P, Majumder P, Sakar A, Chakraborti D, Banerjee S, Das S (2005b) The efficacy of novel insecticidal protein, Allium sativum leaf lectin (ASAL), against homopteran insects monitored in transgenic tobacco. Plant Biotechnol J 3:601–611

    Article  CAS  Google Scholar 

  • Edwards K, Johnstone C, Thompson C (1991) A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Res 19:1349

    Article  PubMed  CAS  Google Scholar 

  • Eisemann CH, Donaldson RA, Pearson RD, Cadogan LC, Vuocolo T, Tellam RL (1994) Larvicidal activity of lectins on Lucilia cuprina: mechanism of action. Entomol Exp Appl 72:1–10

    Article  CAS  Google Scholar 

  • Fitches E, Gatehouse AMR, Gatehouse JA (1997) Effects of snowdrop lectin (GNA) delivered via artificial diet and transgenic plants on the development of tomato moth (Lacanobia oleracea) larvae in laboratory and glasshouse trials. J Insect Physiol 43:727–739

    Article  PubMed  CAS  Google Scholar 

  • Fitches E, Gatehouse JA (1998) A comparison of the short and long term effects of insecticidal lectins on the activities of soluble and brush border enzymes of tomato moth larvae (Lacanobia oleracea). J Insect Physiol 44:1213–1224

    Article  PubMed  CAS  Google Scholar 

  • Gatehouse AMR, Dewey FM, Dove J, Fenton KA, Pusztai AJ (1984) Effect of seed lectins from Phaseolus vulgaris on the development of larvae of Callosobruchus maculatus; mechanism of toxicity. J Sci Food Agric 35:373–380

    Article  CAS  Google Scholar 

  • Gatehouse AMR, Davison GM, Newell CA, Merryweather A, Hamilton WDO, Burgess EPJ, Gilbert RJC, Gatehouse JA (1997) Transgenic potato plants with enhanced resistance to the tomato moth, Lacanobia oleracea: growth room trials. Mol Breed 3:49–63

    Article  CAS  Google Scholar 

  • Hilder VA, Powell KS, Gatehouse AMR, Gatehouse JA, Gatehouse LN, Shi Y, Hamilton WD, Merryweather A, Newell CA, Timans JC, Peumans WJ, Van Damme EJM, Boulter D (1995) Expression of snowdrop lectin in transgenic tobacco plants results in added protection against aphids. Transgenic Res 4:18–25

    Article  CAS  Google Scholar 

  • Huang F, Leonard BR, Gable RH (2006) Comparative susceptibility of European corn borer, southwestern corn borer, and sugarcane borer (Lepidoptera: Crambidae) to Cry1Ab protein in a commercial Bacillus thuringiensis corn hybrid. J Econ Entomol 99:194–202

    Article  PubMed  CAS  Google Scholar 

  • Majumder P, Banerjee S, Das S (2005) Identification of receptors responsible for binding of the mannose specific lectin to the gut epithelial membrane of the target insects. Glycoconjugate J 20:525–530

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Peumans WJ, Van Damme EJM (1995) Lectins as plant defense proteins. Plant Physiol 109:347–352

    Article  PubMed  CAS  Google Scholar 

  • Powell KS, Gatehouse AMR, Peumans WJ, Van Damme EJM, Boonjawat J, Horsham K, Gatehouse JA (1995) Different antimetabolic effects of related plant lectins towards nymphal stages of Nilaparvata lugens. Entomol Exp Appl 75:61–65

    Article  CAS  Google Scholar 

  • Rabea E, El Badawy M, Rogge TM, Stevens CV, Höfte M, Steurbaut W, Smagghe G (2005) Insecticidal and fungicidal activity of new synthesized chitosan derivatives. Pest Manag Sci 61:951–960

    Article  PubMed  CAS  Google Scholar 

  • Ranjekar PK, Patankar A, Gupta V, Bhatnagar R, Bentur J, Kumar PA (2003) Genetic engineering of crop plants for insect resistance. Curr Sci 84:321–329

    Google Scholar 

  • Rao KV, Rathore KS, Hodges TK, Fu X, Stoger E, Sudhakar D, Williams S, Christou P, Bharathi M, Bown DP, Powell KS, Spence J, Gatehouse AMR, Gatehouse JA (1998) Expression of snowdrop lectin (GNA) in transgenic rice plants confers resistance to rice brown planthopper. Plant J 15:469–477

    Article  PubMed  CAS  Google Scholar 

  • Renckens S, De Greve H, Van Montagu M, Hernalsteens J-P (1992) Petunia plants escape from negative selection against a transgene by silencing the foreign DNA via methylation. Mol Gen Genet 233:53–64

    Article  PubMed  CAS  Google Scholar 

  • Roy A, Banerjee S, Majumder P, Das S (2002) Efficiency of mannose binding plant lectins in controlling a homopteran insect, the red cotton bug. J Agric Food Chem 50:6775–6779

    Article  PubMed  CAS  Google Scholar 

  • Sadek MM (2001) Polyandry in field–collected Spodoptera littoralis moths and laboratory assessment of the effects of male mating history. Entomol Exp Appl 98:165–172

    Article  Google Scholar 

  • Sauvion N, Rahbé Y, Peumans WJ, Van Damme EJM, Gatehouse JA, Gatehouse AMR (1996) Effects of GNA and other mannose binding lectins on development and fecundity of the peach potato aphid Myzus persicae. Entomol Exp Appl 79:285–293

    Article  CAS  Google Scholar 

  • Sétamou M, Bernal JS, Mirkov TE, Legaspi JC (2003) Effects of snowdrop lectin on Mexican rice borer (Lepidoptera: Pyralidae) life history parameters. J Econ Entomol 96:950–956

    Article  PubMed  Google Scholar 

  • Sharma HC, Sharma KK, Crouch JH (2004) Genetic transformation of crops for insect resistance: potential and limitations. Crit Rev Plant Sci 23:47–72

    Article  CAS  Google Scholar 

  • Shukla S, Arora R, Sharma HC (2005) Biological activity of soybean trypsin inhibitor and plant lectins against cotton bollworm/legume pod borer, Helicoverpa armigera. Plant Biotechnol 22:1–6

    CAS  Google Scholar 

  • Smeets K, Van Damme EJM, Verhaert P, Barre A, Rougé P, Van Leuven F, Peumans WJ (1997a) Isolation, characterization and molecular cloning of the mannose-binding lectins from leaves and roots of garlic (Allium sativum L.). Plant Mol Biol 33:223–234

    Article  CAS  Google Scholar 

  • Smeets K, Van Damme EJM, Van Leuven F, Peumans WJ (1997b) Isolation and characterization of lectins and lectin-alliinase complexes from bulbs of garlic (Allium sativum) and ramsons (Allium ursinum). Glycoconjugate J 14:331–343

    Article  CAS  Google Scholar 

  • Stoger E, William S, Christou P, Down RE, Gatehouse JA (1999) Expression of the insecticidal lectin from snowdrop (Galanthus nivalis agglutinin; GNA) in transgenic wheat plants: effects on predation by the grain aphid Sitobion avenae. Mol Breed 5:65–73

    Article  CAS  Google Scholar 

  • Van Damme EJM, Goldstein IJ, Peumans WJ (1991) A comparative study of related mannose-binding lectins from the Amaryllidaceae and Alliaceae. Phytochemistry 30:509–514

    Article  Google Scholar 

  • Van Damme EJM, Smeets K, Torrekens S, Van Leuven F, Goldstein IJ, Peumans WJ (1992) The closely related homomeric and heterodimeric mannose-binding lectins from garlic are encoded by one-domain and two-domain lectin genes, respectively. Eur J Biochem 206:413–420

    Article  PubMed  Google Scholar 

  • Van De Veire M Smagghe G, Degheele D (1997) Laboratory test method to evaluate the effect of 31 pesticides on the predatory bug, Orius laevigatus (Het.: Anthocoridae). Entomophaga 41:235–244

    Article  Google Scholar 

  • Wilm M, Mann M (1996) Analytical properties of the nanoelectrospray ion source. Anal Chem 68:1–8

    Article  PubMed  CAS  Google Scholar 

  • Zhu-Salzman K, Shade RE, Koiwa H, Salzman RA., Narasimhan M, Bressam RA., Hasegawa PM, Murdock LL (1996) Carbohydrate binding and resistance to proteolysis control insecticidal activity of Griffonia simplicifolia lectin II. Proc Natl Acad Sci USA 95:15123–15128

    Article  Google Scholar 

Download references

Acknowledgements

A. Sadeghi is recipient of a doctoral grant from the Ministry of Science, Research and Technology, and Kurdistan University, Iran. This research is supported by project 3G016306 of Fund of Scientific Research (FWO-Vlaanderen, Brussels, Belgium). We would like to thank Dr Guy Bauw (VIB, Ghent University, Belgium) for C-terminal sequencing of the lectins.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Els J. M. Van Damme.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sadeghi, A., Smagghe, G., Broeders, S. et al. Ectopically expressed leaf and bulb lectins from garlic (Allium sativum L.) protect transgenic tobacco plants against cotton leafworm (Spodoptera littoralis). Transgenic Res 17, 9–18 (2008). https://doi.org/10.1007/s11248-007-9069-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-007-9069-z

Keywords

Navigation